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Abstract— The motor imagery brain-computer interface
(MI-BCI) based on electroencephalography (EEG) is a
widely used human-machine interface paradigm. However,
due to the non-stationarity and individual differences
among subjects in EEG signals, the decoding accuracy
is limited, affecting the application of the MI-BCI. In this
paper, we propose the EISATC-Fusion model for MI EEG
decoding, consisting of inception block, multi-head self-
attention (MSA), temporal convolutional network (TCN), and
layer fusion. Specifically, we design a DS Inception block
to extract multi-scale frequency band information. And
design a new cnnCosMSA module based on CNN and cos
attention to solve the attention collapse and improve the
interpretability of the model. The TCN module is improved
by the depthwise separable convolution to reduces the
parameters of the model. The layer fusion consists of
feature fusion and decision fusion, fully utilizing the fea-
tures output by the model and enhances the robustness
of the model. We improve the two-stage training strategy
for model training. Early stopping is used to prevent model
overfitting, and the accuracy and loss of the validation set
are used as indicators for early stopping. The proposed
model achieves within-subject classification accuracies of
84.57% and 87.58% on BCI Competition IV Datasets 2a
and 2b, respectively. And the model achieves cross-subject
classification accuracies of 67.42% and 71.23% (by transfer
learning) when training the model with two sessions and
one session of Dataset 2a, respectively. The interpretability
of the model is demonstrated through weight visualization
method.

Index Terms— Brain–computer interface (BCI), motor
imagery (MI), attention collapse, temporal convolution
network (TCN), transfer learning.

I. INTRODUCTION

BRAIN-COMPUTER interface (BCI), a technology
facilitating direct communication between the brain

and external devices [1], finds extensive applications in
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various fields, including human-computer interaction, sports
rehabilitation, and medical treatment for diseases [2], [3], [4].
Commonly used BCI paradigms are steady-state visual evoked
potentials (SSVEP), P300, and motor imagery (MI) [5], with
MI BCI being one of the most promising for application.
MI BCI typically uses electroencephalogram (EEG) signals to
detect motor imagery, allowing the user to control devices by
imagining movements, such as moving electric wheelchairs,
cursors, and upper-limb robots [6], [7], [8]. However, the
instability of brain activity and the low signal-to-noise ratio
(SNR) may yield diverse outcomes of EEG signals [9].
Moreover, the dependence on individual subjects and the
correlation between EEG channels of MI EEG signals increase
the complexity of analyzing and classifying brain signals [10].

At present, decoding of MI EEG signals primarily relies
on traditional machine learning (ML) and deep learning
(DL) [11]. Typically, traditional ML involves two steps process
of feature extraction and classifier design. Deep learning
provides an end-to-end approach that can automatically extract
task-specific information from raw EEG signals without man-
ually designed features. In the past five years, there has been
a significant increase in the utilization of DL for classifying
MI tasks. The convolutional neural network (CNN) is the
most widely used architecture for MI classification [12].
Schirrmeister et al. [13] studied various deep CNN archi-
tectures, achieving comparable performance to conventional
algorithms in EEG task decoding. Then, the compact EEG-
Net [14] extracts temporal and spatial features by designing
the convolution kernel shape and achieves outstanding gen-
eralization to multiple paradigm datasets. TSFCNet [15] uses
a simple network structure to extract excellent features and
avoids the overfitting caused by complex network structures.

However, a single convolution pattern and convolution
kernel size cannot effectively extract multi-scale advanced
features. Therefore, the multi-scale network structure is used to
solve this problem. MTFB-CNN [16] utilizes a parallel multi-
scale time-frequency CNN block to adaptively extract EEG
signal features in the temporal, frequency, and time-frequency
domains. MSHCNN [17] uses 1D convolution to extract
advanced temporal features and 2D convolution to extract
temporal and spatial features. CMO-CNN [18] uses different
filter scales and different branch depths to extract diverse and
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multi-level features for fusion. Zhao et al. [19] introduced a
new 3D representation of EEG and a Multi-branch 3D CNN is
designed to fully utilize the features on various dimensions of
EEG. Similarly, inception [20] is a compact parallel structure
that can efficiently extract multi-scale information. Incep-
EEGNet [21] utilizes an inception-based architecture to decode
the raw EEG signals. EEGSym [22] improves inter-subject MI
classification performance with inception modules and residual
connections.

The CNN cannot extract long temporal dependent features
of time series data. Therefore, a CNN-based temporal con-
volutional network (TCN) [23] was proposed specifically for
time series modelling and classification. EEG-TCNet [24]
feeds the temporal features output by EEGNet into TCN to
extract high-level long-term dependency information. ETC-
Net [25] combines the efficient channel attention (ECA) and
TCN components to extract channel features and temporal
information. EEG-ITNet [26] uses inception block and TCN
to extract rich spectral, spatial, and temporal information with
less model complexity. The layer fusion of the model can
capture the complex features of the input data and improve the
representational capability of the model. TCNet-Fusion [27]
adds layer fusion on EEG-TCNet to reduce feature loss and
builds rich feature mappings. CCNN [28] fuses CNNs with
different architectures and utilizes convolutional features at
different layers to capture spatial and temporal features from
raw EEG data.

Recently, the self-attention mechanism (SAM) [29] has
been widely applied to EEG signal decoding. FB-Sinc-
CSANet [30] introduces channel self-attention for local and
global feature selection. SACNN-TFCSP [31] utilizes a self-
attention-based CNN to extract the temporal and spatial
information. CRAM [32] employs a recurrent SAM to inves-
tigate the temporal dynamics of the EEG signals while
emphasizing the most discriminative temporal periods. The
multi-head self-attention (MSA) [29] enables computing mul-
tiple global time-dependent features in parallel. ATCNet [33]
uses MSA to highlight the most important information in
EEG time series signals. Conformer [34] uses a MSA module
to extract global long-term dependency features based on
local temporal features extracted by CNN. TST-ICA [35]
utilizes a temporal transformer and a spatial transformer to
capture the temporal and spatial information, respectively.
3D DCSPNet [36] adaptively extracts optimal features from
EEG signals through a spatial-spectral-temporal (SST) atten-
tion mechanism. However, when using MSA to decode EEG
signals, it is easy to cause attention collapse due to the limited
training set and the non-stationary characteristics of the EEG
signals, as shown in Fig. 8. And it is difficult to illustrate the
actual physical meaning of each attention head, which limits
the interpretability of the model.

The main contributions of this paper are as follows:
1) We propose a high-performance, lightweight, and inter-

pretable end-to-end MI EEG decoding model EISATC-Fusion.
In the model, we design a DS Inception block by depthwise
separable convolution to extract multi-scale frequency band
information. And the cnnCosMSA module based on CNN and
cos attention is designed to solve the attention collapse and

improve the interpretability of the model. The TCN module
is improved by the DS convolution, which greatly reduces the
parameters of the model.

2) We improve the two-stage model training strategy, using
the accuracy and loss of the validation set as indicators for the
early stopping (ES). Experiments are conducted on multiple
state-of-the-art models. The results show that the improved
training strategy not only improves the decoding performance
of the model but is also universal.

3) The transfer learning capability of EISATC-Fusion is
studied, and the impact of learning rate and the amount of
training data on model performance is discussed. The decoding
performance of the cross-subject is further improved through
transfer learning.

4) The interpretability of the model is illustrated through
t-SNE and weight visualization methods, and the rationality
of EISATCN-Fusion is demonstrated.

The rest of this paper is organized as follows: section II
describes the proposed model and data preprocessing method,
section III describes the experimental details and analysis of
the results, and section IV summarizes our work. The model
code can be obtained at https://github.com/LiangXiaohan506/
EISATC-Fusion

II. METHOD

A. Overall Structure of EISATC-Fusion
EISATC-Fusion model consists of four modules: the

EEGNet DS Inception (EDSI) module, cnnCos multi-head
self-attention (cnnCosMSA) module, temporal depthwise sep-
arable convolutional network (TDSCN) module, and fusion
module, as shown in Fig. 1.

The EDSI uses normal convolution and depthwise (DW)
convolution to extract the temporal and spatial features and
uses a depthwise separable (DS) inception block to extract
the multi-scale time features. Then, the features with local
information output by the EDSI are fed into the cnnCosMSA.
The cnnCosMSA utilizes DW convolutional and cos attention
to extract global features with long time-dependence. The fea-
tures output by the EDSI and the cnnCosMSA are combined
along the depth dimension and then fed into the TDSCN to
extract high-level temporal features. The features output by the
EDSI and the TDSCN are each fed into two fully connected
(FC) layers, and the classification decision information output
by the FC is fused through a learnable tensor. Finally, the
model classification results are output through softmax.

B. Input Representation and Preprocessing
In this paper, the MI EEG signals X i ∈ RC×T are fed into

the proposed EISATC-Fusion model without applying filtering
or removing artifacts. The signals include C channels and
T sampling points. The output of model is Y ∈ RNc , where
Nc represents the number of classes.

The Z-score standardization is used to reduce the
non-stationarity of the EEG signals as

x0 =
xi − µ
√

σ 2
, (1)



LIANG et al.: EISATC-FUSION: INCEPTION SELF-ATTENTION TCN FUSION FOR MI EEG DECODING 1537

Fig. 1. The overall architecture of EISATC-Fusion, including an EEGNet DS Inception (EDSI) module, a cnnCos Multi-head Self-Attention
(cnnCosMSA) module, a Temporal Depthwise Separable Convolutional Network (TDSCN) module, and a fusion module (feature fusion and decision
fusion).

where x0 and xi represent the standardized output and training/
test data, respectively. µ and σ 2 represent the mean and
variance of the training data, and are utilized directly to
normalize both the training and test data.

C. EEGNet DS Inception Module
The EEGNet DS Inception module is inspired by the

EEGNet architecture introduced in [14], and the layer of
SeparableConv2D in EEGNet is replaced by the DS Inception
block. Moreover, the EDSI module employs different param-
eter values compared to those utilized in [14].

The core structure of the EDSI module is composed of three
convolutional layers, and the detailed structure is shown in
Fig. 1. The first layer is temporal convolution, using F1 = 16
convolution kernels with a size of (1, 32) to learn temporal
filters of different frequency bands. The second layer is chan-
nel convolution, using DW convolution with F2 convolution
kernels of size (C , 1) and groups = F1 to learn band-specific
spatial filters. F2 determines the size of the output features of
the EDSI, and F2 = D × F1, where D represents the number

of connections between a filter in the previous layer and the
filters of the current layer. Empirically, D is set to 2. The
channel convolution is followed by an average pooling layer
with a kernel size of (1, 8) and a step size of (1, 8), reducing
the sampling rate of the signals to ∼ 32H z.

The last layer of convolution is the DS Inception (DSI)
block, which is a multi-scale temporal convolution block. The
DSI block contains three paths composed of DW convolution
and a residual path, and at the end of the block there is a
pointwise (PW) convolution layer, as shown in Fig. 2. The
convolution kernel sizes of the first three paths are (1, Ki ),
(1, 2 × Ki ), and (1, 4 × Ki ), where Ki = 4. The number
of filters for each path is F2/4, and the groups = F2/4 for
DW convolution. The fourth path adopts the structure of
ResNet [37], and the maximum pooling layer with a kernel
size of (3, 3) and a step size of (1, 1) is utilized for input
information fusion. To maintain the dimensionality of the data
passing through the DSI block, the maximum pooling layer is
followed by the PW convolution layer with a kernel size of
(1, 1), and the number of filters is F2/4. The output features
of the four paths are then connected in the depth dimension,
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Fig. 2. Architecture of the DS Inception (DSI) block consisting of four
paths.

and a PW convolution with F2 filters performs information
fusion in the depth dimension. The DSI is followed by an
averaging pooling layer with a kernel size of (1, 8) and a step
size of (1, 8), which downsamples the signal to Fs ≈ 4H z.

Following each convolutional layer, batch normalization
(BN) [38] is applied to enhance the generalization of the
model. The second and third BN layers are followed by an
exponential linear unit (ELU) activation function for nonlin-
earity. Each pooling layer is followed by a dropout layer with
a dropout rate of 0.5.

The output of the EDSI module is the time series of Ye ∈

Rd×1×Te , where Te = T/(8 × 8) ≈ 15 is the length of the
output sequence, and d = F2 is the dimension of the sequence.

D. cnnCos Multi-Head Self-Attention Module
The cnnCos Multi-head Self-Attention module is designed

based on the CNN to address the issue of attention collapse
during the processing of EEG signals by MSA. Cos attention
is added to enhance the attention value and improve the
interpretability of the model.

The attention mechanism is simulated by three components:
query (Q), key (K ), and value (V ). The query/key/value
vector are calculated by DW convolution, which has heads ×

head_dim filters of size (1,3) and groups = d .

Q = DWConvq(L N (Ye)), (2)
K = DWConvk(L N (Ye)), (3)
V = DWConvv(L N (Ye)), (4)

where L N is the layer normalization [39] and the L N (Ye)

is the input sequence of the cnnCosMSA. Divide the Q, K ,
and V vectors into h subvectors, and take one subvector from
each Q, K , and V vector to form an attention head. Then we
obtain h attention heads, and according to experience, h =

heads = 8, head_dim = 8. The attention weights for each
head are computed using scaled dot-product cosAttn, and the
corresponding calculation process is illustrated in Fig. 3.

First, attention scores (ATscores) are calculated through Q
and K :

AT scores(Q, K ) =
QK T√∑
Q2

√∑
K 2

, (5)

Then, the cos attention (CosAT) is calculated as

Cos AT = 0.5cos(ω′
· dis) + 0.5 ∈ [0, 1], (6)

Fig. 3. Calculation process of scaled dot-product cosAttn.

where dis represents the distance between each moment in
the input time series and is calculated as

disi, j
m,n = (i − m) + ( j − n), (7)

where i = m = 1, j = n ∈ [1, Te]. The ω′ represents the
frequency as

ω′
= f (ω)(Te − 1) + 1 ∈ [1, Te], (8)

where ω ∈ R1×h is a learnable tensor, f (·) represents
the sigmoid function. The ATscore improved by CosAT is
calculated as

Cos AT score(Q, K ) = Cos AT · AT scores(Q, K ), (9)

Finally, the output of the scaled dot-product cosAttn is
obtained by multiplying CosATscore with V:

Attention(Q, K , V ) = Cos AT score · V . (10)

After the reshape operation, the dimension of Attention
is [h × head_dim, 1, T _e], which is different from the input
dimension. Point convolution is used to keep the dimensional-
ity of the input features constant, and is followed by BN and
ELU. Dropout (p = 0.3) is used to prevent overfitting. The
output of the cnnCosMSA module is Ym ∈ Rd×1×Te .

E. Temporal Depthwise Separable Convolutional
Network Module

Temporal convolutional network does not need to explicitly
maintain the state of sequence data, and thus have more
efficient computation and longer time-dependent capabilities.
In order to reduce the number of parameters of the TCN
module without reducing the decoding performance of the
module, we improved TCN by replacing dilated causal con-
volution with dilated causal DS convolution, which contains
a layer of the dilated causal depthwise convolution and a
layer of pointwise convolution. The detailed architecture of
the TDSCN module is shown in Fig. 1.

The TDSCN module consists of two stacked residual blocks,
each consisting of two dilated causal DS convolution layers
followed by BN, ELU and dropout (p = 0.3) in sequence. Each
residual block is followed by an ELU. A point convolution
is used as a residual connection when the dilated causal DS
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convolution changes the dimensions of the sequence fed into
the residual block. In EISATC-Fusion, the dimensions of the
sequence for input and output residual blocks are both 2× F2.
Therefore, we use the identity mapping as the residual
connection.

The dilation factor of the dilated causal DW convolution
increases exponentially with the number of residual blocks L ,
i.e., the dilation factor of the i-th residual block is 2i−1.
Therefore, the receptive field size (RFS) of the TDSCN
module as defined in

RF S = 1 + 2(Kt − 1)(2L
− 1), (11)

where Kt is the kernel size of the convolution. In the EISATC-
Fusion model, the input sequence length of the TDSCN is 15,
and L = 2. Information is not ignored only if the RFS is
greater than the length of the input sequence. Therefore, we set
Kt = 4 (RFS=19>15) for all convolutional layers. The data
fed into the TDSCN are described in the following subsection.
The output of the TDSCN module is Yt ∈ Rd .

F. Fusion Module
The fusion module consists of two parts: feature fusion and

decision fusion, as shown in Fig. 1.
Feature fusion combines the output of different layers in

the model to extract the hidden information of the input
data and improve the representation ability of the feature.
The feature output by the EDSI are fine-grained descriptions
of local information. The cnnCosMSA increases the global
time-dependent property of the feature. Therefore, we fuse
the features output by the EDSI and the cnnCosMSA module
along the depth dimension to obtain a fusion feature X t ∈

R(2×d)×Tt , where Tt = Tm = Te. Then, the fusion feature
is fed into the TDSCN to extract higher-level time-dependent
information.

Decision fusion combines the outputs of multiple classifiers
to reduce the uncertainty and errors of individual classifiers,
improve the information integration ability of the model and
allow the model to obtain more reliable decisions. The outputs
of the EDSI and TDSCN are fed into the fully connected layer
to obtain the prediction results Pe ∈ RNC and Pt ∈ RNC ,
respectively. Then the learnable tensor β is used as the fusion
coefficient, and the sigmoid function is used to limit the
coefficient to (0, 1). The fusion prediction result is calculated
as

P = f (β) · Pe + (1 − f (β)) · Pt , (12)

where f (·) is the sigmoid function.
To conclude, standardized MI EEG data are fed into the

EISATC-Fusion model. The data are first processed through
the EDSI and cnnCosMSA sequentially to extract features Ye
and Yt respectively. The features are then fused and fed into
the TDSCN. Then the output of the EDSI and cnnCosMSA
are linearly transformed to obtain the prediction probabilities
Pe and Pt , respectively. Finally, the two probabilities are
adaptively fused and fed into the softmax function to obtain
the classification result.

III. EXPERIMENTS AND RESULTS

A. Datasets
Two famous MI EEG datasets, BCI Competitive IV 2a

and BCI Competitive IV 2b, are used for model performance
evaluation. Each dataset adopts different paradigms and has
different numbers of samples.

1) BCI-2a: BCI Competition IV Dataset 2a [40] utilizes
22 electrodes to record the EEG of 9 subjects at a sampling
rate of 250 Hz. Each subject is collected two sessions on
two different days, with each session containing four different
motor imagery tasks. The sample data for model training
are collected within 0–4 seconds following the occurrence
of a visual cue. The dimension of the data feed to the
EISATC-Fusion is (C, T), where C = 22 and T = 1000. The
Nc = 4.

2) BCI-2b: BCI Competition IV Dataset 2b [41] utilizes
3 electrodes to record the EEG of 9 subjects at a sampling
rate of 250 Hz. Five sessions are collected for each subject,
with left- and right-hand motor imagery tasks in each session.
The sample data for model training are collected within
0–4 seconds following the occurrence of a visual cue. The
dimension of the data feed to the EISATC-Fusion is (C, T),
where C = 3 and T = 1000. The Nc = 2.

B. Experimental Details
The EISATC-Fusion model is built in the PyTorch 1.12 with

Python 3.7 and trained by Nvidia GTX 3090 24 GB. Adam
optimizer is used to optimize the model parameters with
hyperparameter values: the learning rate lr = 0.001, β1 is
0.9, β2 is 0.999, and weight decay is 0.001. The cross-entropy
function is used to calculate the overall model loss as

ℓ(x, y) =

N∑
n=1

ln
N

,

ln = −log
exp(xn,yn )∑NC
c=1 exp(xn,c)

, (13)

where x is the output of the model, y is the label, and N is
the batch size.

The classification accuracy and kappa score (14) are utilized
as evaluation metrics to assess the model performance.

kappa =
p0 − pe

1 − pe
, (14)

where p0 represents the classification accuracy of the model
and pe represents the expected consistency level. The statis-
tical significance is analyzed using the Wilcoxon signed-rank
test.

Within-subject and cross-subject experiments are performed
with the EISATC-Fusion model. For the within-subject exper-
iment, the model is trained with the first session of BCI-2a
and tested on the second session, and the model is trained
with the first three sessions of BCI-2b and tested on the last
two sessions. For cross-subject experiment, we use “leaving
one subject out” (LOSO) evaluation method. One subject is
selected from the dataset as the test set. Then the remain-
ing subjects are used as the training set. Both within- and
cross-subject experiments employ 5-fold cross-validation.
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TABLE I
COMPARISON OF DECODING PERFORMANCE OF DIFFERENT METHODS ON BCI-2a

TABLE II
COMPARISON OF DECODING PERFORMANCE OF DIFFERENT METHODS ON BCI-2b

C. Model Training Strategy
We improve the two-stage training strategy proposed in [13],

which only utilizes the accuracy on the validation set as
the evaluation metric for ES. But when the model achieves
the same accuracy, there may be different losses. A sample
in BCI-2a is fed into the model, and the model will pro-
duce the probability that the sample falls into each class.
Assuming that two different prediction probabilities, p1 =

[0.24, 0.24, 0.24, 0.28] and p2 = [0.1, 0.1, 0.1, 0.7], are out-
put by the model in different training epochs, the predicted
result for both is class 3. Assuming that the true category of the
sample is also 3, the losses calculated by (13) are 1.3564 and
0.9732 respectively. We prefer to obtain p2, as it is more
robust. Therefore, we improve the ES strategy and use loss
and accuracy as the evaluation criteria. If the current training
epoch obtains the best loss and the corresponding accuracy is
higher than or equal to the previous best accuracy, then the
ES epochs are reset.

The training process consists of two steps. In the first stage,
the model is trained on the training set, and the best model is
then obtained by applying the improved ES approach on the
validation set. In the second stage, the model created in the first
stage is trained again using both the training and validation
sets. When the validation set loss is less than or equal to the
minimum loss on the training set of the first stage, the second
stage ends, and the model is saved.

D. Within-Subject Decoding Experiment
EISATC-Fusion is evaluated for within-subject decoding

performance and compared with other state-of-the-art

algorithms on BCI-2a and BCI-2b. The decoding accuracy (in
percentage %), k-score and p-value are presented in Table I
and Table II. The optimal data are highlighted.

The EISATC-Fusion is trained with the improved training
strategy. The training epochs are 3000 for the first stage and
800 for the second stage. The ES epochs is 300. The batch
size is 64.

The experimental results on BCI-2a are presented in Table I.
EISATC-Fusion achieves the highest mean accuracy with the
smallest standard deviation, and the accuracy on most subjects
is higher than that of other algorithms. The average decoding
accuracy of EISATC-Fusion exceeded that of CNN-based
EEGNet-8,2 and TSFCNet by 15.61% (p<0.01) and 2.24%,
respectively. These CNN-based models only focus on the local
information of the EEG signal, while our model adds a SAM
based on CNN to extract both local and global dependency
information of the signal, which improves the decoding per-
formance. Compared with SAM-based SACNN-TFCSP, it is
improved by 6.67% (p<0.05). This proves that more attention
heads can extract richer global information. And compared
with MSA-based Conformer, it is improved by 7.51%. There
is the attention collapse when applying MSA to decode EEG
signal, and the cnnCosMSA solves the problem and fur-
ther optimizes the original attention, improving the decoding
performance of the model. Compared with TCN-based EEG-
TCNet, it is improved by 9.33% (p<0.05). Compared with
TCNet-Fusion based on model fusion and MTFB-CNN based
on parallel multi-scale structure, they are only improved by 1%
and 0.1% respectively, but the standard deviation is reduced by
23.60% and 30.74% respectively, which shows that our model
has stronger individual adaptability.
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TABLE III
ABLATION EXPERIMENT RESULTS OF DSI AND TDSCN ON BCI-2a

TABLE IV
ABLATION EXPERIMENT RESULTS OF EISATC-FUSION ON BCI-2a

The experimental results on BCI-2b are shown in Table II,
which shows similar results to those on BCI-2a. The decoding
performance of EISATCN-Fusion is higher than models based
on CNN, MSA and multi-scale structure. The improvement of
the CMO-CNN based on the multi-branch structure, which has
a higher performance than other models, is not obvious, and
the average accuracy is only 0.45% higher. But the parameters
of our model are only 26,374, which is 77.34% less than
CMO-CNN (116,406).

E. Ablation Study
To investigate the effects of the DSI block and the TDSCN

module, ablation experiments are performed on the EEGNet
model and the EEG-TCNet model. The average decoding
results for all subjects are shown in Table III. The training
parameters are the same as subsection III-D.

The EEGNet-16,2 differs from the EDSI only in the third
convolutional layer, all other parts are the same. And the
accuracy of EEGNet-16,2 is higher than that of EEGNet-8,2
(75.58%, see the last column of the second row of Table V).
The experimental results show that the accuracy of EDSI
is improved by 2.56% compared to EEGNet-16,2, but the
parameters of the model are increased by 23%. Since DSI
adopts a parallel structure, the parameters of the model will
inevitably increase. We mainly expected the DSI block to
improve the accuracy of the model, so this is expected. EEG +

TDSCN is obtained by replacing TCN with TDSCN in EEG-
TCNet. The accuracy of EEG + TDSCN is 0.42% higher
than that of EEG-TCNet, but the number of parameters of
the model is reduced by 30.02%. It is well demonstrated that
TDSCN greatly reduces the parameters of the model while
guaranteeing the performance of the model.

To study the contribution of each module to the clas-
sification performance, we perform an ablation study on
EISATC-Fusion. The results are shown in Table IV, and the
best data are highlighted. The training parameters are the same
as subsection III-D.

TABLE V
CLASSIFICATION PERFORMANCE OF DIFFERENT MODELS WITH

DIFFERENT TRAINING STRATEGIES ON BCI-2a

The results show that each module contributes to model
decoding accuracy. The fusion module makes the greatest
contribution to model performance. When the fusion module
is removed the average decoding accuracy of the model
decreases by 18.71% (p<0.01). The cnnCosMSA module and
the TDSCN module also have a greater impact on the model.
When they are removed from the model, the accuracy of
the model decreases by 4.79% (p<0.05) and 7.90% (p<0.05)
respectively. And CosAT also contributed to the performance
of the model. When CosAT is removed from the model, the
accuracy drops by 1.83% (p<0.05).

F. Comparing Different Training Strategies
The improved training strategy is tested on BCI-2a using

the EISATC-Fusion and other commonly used algorithms. The
results of the experiment are listed in Table V. The training
parameters are the same as in subsection III-D.

For EISATC-Fusion, adding loss of the validation set as
a indicator for ES improves the decoding accuracy of the
model trained with one stage by 5.63% (p=0.028<0.05) and
the model trained with two stages by 9.77% (p=0.008<0.01).
This proves that using loss as the criterion for ES is effective,
because it allows the features extracted by the model to
have a larger inter-class distance and a smaller intra-class
distance difference, improving the robustness of the model
while maintaing accuracy. Whether using accuracy alone as an
indicator of ES or using both loss and accuracy as indicators
of ES, the accuracy of the model trained in two stages is
higher than that in one stage. This proves that the two-stage
training strategy can improve the decoding accuracy of the
model. The second stage of training augments the data used
for model training and allows the model to further extract
effective features based on the first stage. And other algorithms
also show the same result.

G. Cross-Subject Decoding Experiment
EISATC-Fusion is evaluated for cross-subject decoding

performance and compared with other high-performance
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TABLE VI
CROSS-SUBJECT CLASSIFICATION RESULTS OF DIFFERENT METHODS ON BCI-2a

algorithms on BCI-2a. Table VI lists the accuracies for each
subject and the average metrics for all subjects, with the best
data highlighted.

Two sessions of each subject are used for training or testing.
The EISATC-Fusion is trained with the improved training
strategy. The training epochs are 3000 for the first stage and
800 for the second stage. The ES epochs is 100. The batch
size is 128. The bias of full connection in decision module is
set to false.

The results show that EISATC-Fusion has the best average
decoding accuracy of 67.42%, and most subjects achieve the
highest accuracy compared to other algorithms. The average
decoding accuracy of EISATC-Fusion is improved by 17.87%
(p<0.05) and 9.5% (p<0.01) compared to the CNN-based
EEGNet-8,2 and ShallowConvNet, respectively. It is also
improved by 13.85% (p<0.05) compared to CRAM based
on MSA, and improved by 4.48% compared to 3D DCSPNet
based on AM. Compared with CCNN based on model fusion,
it is improved by 21.81% (p<0.01). And it is significantly
improved (p<0.05) compared to Multi-branch 3D CNN and
CMO-CNN, which are based on multi-branch. This proves that
EISATC-Fusion has better generalization than other methods,
and achieves higher performance when decoding new subjects
in the practical application of MI BCI.

H. Transfer Learning Experiments for the Cross-Subject
Further, the transfer learning capability of the EISATC-

Fusion model is studied. Use the first session of 8 subjects
in BCI-2a to train the pre-training model. Randomly select
different groups of data from the first session of the remaining
subjects to fine-tune the model, each group of data contains
one motor imagery trial of four classes, and the second session
is used to test the performance of the model. During the model
fine-tuning process, only the decision fusion module is trained,
and the learning rate of transfer learning is lr ′

= α×lr , where
α is the attenuation coefficient. The training parameters are the
same as in subsection III-G.

The impact of the number of groups and learning rate
of the fine-tuning model on the transfer learning is shown
in Fig. 4. The 63.66% is the average classification accuracy
of the pre-trained model. The classification accuracy of the
model fine-tuned using one group of data is 33.83% (not
shown in the figure) at α = 0.01. When only one group of
data is used for fine-tuning, the accuracy drops significantly
compared to the pre-trained model, which shows that the

Fig. 4. The impact of the number of data groups and learning rate on
transfer learning classification results.

model is prone to overfitting when the amount of data is
insufficient. As the number of data groups increases, the
average accuracy of the fine-tuned model increases, and when
the number of groups reaches 9, the model achieves optimal
decoding performance, which is 11.89% higher than the pre-
trained model. The performance of the fine-tuned model is
optimal when the original learning rate is used. As the learning
rate decreases, the performance of the model also decreases.
This demonstrates that a small learning rate easily makes
EISATC-Fusion overfit.

We compared the transfer learning performance of three
condition-based domain adaptation (DA) methods, includ-
ing JDAO-Mix [42], DJDAN [43], and EA-CSP-LDA [44],
and three fine-tuning-based methods, including DeepConvNet,
MSFBCNN [45], and LSTM-MLP-T [46]. The experimental
results are shown in Table VII. EISATC-Fusion improves
the accuracy by 16.85% over the DA-based method, and it
is also significantly improved compared to the fine-tuning-
based method, except for LSTM-MLP-T. The accuracy of
EISATC-Fusion is only 0.31% higher than LSTM-MLP-T, and
the standard deviation of LSTM-MLP-T is smaller. This shows
that LSTM-MLP-T is more robust than EISATC-Fusion in
transfer learning, but EISATC-Fusion has more subjects with
higher accuracy than LSTM-MLP-T.

I. Visualization

We illustrate the interpretability of the EISATC-Fusion
model through two methods, including t-distributed stochastic
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TABLE VII
CROSS-SUBJECT TRANSFER LEARNING RESULTS OF

DIFFERENT ALGORITHMS ON BCI-2a

Fig. 5. t-SNE visualization illustrates the contribution of feature
fusion for model performance. (a) output of the EDSI. (b) output of
the cnnCosMSA. (c) fusion features. (d) output of the baseline model.
(e) output of the baseline+FF. (f) output of the baseline+DF. (g) output
of the baseline+FM.

neighbor embedding (t-SNE) feature visualization [47] and
convolution kernel weight visualization.

The visualization of the feature distribution and the output
of the model with and without feature fusion for subject 3 on
BCI-2a are shown in Fig. 5. The EDSI + cnnCosMSA +

TDSCN is defined as the baseline model. The first line
in the figure is the output of the relevant modules in the
EISATC-Fusion model. Fig. 5(a) is scattered, Fig. 5(b) is
more concentrated, and the fusion features (Fig. 5(c)) with
local and global information have better discriminative ability.
Comparing Fig. 5(d) and Fig. 5(e), the distribution of model
output is improved by feature fusion. Comparing Fig. 5(f) and
Fig. 5(g), the output feature distribution of the model becomes
scattered due to the removal of the feature fusion module.
This all proves that the feature fusion module can improve
the decoding performance of the model.

The visualization of the decision distribution for subject 7
on BCI-2a are shown in Fig. 6. The first line in the figure is the
decision of the relevant modules in the EISATC-Fusion model.
For subject 7, the fusion coefficient β = −0.6480, according
to equation (12), the decision information of the EDSI module
accounts for 34.34% of the fusion decision, which indicates
that the decision information of the TDSCN module dominates
the fused decision. Comparing Fig. 6(d) and Fig. 6(e), the
decision distribution is improved by decision fusion. Compar-
ing Fig. 6(f) and Fig. 6(c), the decision distribution becomes

Fig. 6. t-SNE visualization illustrates the contribution of decision
fusion for model performance. (a) decision of the EDSI. (b) decision
of the TDSCN. (c) fusion decision. (d) decision of the baseline model.
(e) decision of the baseline+DF. (f) decision of the baseline+FF.

Fig. 7. Visualization of the convolutional weights of the DSI black for
subject 1 in BCI-2a. Each row shows the temporal convolution kernel
learned by a path.

Fig. 8. Visualization of attention maps for subject 7 in BCI-2a. The
first row is the attention maps of the 4 MSA heads. The left 2 of the
second row are attention maps of the 2 heads of ATCNet. The right 2 of
the second row are attention maps of the first 2 layer transformer of
Conformer.

scattered due to the removal of the decision fusion module, but
the change is not obvious. This is the same as the conclusion
from Table IV, that decision fusion improves the performance
of the models slightly less than feature fusion.

The convolution kernel weights of the DSI block are visual-
ized, and the results are shown in Fig. 7. The first three paths
of the DSI are shown, and 4 of the 32 convolution kernels
are selected for each path. The convolution kernels in paths 1,
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Fig. 9. Visualization of attention maps from 8 heads of cnnCosMSA module for subject 7 in BCI-2a.

2, and 3 have lengths of 4, 8, and 16 samples, corresponding
to 0.125, 0.25, and 0.5 seconds in time, respectively, so their
frequencies are estimated to be 8, 4, and 2 times the display
period. Therefore, the frequency band of the time filter learned
by path 1 is 0Hz-12Hz, path 2 is 0Hz-10Hz, and path 3 is
4Hz-10Hz. The frequency bands learned by the three paths
are similar, but the path 1 is high and wide, and the path 3 is
low and narrow. This demonstrates that the DSI block can
learn multi-scale of band information with different sizes of
temporal filters.

The attention maps of the three models are shown in Fig. 8.
The top row shows the attention maps of the model that
replaces cnnCosMSA in EISATC-Fusion with MSA, with
4 heads randomly selected from 8 heads. ATCNet [33] has
only one layer of MSA with two heads, and all are displayed.
One head was randomly selected from the 10 heads of the
Transformer in the Conformer [34]. It can be clearly seen
that the attention matrices tend to become uniform among
patches (i.e., attention collapse). And as the complexity of
the model increases or the number of MSA layers increases,
the attention collapse becomes more obvious. This is because
CNN converge more easily than MSA, especially with a small
amount of training data, which causes the network to tend to
learn from CNN when CNN is combined with MSA.

Three attention maps of the eight attention heads of the
cnnCosMSA module are visualized, as shown in Fig. 9. The
cnnCosMSA is a temporal attention module based on CNN
that learns frequency information of EEG signals in the form
of attention. It uses convolution to calculate attention and
enables each attention head to learn filters of different frequen-
cies through learnable tensors to achieve global filtering of
EEG signals. The weight distribution of the original attention
computed by (5) can be clearly observed from the first line
of the figure, which is not collapsed. This indicates that the
CNN-based cnnCosMSA module is fully learned. And the
results showed that each attention head learned a different
frequency. When the frequency is less than 8 (e.g., head 1,
2, and 8), the frequency characteristics of the attention of
CosATscores improved by CosAT can be clearly observed.
As the frequency increases, the global features are weakened
and more local frequency features are presented, but the

improvement of the original attention by CosAT is still obvious
(enhanced useful attention weakened useless attention). The
CosAT assigns a specific physical meaning to each attentional
head, which improves the interpretability of the model.

IV. CONCLUSION

In this paper, we propose EISATC-Fusion, a high-
performance end-to-end MI EEG decoding model. The model
consists of four modules, and the ablation experiment demon-
strates that each module of the model contributes to improving
decoding performance. Furthermore, the two-stage training
strategy is improved, and the comparative experiment demon-
strates that the strategy enhances the decoding performance of
the model and exhibits universality. We perform within-subject
and cross-subject experiments on BCI-2a and BCI-2b using
EISATC-Fusion and the training strategy. The transfer learning
performance of the model is studied, and the decoding perfor-
mance of the cross-subject is further improved through transfer
learning. The interpretability of the model is illustrated through
two visualization methods. However, we do not conduct online
experiments and do not lighten the model. In future work,
we further reduce the parameter count of the model and
conduct online experiments.
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