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Does Exerting Grasps Involve a Finite Set of
Muscle Patterns? A Study of Intra- and

Intersubject Variability of Forearm
sEMG Signals in Seven

Grasp Types
Néstor J. Jarque-Bou , Margarita Vergara , and Joaquín L. Sancho-Bru

Abstract— Surface Electromyography (sEMG) signals
are widely used as input to control robotic devices, pros-
thetic limbs, exoskeletons, among other devices, and
provide information about someone’s intention to perform
a particular movement. However, the redundant action
of 32 muscles in the forearm and hand means that
the neuromotor system can select different combinations
of muscular activities to perform the same grasp, and
these combinations could differ among subjects, and
even among the trials done by the same subject. In this
work, 22 healthy subjects performed seven representative
grasp types (the most commonly used). sEMG signals
were recorded from seven representative forearm spots
identified in a previous work. Intra- and intersubject vari-
ability are presented by using four sEMG characteristics:
muscle activity, zero crossing, enhanced wavelength and
enhanced mean absolute value. The results confirmed the
presence of both intra- and intersubject variability, which
evidences the existence of distinct, yet limited, muscle
patterns while executing the same grasp. This work under-
scores the importance of utilizing diverse combinations
of sEMG features or characteristics of various natures,
such as time-domain or frequency-domain, and it is the
first work to observe the effect of considering different
muscular patterns during grasps execution. This approach
is applicable for fine-tuning the control settings of current
sEMG devices.
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I. INTRODUCTION

SURFACE electromyography (sEMG) is widely used to
control different devices. sEMG electrodes are placed

on the skin directly over the muscles, having the general
advantage of being non-invasive and easy to apply. In clinical
practice, robotic devices, such as exoskeletons or gloves,
can use sEMG signals to assist patients with certain move-
ments [1], [2], [3], and amputees can use sEMG signals
from residual muscles after amputation to actuate hand pros-
theses [4], [5], [6], [7], [8]. sEMG can also be employed
in telerobotics and teleoperation for the remote control of
robots/machines by a human operator from a distance [9],
[10], [11], [12], [13], [14], [15], [16], [17]. These devices
use sEMG signals as input to provide information about
the person’s intention to perform a particular movement or
grasp [18]. The more accurate the information about a person’s
intention to perform a particular grasp or movement, the
better the accuracy of the telerobotics or teleoperation, or the
greater the usability of the prosthesis or assistive device [19].
A concerning issue is the intuitiveness of the control of
such devices [20], which can be achieved if users do not
have to change the way they do the tasks under normal
conditions. However, there are several handicaps that hinder
this intuitive control [21]: complexity of executing the hand
grasp; redundancy of the neuromotor system; the existence
of intra- and intersubject variability when doing the same
task goal; the many sEMG characteristics that can be used
to control different devices [22].

Hand grasp execution is composed mainly of two stages:
reach-to-object and the grasp itself [23]. The force needed to
close a hand around and grasp an object is determined by grasp
stability (the ability to resist external forces), grasp security
(resistance to slippery objects), grasp configuration [24], [25],
subjects’ previous experience [26], as well as by other factors
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such as fatigue, forearm orientation, time of the day, etc. All
these factors impede simulating or mimicking the behavior
of a real hand during grasping, hindering intuitive control of
devices. To address this problem, the different factors that
affect grasp execution should be studied and delimited.

First, grasp configuration, determined by the employed
grasp type, has already been extensively studied. Several
grasp taxonomies have been reported depending on their
purpose [27], [28], such as the 9-type classification applied
in [5] to determine the frequency of use of grasps in activities
of daily living (ADL). Second, very little is known about
the different ways of performing the same grasp based on
a subject’s previous experience because the solution to this
problem is not straightforward. The hand’s ability to grasp
is possible thanks to the redundant action of 32 muscles
in the forearm and hand [29]. This redundancy means that
the neuromotor system can select different combinations of
muscular activities to perform the same grasp and these
combinations could differ among subjects, and even among the
trials done by the same subject [30]. Inherent motor abundance
means there are multiple solutions for the same task goal [31].
Consequently, the specific role of muscles for performing ADL
is still poorly understood. Furthermore, identical movements
may have slightly different representations in the muscle
domain, which can cause incorrect decoding of user intent and
negatively affect the robustness of sEMG devices. A recent
work suggests that reducing motor variability could enhance
the myolelectric control robustness of robotic devices [31].

In addition, given the large number of muscles that overlap
in the forearm [29], it is practically impossible to isolate sEMG
signals from one another. Recently, some studies used High
Density EMG to control hand prostheses or robotic arms,
demonstrating that few numbers of channels are needed for
a good accuracy, although highly subject-specific [32]. A pri-
mary contributing factor to this outcome is the positioning of
the grid or the EMG electrodes with no anatomical localization
information of each one [33]. Furthermore, managing a large
amount of information from multiple sensors is complex, and
many of the obtained signals are highly correlated, as we con-
firmed in our previous work [34]. To overcome this problem,
in that work [34] we identified seven forearm areas, by using
five easily identifiable anatomical landmarks, with similar
muscle activation patterns that can be used to characterize
the muscle activity of the forearm. Thus, studying the inter-
and intrasubject variability while performing different grasps
could deepen our knowledge of how the forearm muscles from
these spots are activated, which may help to improve current
assistive prostheses and telerobotic devices.

Finally, there are several sEMG characteristics that can
be used to control these devices. Selecting optimal sEMG
characteristics, and the best combination between features and
channels, are challenging problems for accomplishing satisfac-
tory classification performance [35], [36], [37]. Improving this
classification could, in turn, help to improve the identification
of someone’s intention when performing a movement or
grasp [38]. In addition, an increment in sEMG characteristics
does not only introduce redundancy into the function vector,
but also increases complexity [39]. Muscular activity based on

maximal voluntary contraction (MVC) is a popular parameter
computed from sEMG signals [40]. Other parameters that are
usually considered are characteristics of sEMG waveforms
from time or frequency domains. Of the existing characteris-
tics, zero crossing (ZC), wavelength (WL) and mean absolute
value (MAV) are those most frequently used for their efficiency
and simplicity [41]. Recent works have proposed employing
a combination of enhanced parameters, such as enhanced WL
(EWL), enhanced MAV (EMAV) and new ZC (NZC) for an
efficient sEMG signals classification, and are valuable tools in
sEMG pattern recognition [41], [42]. In particular, the results
showed that combining EWL and EMAV with other features
like WL and ZC obtain the best classification performance.
However for a good classification rate, different combinations
of four parameters or more are normally necessary, but the
classification percentage never reaches 100% [43]. All this
may be due to variability among subjects and even repetitions
of the same subject and, therefore, to the existence of different
patterns when performing the same activity or grasp [44].

Hence the aim of this work is twofold: 1) identifying sEMG
characteristics of different natures (based on amplitude or
frequency) that provide different information to improve the
control of current assistive prostheses and telerobotic devices;
2) studying the existence of intra- and intersubject variability
of the sEMG characteristics when doing the same task goal,
and checking the existence of a limited number of muscle pat-
terns. To do so, four sEMG characteristics (Muscular activity,
NZC, EWL, EMAV) were analyzed, as recorded from seven
representative forearm spots [34] while performing seven grasp
types (most commonly used in ADL). These results will
contribute to more effectively use sEMG characteristics to
identify the person’s intention to perform a particular move-
ment, to more effectively mimic a task and to adjust the control
of current sEMG-controlled devices.

II. METHODOLOGY

A. Subjects and Tasks
Twenty-two right-handed subjects (12 males, 10 females),

averaging 35±9 years old, were selected based on criteria
including gender balance in the data, ages between 20 and
65 years, and absence of reported upper limb pathologies.
They gave their informed written consent before participating
in this study, which was approved by the Ethics Committee
of our University (reference number CD/31/2019). Subjects
performed seven representative grasps of ADL (Figure 1)
based on the grasp taxonomy used in Vergara et al. [45], while
recording the muscular activity by means of sEMG: pad-to-pad
pinch (PpP); cylindrical grasp (Cyl); lumbrical grasp (Lum);
lateral pinch (LatP); oblique palmar grasp (Obl); inter-mediate
power-precision grasp (IntPP).

B. sEMG Electrode Placement
A grid was drawn on the forearm using five easily identi-

fiable anatomical landmarks (Figure 2b) while the subjects
sat comfortably with their elbow resting on a table (arm-
forearm angle of 90◦) and the palm of their hand facing the
subject. The grid defined 30 different spots that covered the
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Fig. 1. Grasps performed: 1. 2-finger PpP; 2. 3-finger PpP; 3. Cyl; 4.
Lum; 5. LatP; 6. Obl, 7. IntPP.

Fig. 2. (a) Grid and spot areas selected for the sEMG recordings.
(b) Five anatomical landmarks used to draw the grid.

Fig. 3. Hand grip and pinch dynamometers, sEMG electrode (SX230)
and 8-channel sEMG Biometrics Ltd. devices.

entire forearm surface (Figure 2a). Following the SENIAM
recommendations [46], electrodes were placed longitudinally
in the center of seven of these spots, based on the spot groups
obtained in a previous work [34] (Figure 2a): (spot 1) wrist
flexion and ulnar deviation; (spot 2) wrist flexion and radial
deviation; (spot 3) digit flexion; (spot 4) thumb extension and
abduction/adduction; (spot 5) finger extension; (spot 6) wrist
extension and ulnar deviation; (spot 7) wrist extension and
radial deviation. Before placing electrodes, hair was removed
by shaving and skin was cleaned with alcohol.

C. Data Acquisition
Muscle activity was recorded by an 8-channel sEMG

Biometrics Ltd. device (Figure 3) at a sampling frequency
of 1000 Hz. Integral dry reusable bipolar sEMG Electrodes
(SX230) were used, with a gain of 1000, a bandwidth between
20Hz-460Hz and noise below 5µV. Grasp effort was recorded
with hand grip and pinch dynamometers (Biometrics Ltd.,
Figure 3). sEMG electrodes and dynamometer signals were
synchronized with the software provided by Biometrics.

D. Experiment Description
For the normalization of the sEMG signals, seven MVC

records were measured to each subject: flexion and extension
of wrist, flexion and extension of fingers, pronation of forearm,
ulnar deviation of wrist and elbow flexion. In the same com-
fortable posture, all the subjects were asked to exert maximum
effort with the muscles of the forearm and hand.

After recording MVCs, the subjects were asked to per-
form seven grasps by considering the order that appears in
Figure 1 and following the operator’s instructions: with their
arm aligned with the trunk and arm-forearm angle of 90◦,
the subject held a dynamometer to simulate the grasp to be
analyzed (Fig. 1) without exerting force on it and then exerting
maximum grasping effort (MGE) for 3 seconds while main-
taining the posture. To prevent any unnecessary contraction
of the muscles not required for the grasp, the subjects were
asked to then perform 50% of their MGE: after resting for
3 minutes, subjects, with the help of a screen placed in front
of them, were asked to progressively increase their effort for
3 seconds up to 50% of their MGE (50MGE), to maintain it
for 3 seconds and to then gradually decrease it until they once
again rested. Each 50MGE was repeated 3 times consecutively,
with a 3-minute break between repetitions to avoid muscle
fatigue. The subjects were able to practice each grasp as
many times as necessary before recording and allowing a
rest period before grasp recordings. The duration of each
trial was controlled. Those tests that exceeded 10 seconds
were discarded. Rest intervals, repetitions, and trial duration
were arbitrarily decided, based on values previously used in
studies conducted by the research group and other works in
literature [47] and [48] that use an 1-2 minutes period of rest
and 2-5 seconds recordings for maximal forces.

E. Data Analysis
All the statistical analyses were performed using the

MATLAB® software.
1) Computed Parameters: First of all, sEMG records dur-

ing 50MGE were filtered with a 4th-order bandpass filter
(25-500 Hz), and waveforms characteristics (NZC, EWL,
EMAV) were extracted from each record by considering the
3 seconds during which 50% maximum effort was exerted.
The sEMG characteristics were formulated according to [41]
and [42] (eq 1 to 3), where x is the sEMG signal (in mV),
L is the length of the signal and x0 is the part of the sEMG
signal during which the subjects rested:

EW L =

L∑
i=2

∣∣(xi − xi−1)
p∣∣ (1)

E M AV =
1
L

L∑
i=1

∣∣(xi )
p∣∣ (2)

p =

{
0.75, i f i ≥ 0.2L and i ≤ 0.8L
0.50, otherwise

N ZC =


1, i f xi > 0 and xi+1 < 0
or xi < 0 and xi+1 > 0
0, otherwise

(3)
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After calculating the sEMG waveform characteristics for all
the subjects, grasps, repetitions and spots, and to allow their
comparison among the subjects, the characteristics of each
spot (k) were normalized between 0 and 1 according to eq(4),
where: charack refers to every characteristic extracted from
each subject (NZC, EWL or EMAV) for each spot; k, maxk
and mink depict the maximum and minimum values for spot
k of that characteristic obtained throughout all the grasps for
the subject.

characnormali zed
k =

charack − mink

maxk − mink
(4)

In order to determine muscle activity, the sEMG records
during 50MGE were rectified, filtered by a fourth-order low
pass filter at 8 Hz and smoothed by Gaussian smoothing.
They were later normalized with the maximal values obtained
in any of the seven MVC records measured per subject.
Finally for each record, the muscle activity during the 3 sec-
onds allowed for 50% maximum effort was averaged for
each spot (A50_EMG henceforth). The data is available at
(https://doi.org/10.5281/zenodo.8064019).

2) Global Description: First, Shapiro-Wilk distribution nor-
mality test was performed for all the variables, which showed
that the distribution deviated from the normal distribution,
except for the maximum forces values. Therefore, for an
overview of the results, descriptive statistics (median, and
range –computed as percentile 95 minus percentile 5) of all the
sEMG characteristic values per grasp and spot in the 50MGE
records were computed, together with the statistics of the mean
and standard deviation force exerted on the dynamometer for
the 3 seconds of the MGE records. In addition, a Spearman’s
correlation analysis among all the sEMG characteristics (EWL,
EMAV, NZC and A50_EMG) was performed for all the grasps
together. As EWL, EMAV, and A50_EMG were highly cor-
related (>0.60), for the detailed analysis per grasp, only two
characteristics were used: NZC and the one least correlated
with it, A50_EMG.

3) Detailed Analysis Per Grasp: The values of the three
repetitions of the same grasp for each spot and subject (66
trials per grasp) were used in a clustergram [49] to verify
whether the subjects applied different strategies every time
they perform the same grasp or not. Intra- and inter-subject
errors per grasp (equations 4 and 5) were computed for NZC
and A50_EMG, namely X . Let’s j,s X i be the i measurement
for spot j and subject s, j Xs be the mean value of the
3 measurements for spot j and subject s, and j X̄ be the mean
value across the 22 subjects for a given spot and grasp. Then:

• Intrasubject variability: The error due to intrasubject
variability is j,s X i −

j Xs . The global RMSE considering
all the spots, and subjects is:

I ntrasubject Error =

√∑
j,s,i

(
j,s X i − j Xs

)2

22 · 7 · 3
(5)

• Intersubject variability: The error due to intersubject
variability is j Xs −

j X̄ .The global RMSE considering all
the spots is:

TABLE I
MEAN ACROSS SUBJECTS (µ) AND STANDARD DEVIATION (SD) OF

THE MAXIMUM EFFORT PERFORMED DURING EACH GRASP IN KGF

TABLE II
MEDIAN ACROSS SUBJECTS (P50), RANGE (PERCENTILE 95TH –

PERCENTILE 5TH ) AND THEIR RATIO FOR A50_EMG PER SPOT AND

GRASP. VALUES ARE PRESENTED AS % IN RELATION TO THE MVC

I ntersubject Error =

√∑
j,s

(
j Xs − j X̄

)2

22 · 7
(6)

The coordination of each muscle in relation to each grasp is
discussed by considering the subjects’ variability

III. RESULTS

Global Description: Table I shows the mean (µ) and stan-
dard deviation (SD) across the subjects of the maximum force
(in kgf) performed during each grasp. The Cyl grasp presents
the maximum force, while 2-fingers PpP presents the minimum
force, as expected.

Tables II-V show the statistics across subjects for each
sEMG characteristic, and per spot and performed grasp. For
A50_EMG (Table II), the median values range from 0.05 (spot
2, Lum grasp and LatP) to 0.33 (spot 7, Cyl grasp) of their
correspondent MVC. Range values were between 0.28 (spot
2, LatP grasp) and 0.44 (spot 1, IntPP grasp). Spot 2 presents
the lowest median values while all the grasps were performed.

NZC (Table III) shows the median values from 0.09 (spot
2, LatP grasp) to 0.90 (spots 3 and 4, LatP), and range value
between 0.45 (spot 3, Lum) and 0.99 (spot 6, IntPP grasp).

For EWL (Table IV), the median values ranged from 0.03
(spot 1, LatP) to 0.88 (spot 2, Cyl grasp), and range values
between 0.27 (spot 2, LatP grasp) to 0.99 (spots 4 and 6,
IntPP).

Finally, EMAV (Table V) had median values from 0.03
(spot 1 and 3, LatP) to 0.88 (spot 3, Cyl grasp), and range
values between 0.24 (spot 2, LatP) and 1.00 (spot 7, IntPP).

Table VI shows Spearman’s correlation among all the
sEMG characteristics. NZC shows the lowest correlation with
the other sEMG characteristics (≤ 0.15), while A50_EMG,
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TABLE III
MEDIAN ACROSS SUBJECTS (P50), RANGE (PERCENTILE 95TH –

PERCENTILE 5TH ) AND THEIR RATIO FOR NZC PER SPOT AND GRASP

TABLE IV
MEDIAN ACROSS SUBJECTS (P50), RANGE (PERCENTILE 95TH –

PERCENTILE 5TH ) AND THEIR RATIO FOR EWL PER SPOT AND GRASP

TABLE V
MEDIAN ACROSS SUBJECTS (P50), RANGE (PERCENTILE 95TH –
PERCENTILE 5TH ) AND THEIR RATIO FOR EMAV PER SPOT AND

GRASP

EMAV and EWL were highly correlated (> 0.64). The lowest
correlation was observed between NZC and A50_EMG. They
were the only characteristics considered in the next analyses.

Intra- and Intersubject Variability: Table VII shows the
intra- and intersubject variability of A50_EMG and NZC
for each grasp. Regarding intrasubject variability, A50_EMG

TABLE VI
SPEARMAN’S CORRELATION AMONG ALL THE SEMG

CHARACTERISTICS

TABLE VII
INTRA- AND INTERSUBJECT ERRORS (IN %) COMPUTED

FROM THE RMSE

presented low intrasubject variability (1.5-3.1%), with Cyl
showing the highest value and LatP the lowest one. NZC
obtained higher intrasubject variability values than A50_EMG
(10-13%), which quadrupled variability. Lum was the grasp
with the widest variability, while 3-fingers PpP had the
narrowest.

Concerning intersubject variability, A50_EMG had values
that tripled intrasubject variability (between 6-10%). IntPP
obtained the highest value, while Lum and LatP had the
lowest ones. NZC also obtained higher intersubject than
intrasubject variability values (18-22%), but they were more
similar among grasps in this case. IntPP and LatP had
the highest values, while Cyl and Obl had the lowest
ones.

Detailed Analysis Per Grasp:

A. 2-Fingers Pad-to-Pad Pinch
Figure 4 (A, left) shows the clustergram obtained for

each spot area and trial while performing 2-fingers PpP and
according to the A50_EMG values. In general, 2-fingers PpP
presented less muscle contribution (A50_EMG < 40%). From
the column (spots) clustering, three main groups appear:
(1) coordination of spots 1 and 6; (2) coordination of spots 2,
3, 4 and 5; (3) spot 7. From the row (trials) clustering,
three main groups of trials with different muscle patterns are
observed: three subjects’ trials were distributed among the
three groups, while all the trials of seven subjects were in
group 1, with four subjects in group 2 and eight subjects in
group 3.

Figure 4 (A, right) shows the clustergram based on NZC
values. In this case, 2-fingers PpP had medium values (above
40%). From the column (spots) clustering, three main groups
appear: (1) coordination of spots 2 and 3; (2) coordination of
spots 4, and 7; (3) spots 1, 5 and 6. From the row (trials)
clustering, three main groups of trials with different muscle
patterns appear: seven subjects’ trials were distributed among
the three groups, while all the trials of one subject were in
group 1, with eight subjects in group 2 and five subjects in
group 3.
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Fig. 4. Clustergrams obtained of each spot area and trial while performing the grasps: (A) 2-finger PpP, (B) 3-fingers PpP, (C) Cyl grasp, (D).
Cells are colored according to their A50_EMG value (left) and NZC value (right). Rows represent trials and their clustering depicts group of trials.
Columns depict spots and their clustering indicates groups of spots.

B. 3-Fingers Pad-to-Pad Pinch
3-fingers PpP (Figure 4, B left) offered little muscle contri-

bution (A50_EMG values), but it was greater than 2-fingers
PpP. Groups of spots: (1) coordination of spots 1 and 6; (2)
spots 2, 3, 4 and 7; (3) spot 5. Three main groups of trials were

observed: two subjects’ trials were distributed among the three
groups, while all the trials of seven subjects were in group 1,
with nine subjects in group 2 and four subjects in group 3.

Regarding NZC (Figure 4, B right), 3-fingers PpP
obtained lower values than 2-fingers PpP. Groups of spots:
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Fig. 5. Clustergrams obtained of each spot area and trial while performing the grasps: (E) LatP, (F) Obl grasp and (G) IntPP grasp. Cells are
colored according to their A50_EMG value (left) and NZC value (right). Rows represent trials and their clustering depicts group of trials. Columns
depict spots and their clustering indicates groups of spots.

(1) coordination of spots 1, 3, 4, and 6; (2) coordination of
spots 2, 5 and 7. Three main groups of trials are observed:
seven subjects’ trials were distributed among the three groups,
while all the trials of four subjects were in group 1, with three
subjects in group 2 and seven subjects in group 3.

C. Cylindrical Grasp
The Cyl grasp (Figure 4, C left) offered medium-high

muscle contribution from all the spots (above 40%) according
to the A50_EMG values. Groups of spots: (1) coordination
of spots 1 and 7; (2) spots 2, 4 and 5; (3) spots 3 and 6.
Two main groups of trials are observed: only one subject’s
trials were distributed among the groups, while all the trials
of seven subjects were in group 1, with 14 subjects in group 2.

On NZC (Figure 4, C right), the Cyl grasp generally
obtained low NZC values (below 40%), except for spot 6 with
values over 60%. Groups of spots: (1) coordination of spots

1 and 6; (2) spots 2, 4 and 7; (3) spots 3 and 5. Three main
groups of trials: six subjects whose trials were distributed
among the groups, while all the trials three subjects were in
group 1, with 10 subjects in group 2 and three subjects in
group 3.

D. Lumbrical Grasp
Lum grasp (Figure 4, D left) had low A50_EMG values

from all the spots (< 40%). Groups of spots: (1) coordination
of spots 1 and 6; (2) spots 2, 3, 4 and 7; (3) spot 5. Two main
groups of trials are observed: only one subject’s trials were
distributed among the groups, with all the trials of 12 subjects
in group 1 and nine subjects in group 2.

Regarding NZC (Figure 4, D right), the Lum grasp obtained
low NZC values (< 40%) except for spots 1, 5 and 6, whose
values were generally > 60%. Groups of spots: (1) coor-
dination of spots 2 and 6; (2) spots 1 and 7; (3) spots 3,
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4 and 5. Two main groups of trials are observed: three subjects’
trials were distributed among the groups, with all the trials of
14 subjects in group 1 and five subjects in group 2.

E. Lateral Pinch

LatP (Figure 5, E left) presented scarce muscle contribution
from all the spots (A50_EMG < 40%). The contribution of
spot 7 was the greatest. Groups of spots: (1) coordination of
spots 1, 6 and 7; (2) spots 3 and 5; (3) spots 2 and 4. Two
main groups of trials are observed: two subjects’ trials were
distributed among the group, with all the trials of 16 subjects
in group 1 and four subjects in group 2.

On NZC (Figure 5, E right), LatP generally obtained high
NZC values (above 80%), especially in spots 3, 4 and 7.
Groups of spots: (1) coordination of spots 1, 2 and 6; (2) spots
3 and 5; (3) spots 4 and 7. Two main groups of trials
are observed: six subjects’ trials were distributed among the
groups, with all the trials of six subjects in group 1 and
10 subjects in group 2.

F. Oblique Palmar Grasp

The muscle contribution of the Obl grasp (Figure 5, F left)
was medium from all spots (A50_EMG between 40-50%).
Spots 1 and 7 contributed the most. Groups of spots: (1)
coordination of spots 6 and 7; (2) spots 1 and 3; (3) spots 2,
4 and 5. Two main groups of trials are observed: only one
subject’s trials were distributed among the groups, with all
the trials of 11 subjects in group 1 and 10 subjects in group
2.

On NZC (Figure 5, F right), the Obl grasp generally had
medium NZC values (> 40%). Groups of spots: (1) coordina-
tion of spots 2 and 3; (2) spots 1, 4 and 5; (3) spots 6 and 7.
Three main groups of trials are observed: four subjects’ trials
were distributed among the three groups, with all the trials of
subjects in group 1, 12 subjects in group 2 and four subjects
in group 3.

G. Intermediate Power-Precision Grasp

The muscle contribution of the IntPP grasp (Figure 5, G
left) from all the spots was medium (A50_EMG between
40-50%). Spot 1 and 7 contributed the most. From the column
clustering, three main clusters of spots are observed: (1) coor-
dination of spots 6 and 7; (2) spots 1 and 3; (3) spots 2,
4 and 5. From the row clustering, two main groups of trials
with different behaviors are observed: two subjects’ trials
were distributed among the groups, with all the trials of eight
subjects in group 1 and 12 subjects in group 2.

For NZC (Figure 5, G right), the IntPP grasp generally
obtained medium and low NZC values (> 20-40%) and some
spots had high values (spots 5 and 6), but not for all the trials.
Groups of spots: (1) coordination of spots 2 and 3; (2) spots
4 and 5; (3) spots 1, 6 and 7. Three main groups of trials
are observed: six subjects’ trials were distributed among the
groups, with all the trials of six subjects in group 1, two
subjects in group 2 and six subjects in group 3.

IV. DISCUSSION

In this work, forearm sEMG signals during grasp per-
formance were studied by analyzing four sEMG parameters
(EMAV, EWL, A50_EMG and NZC) of seven representative
forearm areas to bridge two gaps that may help to improve
current assistive, prostheses and telerobotic devices: 1) sEMG
characteristics of different natures (based on amplitude or
frequency) can provide different and useful information; 2) the
existence of intra- and intersubject variability of sEMG char-
acteristics when performing the same task goal, which can
confirm the existence of a limited number of muscle patterns.

A. Relation Among sEMG Characteristics
For the first gap, EMAV and EWL are highly corre-

lated (0.96) and they also correlate highly with A50_EMG
(> 0.75). On the contrary, NZC is poorly correlated (<0.3)
with the other sEMG parameters. Therefore, EMAV, EWL and
A50_EMG seem to provide the same information in terms of
muscle contribution patterns, while NZC may provide different
relevant information. These results are consistent with previous
works [38], [39], where the highest rate classification scores
tended to combine amplitude-based sEMG characteristics (i.e.
EMAV or EWL) with frequency-based sEMG characteristics
(i.e. NZC or slope change sign). The results found herein can
provide insights into one of the reasons why the combination
of sEMG characteristics of different natures leads to greater
classification success, which is a novel contribution that can
bring about an improvement in current control systems.

B. Inter- and Intrasubject Variability
Regarding the second goal, A50_EMG and NZC presented

different levels of inter- and intrasubject variability.
Muscle activity (A50_EMG) presented very low intrasubject

variability compared to intersubject variability. This means
that, in general, the subjects performed each grasp in the
same way during the different attempts. Intersubject variability
could confirm the existence of different muscular patterns.
On the contrary, the inter- and intrasubject variability of NZC,
independently of the performed grasp, were of the same order
of magnitude.

Then, the differences in NZC values from the various
repetitions by the same subject could be as large as those from
distinct subjects. However, all the trials of a vast number of
subjects are in the same cluster group. These facts bring to
light the possibility of using these sEMG characteristics to
classify sEMG signals to provide sufficient information about
a person’s intention to perform a particular movement.

The wider intersubject variability suggests the existence of
different strategies, but limited in number, to perform the same
grasp based on subjects’ specificity (age, profession, specific
skills, anatomical structure, etc.). This fact means that if we
could quantify the different strategies observed per grasp, these
characteristics could be used to better discriminate the distinct
grasps. The results are consistent with a recent study [44]
where muscular and kinematic patterns during the execution
of different grasps were examined. It was found that with
7 kinematic-muscular synergies, a reasonable reconstruction of
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EMGs and kinematics for all subjects was achieved, albeit with
a long inter-individual variability: only 2 synergies were shared
by more than half of the participants. This implies that, for a
good classification rate, the distinct muscular patterns accord-
ing to each subject’s previous experience should be considered.
It confirms the need to study in-depth what these patterns are in
order to adjust the control of these sEMG-controlled devices.
In addition, a combination of several parameters is needed to
provide us with different information, such as NZC and muscle
activity. Hence, these findings could be relevant to enhancing
the control of prosthetic limbs, exoskeletons, rehabilitation
devices, and telerobotics. This improvement could involve
customizing the controls of these devices by utilizing a finite
number of patterns, for instance or using other parameters for
the control, not only the level of activation.

C. Muscle Coordination
The results show a different synergistic functioning of

muscles, some of which are shared among grasps and depend
on the sEMG characteristic. For muscle activity, some patterns
are observed during all the grasps: 1) coordination between
wrist flexors and extensors, which could stabilize wrists while
performing precision grasps during which the thumb points
upward; 2) coordination of thumb muscles with FCR for
contributing and assisting thumb abduction movements. Other
patterns are grasp-specific: while performing precision grasps,
finger flexors are more coordinated with finger extensor.
During power grasps, finger flexors are more coordinated with
wrist muscles. For NZC, there is no clear shared pattern among
grasps. However, wrist flexors and extensors share different
patterns with one another depending on the grasp being
performed. Likewise, finger flexors and extensors (including
thumb) seem to also share different patterns depending on the
grasp being performed.

The results suggest that focusing on the coordination
between spots can provide us with an idea of the grasp
to be performed more than the specific value of each spot.
In other words, by controlling the synergistic functioning of
the forearm muscles, it would be possible to determine the
type of grasp that a user is performing and, therefore, to more
effectively mimic this real behavior. Therefore, the various
patterns identified in this study could validate the importance
of considering them to enhance the control of current sEMG
devices.

The work has certain limitations. Firstly, the results are
drawn from healthy subjects, while most of these technolo-
gies are intended for individuals with medical conditions or
injuries. Secondly, our focus on static postures, where the
upper arm remains fixed in a specific orientation, might impact
certain wrist muscles. Thus, further studies would be essential
to investigate similar behaviors observed in this study under
dynamic conditions and in patients.

V. CONCLUSION

We analyzed the contribution of seven forearm spots while
performing some grasp types representative of ADL. In muscle
activity terms, we observed how the different subjects applied
distinct strategies to execute the same grasp. These strategies

TABLE VIII
SUMMARIZATION OF THE RESULTS. THE SPOT/SPOTS MORE ROBUST

AGAINST INTRA AND INTER-SUBJECT VARIABILITY (SELECTED AS THE

SPOTS WITH THE HIGHEST RATIO P50/RANGE)

appear to be influenced by the individual’s experience, which
highlights mainly the presence of intersubject variability.
However, other sEMG characteristics, such as NZC (New
Zero Crossing), did not exhibit distinct strategies based on
the subjects. Table VIII summarizes the spots more robust
against this variability, meaning those spots that are highly
activated but also activated similarly among subjects. These
results highlight the need to use different combinations of
sEMG features or characteristics of distinct natures (time or
frequency), and not only those based on signal amplitude
to discriminate among grasps due to intra- and intersubject
variability, among other factors.

In addition, our findings support the hypothesis of a lim-
ited number of muscular patterns that could improve current
sEMG devices. Further studies should aim to investigate and
describe these patterns in detail by determining whether sEMG
characteristics can effectively differentiate several grasp types.
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