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Abstract— Steady-state visual evoked potential (SSVEP)-
based brain-computer interfaces (BCIs) have emerged as a
prominent technology due to their high information trans-
fer rate, rapid calibration time, and robust signal-to-noise
ratio. However, a critical challenge for practical applica-
tions is performance degradation caused by user fatigue
during prolonged use. This work proposes novel methods
to address this challenge by dynamically adjusting data
acquisition length and updating detection models based
on a fatigue-aware stopping strategy. Two 16-target SSVEP-
BCIs were employed, one using low-frequency and the
other using high-frequency stimulation. A self-recorded
fatigue dataset from 24 subjects was utilized for extensive
evaluation. A simulated online experiment demonstrated
that the proposed methods outperform the conventional
fixed stopping strategy in terms of classification accuracy,
information transfer rate, and selection time, irrespective
of stimulation frequency. These findings suggest that the
proposed approach can significantly improve SSVEP-BCI
performance under fatigue conditions, leading to superior
performance during extended use.

Index Terms— SSVEP, BCIs, dynamic stopping strategy.

I. INTRODUCTION

BRAIN-COMPUTER interfaces (BCIs) enable users to
communicate or manipulate external devices using brain

signals [1]. Steady-state visual evoked potential (SSVEP) is a
periodic electrical signal elicited by repetitive visual stimuli,
which induces a strong response in the occipital region at a
specific frequency and its harmonics [2]. In recent years, the

Manuscript received 10 November 2023; revised 4 March 2024;
accepted 12 March 2024. Date of publication 22 March 2024; date
of current version 1 April 2024. This work was supported in part by
the National Key Research and Development Program of China under
Grant 2021YFF1200603 and in part by the National Natural Science
Foundation of China under Grant 62276184 and Grant 61806141.
(Corresponding author: Yufeng Ke.)

This work involved human subjects or animals in its research.
Approval of all ethical and experimental procedures and protocols was
granted by the ethics committee of Tianjin University under Application
No. TJUE-2022-189.

The authors are with the Academy of Medical Engineering and
Translational Medicine, Tianjin University, Tianjin 300072, China,
and also with the Haihe Laboratory of Brain-Computer Interac-
tion and Human-Machine Integration, Tianjin 300392, China (e-mail:
clarenceke@tju.edu.cn; richardming@tju.edu.cn).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TNSRE.2024.3380635, provided by the authors.

Digital Object Identifier 10.1109/TNSRE.2024.3380635

BCI systems based on SSVEP have been extensively investi-
gated due to their relatively high speed, low hardware cost [3],
[4]. Significant advances of SSVEP-BCIs have been made
in the fields of text spelling [5], rehabilitation medicine [6],
equipment control [7], etc.

In the past decades, there has been rapid evolution in
SSVEP-based BCIs. To increase the number of targets, several
novel coding methods were proposed [8], [9], [10], [11],
[12], [13]. In particular, the joint frequency-phase modula-
tion (JFPM) method has been proven highly efficient for
multi-target coding in SSVEP-BCIs [13]. Regarding algo-
rithms, a large number of SSVEP detection methods have been
proposed in the past few years, such as canonical correlation
analysis (CCA) [14], task-related component analysis (TRCA)
[15], task-discriminant component analysis (TDCA) [16], sum
of squared correlations (SSCOR) [17], etc.

SSVEP-BCIs have witnessed remarkable advancements,
offering a promising approach for communication and control
applications. However, several practical challenges remain to
be addressed for widespread adoption. A critical concern
is user fatigue associated with prolonged SSVEP-BCI use.
Factors such as high stimulus intensity, overstimulation, and
sustained attentional demands can readily induce fatigue in
users. Existing research demonstrates a correlation between
visual fatigue and reduced cortical excitability, potentially
impacting SSVEP-BCI performance [18]. The presence of
fatigue resulted in a decrease in both the amplitude and
signal-to-noise ratio (SNR) of SSVEP, leading to poor perfor-
mance in BCI [19]. Therefore, the fatigue state significantly
effects the performance of SSVEP-BCI systems during long-
term use. Researchers have put great effort into avoiding the
effects of visual fatigue on SSVEP-BCIs in recent years,
which mainly focused on the stimulus paradigms and target
recognition algorithms. It has been found that a comfortable
stimulation paradigm can effectively reduce visual fatigue.
Siribunyaphat et al. proposed a quick response code for
visual stimulus patterns that reduced visual fatigue and out-
performed checkboard patterns [20]. Sakurada et al. suggested
that using flickering visual stimuli at frequencies greater than
the critical flicker frequency could significantly reduce par-
ticipants’ subjective discomfort and fatigue [21]. Concerning
algorithms, Gao et al. developed an adaptive optimal-Kernel
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time-frequency representation complex network method to
analyze the effects of fatigue on the SSVEP classification
accuracy from the perspective of brain networks [22]. Later,
they proposed an alternative approach, combining the multi-
variate empirical mode decomposition with the support vector
machine, to improve the detection of SSVEPs under fatigue
state [23]. Ajami et al. employed the least absolute shrinkage
and selection operator algorithm for frequency recognition
and successfully compensated for the fatigue effect [24].
In summary, the improvements in the stimulus paradigms
can mitigate visual fatigue, whereas the improvements in the
recognition algorithms could ensure accuracy even when the
subjects are already fatigued.

Conventional studies of SSVEP-based BCIs fix the time
of selection for each trial. However, the optimal duration,
which affects the performance of BCIs, might be different for
each trial due to many factors such as the non-stationarity
of EEG, subject attention level, etc. Therefore, adjusting the
time of selection (or the stimulation duration) adaptively for
each trial is considered an acceptable solution for effectively
improving the performance of SSVEP-BCIs. More recently,
dynamic stopping (DS) strategy has been developed to improve
the performance of BCIs with short data lengths. By adaptively
minimizing the data length used for the classification of each
trial, the DS strategy could get a credible output dynami-
cally [25]. Compared to the fixed stopping (FS) strategy with
the same duration for each trial, the DS strategy improves
the speed of target selection by BCI users and ensures the
accuracy of recognition at the same time, which had been
demonstrated in previous SSVEP-BCIs studies [26], [27],
[28]. Mainsah et al. tested DS strategy in participants with
amyotrophic lateral sclerosis, which demonstrated a significant
increase in communication rate [25]. Maye et al. devel-
oped spatially encoded BCIs using dynamic stopping method,
which reduced visual fatigue while maintaining high accu-
racy [29]. Kalunga et al. exploited a novel algorithm for online
SSVEP-based BCI classification based on Riemannian geom-
etry and DS strategy [30]. Wong et al. developed an online
adaptive canonical correlation analysis (OACCA) method,
which learning the spatial filter from a single trial to multiple
trials [31]. Chen et al. proposed a new training-free dynami-
cal optimization algorithm, which significantly improved the
performance of online SSVEP-based BCI systems [32].

To address the critical challenge of user fatigue in SSVEP-
BCIs, limited research has explored adaptive algorithms. This
study proposes two novel fatigue state adaptive approaches
based on the DS strategy: the hypothesis testing-based DS
strategy and the Bayesian-based DS strategy. Our aim is to
improve SSVEP-BCI performance under fatigue conditions.
To evaluate their effectiveness, we compared the proposed
methods with a conventional fixed-data length (FS) strategy
using classification accuracy, selection speed, and information
transfer rate (ITR) on an SSVEP fatigue dataset.

II. METHOD AND MATERIALS

A. Participants
Twenty-four healthy adults (twelve males and twelve

females, aged 18-26 years) with normal or corrected-to-normal

vision participated in the experiment. None of the subjects had
a history of neurological disease or had taken any medication
or received any medical treatment in the week before the
experiment. The Research Ethics Committee of Tianjin Uni-
versity approved the experiment, and each subject was required
to read and sign the participant consent form.

B. EEG Recording

The study employed a 64-channel EEG cap for signal
acquisition, with the electrodes placed at standard positions
of the international 10–20 system. EEG data were recorded
using the Synamp2 system (Neuroscan, Inc.) at a sampling
rate of 1000 Hz. The frequency passband of the amplifier
ranged from 0.15 Hz to 200 Hz. The ground electrode was
placed midway between Fz and FPz, while the reference
electrode was located on the vertex. Electrode impedances
were maintained below 10 K�. Event triggers were generated
by the computer, sent to the amplifier, and recorded on an
event channel synchronized with the EEG data.

C. Experimental Design and Procedure

Participants were instructed to sit 60 cm away from a
liquid crystal display (LCD) with a refresh rate of 240 Hz.
The stimulus program was developed using the Psychophysics
Toolbox extensions [33] in MATLAB (Mathworks, Inc.).
Two paradigms were designed to investigate the effects of
fatigue on the performance of SSVEP in different frequency
bands: a low-frequency stimuli paradigm and a high-frequency
stimuli paradigm. To reduce the impact of stimulus fac-
tors, we alternated between low-frequency and high-frequency
stimuli when designing the experiment. Note that, the terms
“low-frequency” and “high-frequency” that are mentioned
in this study refer to the relative relationship between the
frequency bands of the two stimuli. As shown in Fig. 1, the
stimuli coded using the JFPM method [13] was arranged in
a 4 × 4 matrix and displayed at different frequencies (8 Hz
to 15.5 Hz or 25.5 Hz to 33 Hz, with an interval of 0.5 Hz)
and phases (0 π , 0.5 π , π , and 1.5 π).

The experiment comprised two portions. The first por-
tion was the training data acquisition experiment, which
included 6 blocks of low-frequency visual stimulus and
6 blocks of high-frequency visual stimulus. The second portion
was the fatigue experiment, which included 24 blocks of
low-frequency visual stimulus and 24 blocks of high-frequency
visual stimulus. In each block, there are sixteen trials cor-
responding to sixteen targets. Every trial consisted of a cue
stage and a stimulus stage. First, a green cross was presented
for 1 second to indicate the following target stimulus. The
subject was instructed to shift gaze point to the target as
soon as possible. Then, sixteen stimuli flashed for 2 seconds
simultaneously, during which the subject was instructed to
gaze at the target stimulus and avoid blinking. In this study, the
training experiment data was used to build the classification
models for algorithms, while the fatigue experiment data was
used to simulate the online experiment testing. The data is
available at https://doi.org/10.5281/zenodo.10507229.
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Fig. 1. The layouts of the stimulus frequencies: (a) low-frequency visual
stimulus and (b) high-frequency visual stimulus.

D. Data Pre-Processing
Firstly, a 50 Hz notch filter was used to remove common

power line noise. Then, eight electrodes (i.e., PO7, PO5, PO3,
POz, PO4, PO6, PO8, O1, Oz, and O2) located in parietal and
occipital areas were use in following analyses. EEG epochs of
each trial were extracted. Considering that the latency delay
of the visual pathway is 0.14s [34], the extraction range of
the data epoch is [0.14s, 2.14s], where time 0 indicates the
beginning of the stimulus.

E. TRCA-Based Method
TRCA is a method that extracts task-related components

from neuroimaging data by maximizing reproducibility during
task periods [15]. Denote that EEG signals consist of two
parts: task-related component s (t) and task-unrelated com-
ponent n (t). A linear generative model of the multi-channel
time signal xi (t) is assumed as:

xi (t) = a1,i ∗ s (t) + a2,i ∗ n (t) , i = 1, . . . , Nc (1)

where i is the index of channels, Nc is the total number of
channels, a1,i and a2,i are the mixing coefficients mapping
the source signals to the EEG signals. The linear sum of all
channel signals is calculated as follows:

y (t) =

∑Nc

i=1
wi xi (t) =

∑Nc

i=1
(wi a1,i s (t) + wi a2,i n (t))

(2)

By setting
∑Nc

i=1 wi a1,i = 1 and
∑Nc

i=1 wi a2,i = 0, We can
separate the task-related component s (t) from y (t). This
constrained optimization problem can be transformed into a
Rayleigh-Ritz eigenvalue problem by Covariance maximiza-
tion [35]. Similar to filter bank canonical correlation analysis,
applying filter bank analysis to TRCA can significantly
improve performance [36]. The filter bank analysis is applied
to the EEG data for decomposing it into Nk sub-bands. In this
study, the k-th sub-band filter for low-frequency stimulus
ranges from k×8 Hz (k = 1, 2, . . . , 5) to 80Hz, whereas the
k-th sub-band filter for high-frequency stimulus ranges from

k×25.5 Hz (k = 1, 2, 3) to 100Hz. In implementing the band-
pass filtering, an additional bandwidth of 2 Hz was added to
either side of the passband for each sub-band.

Therefore, the final optimization function is defined as:

ŵk
n = argmaxw

wT Sk
nw

wT Qk
nw

(3)

where Q = (Qi1i2)1≤i1,i2≤Nc
in which Qi1i2 =

Cov(xi1 , xi2), S = (Si1i2)1≤i1,i2≤Nc
in which Si1i2 =∑Nt

j1, j2=1
j1 ̸= j2

Cov(x ( j1)
i1

, x ( j2)
i2

), j is the index of trials, Nt is the

total number of trials. The optimal solution is the eigenvector
of the matrix, whereas the ensemble of all the spatial filters
are combined as:

wk
=

[
ŵk

1, ŵ
k
2, . . . , ŵ

k
N f

]
(4)

where N f is the total number of targets, ŵk
n(n = 1, 2, . . . ,N f )

refers to the spatial filtering of the n-th target. The individual
training template x̄n is expressed as:

x̄k
n =

1
Nt

∑Nt

i
xk

n,i (5)

The correlation coefficient between the averaged training data
across trials for the n-th target x̄k

n and the k-th sub-band
component of the single-trial test data x̂k can be calculated
as:

rk
n = ρ((x̄k

n )T ŵk
n, (x̂)T ŵk

n) (6)

where ρ(x, y) refers to the Pearson’s correlation analysis
between two signals x and y. Therefore, the target class can
be identified by the following equation:

τ = argmax
n

∑Nk

k=1

(
k−a

+ b
)
· rk

n (7)

where a and b are set to 1.25 and 0.25.

F. Fatigue State Adaptive Algorithm
Unlike FS strategy, DS strategy adaptively determines the

data length used for the classification of each trial. Inspired by
this method, we proposed two kinds of fatigue state adaptive
algorithms based on DS strategy, which are named hypothesis
testing-based DS strategy and Bayesian-based DS strategy.
The core idea is to adaptively consider the classification results
and recalculate the spatial filter based on the DS strategy.
In this way, the data in fatigue state can also be included
in the dynamic classification model.

The fatigue state adaptive algorithm consists of an offline
training portion and a simulated online testing portion,
as shown in Fig. 2. We define two parameters (i.e., a threshold
and a judge index) that serve as judging criteria for the
algorithm’s adaptive updating strategy. Note that, the two
kinds of fatigue state adaptive algorithms we proposed above
differ only in the way the threshold and the judge index are
calculated, which would be described in subsection II-G and
subsection II-H, respectively. In the offline training portion,
we built the classification model with data length t = t0
(in this study, t0 is 0.5s and 1s, respectively) and used the
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Fig. 2. Diagram of fatigue state adaptive algorithm: (a) offline training
flowchart and (b) simulated online testing flowchart.

leave-one-block-out cross-validation method to classify the
k1-th (k1 ∈ [1, 96]) training trial. If the prediction was
correct, the algorithm would calculate and store the threshold,
and start classifying the next trial. Otherwise, no threshold
would be calculated and the algorithm would proceed the next
classification directly. After the classifications of all trials were
completed, N f kinds of target thresholds would be averaged
respectively as the threshold for each target classification.
To obtain the targets’ thresholds at different data lengths,
we set the data length t = t + 1t (1t = 0.1s in this study)
and repeated the above procedure until the classification of
the data length t = 2s was completed. In the simulated online
testing portion, we classified the k2-th (k2 ∈ [1, 384]) trial
with data length t = t0 at the beginning. The judge index
of the prediction result was calculated and compared to the
corresponding threshold of the prediction target. If the judge
index met the criteria of the threshold, the data would be
updated into the training dataset to retrain the TRCA-based
classification model and update the ensemble spatial filters
and the SSVEP templates. Otherwise, the data length t would
become t + 1t and the data would be re-classified (unless
the data length had reached its maximum already). Then, the
result would be output and the next trial would be classified.
This procedure would be repeated until the classification of
all trials had been completed.

G. Hypothesis Testing-Based DS Strategy
Inspired by the main ideas about dynamic windows in

Chen et al. ’s research [32], we considered the problem of
multi-objective SSVEP recognition as a hypothesis-testing
problem. In this particular hypothesis-testing problem, the
rejection hypothesis indicates that the current data does not
convincingly identify a target, and more data needs to be

collected. To penalize the most active false predictions, the
softmax function was used to establish a projection relation
between the metrics calculated by TRCA and the probability
distribution. Assuming that the correlation coefficients deter-
mined by TRCA-based method can be represented as a vector
ρ = [ρ1, ρ2, . . . , ρN f ], the cost can be expressed by cross-
entropy as:

Cost (Hi ) = −

∑N f

j=1
C

(
H j , Hi

)
log

eρi∑N f
j=1 eρ j

,

i = 1, 2, . . . , N f (8)

where Hi is the result hypothesis. To maximize the distinction
between the highest probability hypothesis Hq and the second
highest probability hypothesis Hq ′ , we defined the function
C

(
H j , Hq

)
as 1 when j = q, 0 when j ̸= q and j ̸= q ′, and

−1 when j = q ′. In particular, the function C
(
H j , Hq

)
is an

unknown parameter ε when q = 0. Therefore, the decision
can be made by comparing the cost values of the highest
probability hypothesis Hq and the rejection hypothesis H0.
The cost of Hq and H0 are calculated as follows:

Cost
(
Hq

)
= −(ρmax − ρ2ndmax ) (9)

Cost (H0) = −ε

(∑N f

k=1
ρk − N f log

(∑N f

k=1
eρk

))
(10)

When Cost (H0) is lower than Cost
(
Hq

)
, the algorithm

believes that there should be more data to identify the target
correctly. The comparison can be simplified to:

ε <
(ρmax − ρ2ndmax )(∑N f

k=1 ρk − N f log
(∑N f

k=1 eρk

)) (11)

In contrast, if this inequality is not true, the result is
considered credible and output. In hypothesis testing-based DS
strategy, we denote ε as the threshold, which is calculated
by Cost (Hq )

Cost (H0)
. In the offline training portion, the algorithm

calculates ε for all identified correct trials of each target, and
takes the average as the target threshold εn , respectively. Thus,
the algorithm would obtain N f thresholds. In the simulated
online testing portion, the value of Cost (Hq )

Cost (H0)
in the current data

is defined as the judge index εreg , and compared with the
threshold εn , which corresponding to the recognition result,
to make the classification decision. The result would be output
only if εn ≥ εreg .

H. Bayesian-Based DS Strategy
Nakanishi et al. first tested the DS method based on a

Bayesian approach in SSVEP-based BCI, and their results
suggest the feasibility and efficiency of the DS method [26].
On this basis, Tang et al. enhanced the recognition perfor-
mance by building respective models for each target [28].
In our study, this method is refined. Fig. 3 shows the key
process of Bayesian-based DS strategy. In the offline train-
ing portion, we could obtain N f × N f kinds of correlation
coefficients calculated by TRCA. We suppose that the correct
prediction (i.e., the classification target is identical to the
real target) is written as H1, while the incorrect prediction
is written as H0. We defined rm as the correlation coefficient
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Fig. 3. Key process of Bayesian-based DS strategy: (a) obtain threshold
ρ and r through the intersection of H′

1s and H′

0s pdf, and (b) calculate
P(H1 | rm, t) and rseg and compare to thresholds.

of the real target. The likelihood probability density functions
(pdfs) about rm of H1 and H0, ρ(rm |H1, t) and ρ(rm |H0, t),
are generated by Gaussian kernel density estimation respec-
tively, where t indicates the data length used in classification.
We considered the probability value ρ and the correlation
coefficient r at the intersection of two likelihood pdfs as two
thresholds. During the simulated online testing portion, once
a new segment has been classified, the posterior probability
could be calculated by Bayes’ rule as follows:

Pn(H1|rm, t)

=
Pn(rm |H1, t)Pn(H1, t)

Pn(rm |H1, t)Pn (H1, t) + Pn(rm |H0, t)Pn(H0, t)
(12)

where n is the index of the targets, Pn(H1, t) and Pn(H0, t) are
the prior probabilities of the correct and incorrect prediction
generated by the average accuracy and inaccuracy calculated in
the offline training portion. We defined the posterior probabil-
ity P(H1|rm, t) and the maximum correlation coefficient of the
segment prediction rseg as two judge indices. The algorithm
would compare them with the threshold ρ and r . Only if both
conditions P (H1 | rm, t) > ρ, and rseg > r are met, Bayesian-
based DS strategy would consider the prediction as credible
and output it.

I. Performance Evaluation
In this study, we used simulated online testing to evaluate

the performance of the proposed methods. The simulated
online experiment mimics the process of a real online
experiment in which data is collected and processed on a
segment-by-segment basis over time. Compared with the real
online experiment, the simulated online experiment allows for
a fair comparison of different methods on the same data,
enabling the identification of the most appropriate method
for the online experiment. We choose the accuracy, selection
time, and ITR [37] as indicators to measure the performance
of different strategies. ITR refers to the number of bits of

TABLE I
OVERALL PERFORMANCE FOR LOW-FREQUENCY SSVEP

TABLE II
OVERALL PERFORMANCE FOR HIGH-FREQUENCY SSVEP

information transferred per minute. The information quantity
B of the target classification can be calculated as:

B = log2 Nt + p log2 p + (1 − p) log2 (
1 − p
N − 1

) (13)

where p is the classification accuracy. The ITR is defined as
follows:

I T R = B ·
60
T

(14)

where T is the time required for a selection, including gaze
shift time (1s), visual delay (0.14s), and average data length.

III. RESULTS

In this section, the TRCA-based FS strategy was selected as
a basic target recognition method to detect data with lengths
of 0.5s, 1s, and 2s respectively. We compared the performance
of Hypothesis testing-based and Bayesian-based DS strategies
with the FS strategy.

The comparisons of the classification strategies are sum-
marized in Table I and Table II. For the low-frequency
SSVEP-BCI, the highest average accuracies of hypothesis
testing-based DS strategy and Bayesian-based DS strategy
are 92.68% and 92.87%, whereas the highest average ITRs
are 111.15 bits·min−1 and 116.94 bits·min−1. For the high-
frequency SSVEP-BCI, the highest average accuracies of
hypothesis testing-based DS strategy and Bayesian-based DS
strategy are 88.02% and 86.69%, whereas the highest average
ITRs are 96.68 bits·min−1 and 99.10 bits·min−1. In com-
parison, we find that the results obtained by hypothesis
testing-based DS strategy and Bayesian-based DS strategy are
more satisfactory compared to those obtained by FS strategy.

In addition, the average accuracy and ITR for all subjects
under different data lengths and experimental conditions are
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Fig. 4. Accuracy and ITR under different stimulus conditions with data
length of 0.5-1s.

Fig. 5. Accuracy and ITR under different stimulus conditions with data
length of 1-2s.

shown in Fig. 4 and Fig. 5. Fig. 4 shows the performance of
different methods using 0.5-1s data under different stimuli.
The accuracy of each proposed method is close to FS 1s
strategy, and much higher than FS strategy with data length of
0.5s, while the ITR of each proposed method is higher than
FS strategy with data length of 0.5s, and much higher than FS
1s strategy. These results demonstrate that the two proposed
methods could achieve a credible output by adaptively mini-
mizing the data length used, which is the advantage of the DS
strategy. Compared to high-frequency stimulus, low-frequency
stimulus has higher accuracy and ITR in each block, which
is reasonable because low-frequency stimulus could induce
a stronger SSVEP response. It is also observed that that as
the experiment progressed, both accuracy and ITR tended to
decrease due to fatigue with prolonged visual stimulation.

Fig. 6. The overall performance across all the blocks. (∗: p<0.05; ∗∗:
p<0.01; ∗ ∗ ∗: p<0.001; ∗ ∗ ∗∗: p<0.0001).

Next, we focus on the results shown in Fig. 5. For accuracy,
each proposed method is close to FS 2s strategy and higher
than FS 1s strategy. For ITR, Bayesian-based DS strategy
shows a considerable result by reaching the level of FS 1s
strategy, whereas hypothesis testing-based DS strategy has a
poor result. This indicates that hypothesis testing-based DS
strategy is too strict in accepting highly credible hypotheses
and rejecting less credible ones. Regarding the problem of dif-
ferent stimulus comparisons and the problem of performance
degradation caused by fatigue, Fig. 5 differs from Fig. 4 only
in the data length, which leads to similar conclusions, so the
interpretation would not be repeated.

Then, we performed paired t-tests on the average accuracy
and average ITR across all conditions. Relevant performance
and statistical analysis results are presented in Supplemen-
tary Section A, Tables S1-S8. The overall performance of
the simulated online experiment is shown in Fig. 6. In the
condition of processing data of length 0.5-1s, statistical anal-
ysis shows that the accuracies of DS-based methods are
significantly higher than that of FS strategy with data length
of 0.5s (hypothesis testing-based: tlow(23)=4.850, plow <

0.0001, thigh(23)=6.854, phigh < 0.0001; Bayesian-based:
tlow(23)=5.371, plow < 0.0001, thigh(23)=6.782, phigh <

0.0001) and ITRs DS-based methods are significantly higher
than that of FS strategy with 1s data (hypothesis testing-
based: tlow(23)=12.770, plow < 0.0001, thigh(23)=11.270,
phigh < 0.0001; Bayesian-based: tlow(23)=12.110, plow <

0.0001, thigh(23)=9.908, phigh < 0.0001). It was found that the
ITR of the Bayesian-based DS strategy is significantly higher
than that of the FS strategy with 0.5s data (tlow(23)=4.389,
plow = 0.0002, thigh(23)=5.105, phigh < 0.0001). This is
believed to be due to the high accuracy and short selection time
guaranteed by the Bayesian-based DS strategy. In the condition
of processing data of length 1-2s, statistical analysis shows that
the accuracies of the DS-based method are significantly higher
than that of FS strategy with 1s data (hypothesis testing-based:
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Fig. 7. The selection time of the DS strategies. (∗ ∗ ∗∗: p<0.0001).

tlow(23)=4.805, plow < 0.0001, thigh(23)=5.421, phigh <

0.0001; Bayesian-based: tlow(23)=4.803, plow < 0.0001,
thigh(23)=6.777, phigh <0.0001) and ITR is significantly
higher than that of FS strategy with 2s data (hypothesis testing-
based: tlow(23)=11.400, plow < 0.0001, thigh(23)=10.810,
phigh < 0.0001; Bayesian-based: tlow(23)=20.210, plow <

0.0001, thigh(23)=12.470, phigh < 0.0001). However, the ITR
of hypothesis testing-based DS strategy is significantly lower
than that of FS strategy with 1s data (tlow(23)=7.645, plow <

0.0001, thigh(23)=2.245, phigh < 0.0001), which is consistent
with the conclusion we mentioned above.

To investigate the effect of DS strategy and recognition
models update on the performance, we conducted an ablation
study on DS and FS strategy (including with and with-
out updating their recognition models). Relevant results and
analyses are presented in Supplementary Section B. To sum
up, our ablation study reveals that both parts (i.e., dynamic
stopping strategy and model updating) of the proposed method
contributed to the performance enhancement.

Moreover, we calculated the performance of FS strategy
under data lengths of 0.5-2s (with a step of 0.1s) respectively
and performed paired t-tests between the FS strategy and
the DS strategies. The performance and statistical analysis
results demonstrated the validity of our methods as well.
Relevant results and analyses are presented in Supplementary
Section C.

Fig. 7 shows the selection time under different conditions,
whereas the corresponding mean values are shown in Table III.
Paired tests indicates that although the difference in average
classification accuracy and ITR between the two DS strategies
is insignificant, the average selection time of Bayesian-based
DS strategy is significantly reduced compared to hypothesis
testing-based DS strategy.

IV. DISCUSSION

A. Performance in Real-Time Analysis
This study introduces two methods based on the DS

strategy to address the critical challenge of user fatigue in
SSVEP-BCIs. These algorithms offer a significant advantage
by dynamically adjusting selection time and updating the
recognition model. The experimental results demonstrate the
effectiveness of the proposed DS methods. They achieve adap-
tive minimization of trial output time and significantly shorten
data length while maintaining high classification accuracy

TABLE III
THE AVERAGE SELECTION TIME UNDER DIFFERENT CONDITIONS

and ITR. Simulated online experiments further confirm that
both DS strategies outperform the conventional FS strategy,
regardless of stimulus frequency (low or high). This signifies
their potential to improve BCI performance during extended
use.

However, before real-world application in online SSVEP-
BCI systems, several challenges require attention. Firstly,
subjects may have difficulty adapting to the unfixed stimulus
duration in the DS situation, which could affect the perfor-
mance of the online SSVEP-BCI. But, the study by Jiang et al.
suggests that the improvement effect of the DS strategy may be
higher in real online experiments than in simulated ones [27].
Therefore, this issue needs to be further investigated. Secondly,
compared to offline SSVEP-BCI, online SSVEP-BCI requires
higher temporal resolution to improve real-time performance.
Although the computation complexity does not affect the
theoretical calculation of the ITR, the time taken to calculate
the classification performance and update the models does
impact the actual BCI experience. McFarland et al. stated that
the gold standard for evaluating BCIs is their effectiveness
in real-time, closed-loop online performance [38]. The model
updating approach in the proposed methods will result in a
significant increase in computational cost. We have calculated
the classification time (i.e., the time of recognition and update)
for each trial with a single data length and summarized it in
Supplementary Section D, Tabel S24. Regarding the results,
our methods have an average classification time that is less
than the data updating length 1t (i.e., 0.1s). Although the
computational complexity of our methods meets the require-
ments for online performance, further studies are necessary to
prove the feasibility in real-time applications.

B. Potential Directions for Further Improvement
Despite the two proposed methods improved the recognition

performance of SSVEP-BCI under fatigue state, there are some
potential directions for further improvement.

First, the users’ EEG changed as the experiment progressed
due to fatigue. Although the proposed methods update the
spatial filter in TRCA, the parameters of the filter bank do
not change accordingly (i.e., not optimized), which affects the
recognition results as well. Demir et al. proposed bio-inspired
filter banks (BIFBs) to capture frequency selectivity and
subject specificity in the feature extraction stage [39]. The
results presented in demonstrate the potential of BIFBs for
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enhancing SSVEP-BCI performance. Inspired by this promis-
ing approach, the integration of BIFBs with the proposed
methods has the potential to further improve BCI performance.

Secondly, as shown in Fig. 7, the selection time of hypoth-
esis testing-based DS strategy was significantly longer than
that of Bayesian-based DS strategy, regardless of stimulus
frequency or data length. According to equations (13) and (14),
when the accuracy does not improve significantly with increas-
ing data length, long data length would lead to low ITR.
Therefore, the long selection time is the reason that the ITR
performance of hypothesis testing-based DS strategy is less
than stellar. To address this issue, it might be helpful to reduce
the stringency of the threshold and the judge index. Optimizing
the criteria of the parameters will be another possible direction
to improve our algorithm.

In addition, deep learning (DL) technique has been
successfully applied to various classification tasks in SSVEP-
BCIs [40], [41], [42], [43]. Combining DL methods with
TRCA methods is a promising direction for enhancing
the performance of SSVEP-BCIs. Deng et al.developed a
novel algorithm named TRCA-Net to enhance SSVEP sig-
nal classification, which enjoys the advantages of both the
knowledge-based TRCA method and the deep learning-based
approach [44]. However, the neural network-based methods
require more training data. The transfer learning (TL) strategy
transfers shared knowledge from source subjects to target
subjects [45], [46]. There are many studies that have confirmed
the excellent performance of the TL strategy in SSVEP-
BCIs [47], [48], [49]. Combining the DL technique and the TL
strategy with our methods may have the potential to improve
the performance of SSVEP-BCIs under fatigue state.

V. CONCLUSION

This paper proposes two novel adaptive algorithms specif-
ically designed to enhance SSVEP recognition performance
while considering user fatigue induced by prolonged stimula-
tion. Simulated online testing demonstrates that both proposed
methods effectively improve ITR while maintaining high
recognition accuracy. Notably, compared to the fixed stop
approach, both the hypothesis testing-based DS strategy and
the Bayesian-based DS strategy achieve significantly supe-
rior performance in terms of recognition accuracy and ITR.
In essence, these adaptive methods offer a robust solution
for mitigating the influence of user fatigue in SSVEP-BCI
applications, leading to superior performance during extended
periods of sustained use.
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