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Tracking the Immediate and Short-Term Effects
of Continuous Theta Burst Stimulation on

Dynamic Brain States
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Xiaogang Chen , and Huiguang He , Senior Member, IEEE

Abstract— Continuous Theta Burst Stimulation (cTBS)
has been shown to modulate cortical oscillations and
induce cortical inhibitory effects. Electroencephalography
(EEG) studies have shown some immediate effects of cTBS
on brain activity. To investigate both immediate effects
and short-term effects of cTBS on dynamic brain changes,
cTBS was applied to 22 healthy participants over their left
motor cortex. We recorded eyes-open, resting-state EEG
and performance in the Nine-Hole Peg Test (NHPT) before
cTBS, immediately after cTBS, and 80 minutes after cTBS.
We identified nine states using a Hidden Markov Model
(HMM)-based approach to describe the process of dynamic
brain changes. The spatial activation, temporal profiles of
HMM states and behavioral performance of NHPT were
assessed and compared. cTBS altered the temporal pro-
files of S1-S5 immediately after cTBS and the temporal
profiles of S5, S6 and S7 80 min after cTBS. Moreover,
cTBS improved motor function of the left hand. State 1 was
characterized as the activation of right occipito-temporal
area, and NHPT behavioral performance of the left hand
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positively correlated with the occurrence of state 1, and
negatively correlated with the interval time of state 1
after cTBS. The transitions between S1 or S7 and other
states showed dynamic reconfiguration during after-effect
sustained time after cTBS. These results suggest that the
dynamic characteristics of state 1 are potential biomarkers
for characterizing the aftereffect changes of cTBS.

Index Terms— Continuous theta burst stimulation,
resting-state EEG, hidden Markov model, brain state.

I. INTRODUCTION

REPETITIVE transcranial magnetic stimulation (rTMS) is
a non-invasive brain stimulation method that involves

delivering repeated stimulation pulses through a mag-
netic field to modulate cortical activity in specific brain
regions, thereby influencing cortical excitability [1], [2], [3].
rTMS is widely used to promote functional recovery after
stroke. Previous studies have demonstrated that the appli-
cation of high-frequency rTMS to the affected hemisphere
and low-frequency rTMS to the unaffected hemisphere in
stroke patients yields promising results in motor function
recovery [4], [5].

Theta burst stimulation (TBS) is a promising rTMS protocol
that has similarities in stimulation effects with conventional
rTMS [6], [7]. However, TBS has a longer aftereffect duration
time and a shorter application time and is receiving increas-
ing attention in neuroscience research and clinical treatment
[8], [9]. The continuous TBS (cTBS) protocol has been shown
to induce inhibitory effects, which is similar to low-frequency
rTMS [8], [9], [10], [11]. cTBS is increasingly being applied
in motor function recovery after stroke [12], [13]. However,
the mechanisms of cTBS are still unclear. Therefore, some
research has been conducted to explore the mechanisms and
lasting effects of TBS on brain cortical plasticity, as well as
its role in improving motor function [14], [15].

In the early stages of rTMS research, motor evoked poten-
tials (MEPs) were widely used to study cortical plasticity
[16], [17]. MEP mainly depends on the excitability of spinal
motor neurons and does not directly reflect cortical plasticity
mechanisms [18]. Since rTMS directly stimulates the brain,
it triggers changes in brain activity, leading to behavioral
changes. Combining rTMS with other neuroimaging methods
can also provide a more comprehensive understanding of
its effects and potential mechanisms [19]. Two widely used
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neuroimaging methods for measuring cortical responses to
TMS are functional magnetic resonance imaging (fMRI) and
electroencephalography (EEG). Compared to fMRI, EEG is
often used to capture rapid changes in brain activity over time
due to its high temporal resolution. In addition, EEG offers
ease of operation and is suitable for long-term monitoring,
making it widely used for application in rTMS research. EEG
enables researchers to quantify and characterize activation pat-
terns in the temporal and spatial domains [20], [21]. Therefore,
this study provides valuable insights into the effects of rTMS
on brain activity and functional changes.

Resting-state EEG (rsEEG) is considered a valuable reflec-
tion of the brain’s intrinsic spontaneous activity and is closely
linked to its functional connectivity and regulation [22],
[23], [24]. Many studies have analyzed and compared rsEEG
before and after rTMS to gain insights into the effects of
rTMS on brain activity. This approach not only circumvents
the indirect impact of MEPs on cortical spinal excitability
and rTMS-evoked potential electromagnetic interference but
also provides a more precise avenue for investigating the
brain’s response to rTMS stimulation [25]. In 2021, Zhong
et al. applied 10 Hz rTMS in patients with unilateral brain
lesions and found a decreased power of delta oscillations in
the ipsilesional hemisphere immediately after rTMS, whereas
distinct cortical oscillations were observed in the alpha band
around the parietal-occipital lobe in the contralesional hemi-
sphere [26]. In 2022, Ding et al. explored the effects of
intermittent TBS (iTBS) on the functional network of rsEEG
and found a significant increase in interhemispheric functional
connectivity in the delta and theta frequency bands imme-
diately after stimulation [27]. In 2023, Jin et al. found that
high-frequency rTMS with a 2 s train duration and 25 s
intertrain interval increased cortex excitability and the power
spectral density of bilateral central regions in the alpha fre-
quency band and enhanced the functional connectivity between
central regions and other brain regions [28]. These studies
collected EEG signals within 30 minutes after rTMS and
analyzed the aftereffects within 30 minutes after rTMS.

Research on MEPs has demonstrated that the effects of
rTMS can persist for up to 90 minutes after stimulation [29].
Several studies have analyzed the changes in brain activity in
different periods after stimulation. Stren et al. recorded rsEEG
before, immediately after, 25 minutes after, and 50 minutes
after 1 Hz rTMS. rTMS caused a significant increase in ipsi-
lateral EEG coherence and in the interhemispheric coherence
between motor areas in the alpha band. This effect lasted up to
25min post-stimulation [30]. In our previous study, we found
that within the alpha band, functional connectivity decreased
immediately after rTMS, but it significantly increased 20 min-
utes after rTMS [31]. Qiu et al. recorded rsEEG and behavioral
performance before and in multiple sessions up to 90 min after
cTBS. Although this work did not report a significant change
in the microstate matrixes of rsEEG, it indicated that cTBS
over the motor cortex induced a modulation effect specific to
microstate B dynamics [32]. These few studies have utilized
neural oscillation analysis, network analysis and microstate
analysis to explore rsEEG changes at different time points after
rTMS/cTBS. Although they found some immediate changes

after rTMS/cTBS through analyzing rsEEG after rTMS, they
did not report significant short-term changes based on these
rsEEG analyses. It may be due to the inability of the methods
already in use to effectively capture these changes. Therefore,
it is necessary to apply novel analyses to investigate short-term
effects after stimulation, which is helpful in achieving a
deep understanding of the effects of stimulation on brain
activity.

The Hidden Markov Model (HMM) characterizes brain
activity as a dynamic sequence of discrete brain states, each
with distinct network activity features. Hunyadi et al. simul-
taneously recorded EEG and fMRI data in conjunction with
HMM [33]. They discovered that the fMRI correlates of fast
transient EEG dynamic networks exhibit highly reproducible
spatial patterns. Moreover, the spatial organization of these
patterns demonstrates a strong resemblance to traditional
fMRI resting-state network maps. Both the microstate analysis
and the HMM analysis can lead to state lifetimes on the
100 ms timescale. Coquelet et al. compared the microstate
method with the HMM method, and they suggested that the
Kmeans-based microstate analysis mainly focuses on topologi-
cal clustering at local maximum global field power (GFP) time
points, particularly emphasizing high-power activity. In con-
trast, the power envelope analysis based on HMM has its
uniqueness, encoding states based on spatial patterns of oscil-
latory power over continuous time, enabling finer detection
of temporal-scale states [34]. Therefore, the HMM method
focuses on transitions between low and high power in the
power envelope and is more sensitive to these transitions, thus
potentially capturing power activity more finely. Moreover,
in terms of state detection, the Kmeans-based microstate
method tends to focus on four standardized microstate maps,
and related research has clearly defined these four microstates.
The HMM method usually identifies more states, which
suggests HMM’s high flexibility and sensitivity in capturing
dynamic changes in brain states. Most importantly, HMM
is not limited to identifying features at specific time points;
it reflects the activation characteristics of brain networks [34].
In addition, HMM demonstrates excellent temporal character-
istics, effectively tracking and analyzing the dynamic changes
in brain activity over time. This is extremely important for
gaining a deeper understanding of brain function and pro-
cessing mechanisms. Compared with the microstate method
used in our previous study [32], the HMM method has the
potential to explore both immediate effect and short-term
effect. Therefore, in this study, we aimed to adopt the HMM
method to investigate the immediate effect and short-term
effect induced by cTBS.

This study aims to investigate the immediate and short-term
changes in behavior and brain dynamics induced by cTBS
and characterize the relationship between brain state based
on HMM and behavior performance after cTBS. We applied
cTBS to the left primary motor cortex (M1) region and
recorded open-eyes rsEEG data and tested the Nine-Hole
Peg Test (NHPT) of each hand before stimulation (Pre),
immediately after stimulation (I-Post), and 80 minutes after
stimulation (S-Post). Here, the NHPT was applied to measure
hand dexterity. We described the temporal characteristics of
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Fig. 1. Experimental Paradigm. (a) Overview of the experimental
process, including three sets of behavioral measurements and EEG
data recorded before cTBS (Pre), immediately post-cTBS (I-Post), and
80 minutes after cTBS (S-Post). (b) rTMS stimulation protocol illustrating
the application of a 40-second (600 pulses) cTBS paradigm, repeating
three bursts of 50 Hz pulses with a 200-millisecond interval.

HMM states and their corresponding activation networks at
different sessions. Additionally, we assessed the relationship
between HMM state features and behavioral task completion
times using correlation analysis.

II. METHODS

A. Participants
Twenty-two right-handed healthy subjects (12 males and

10 females, average age 22.3 ± 2.0 years (mean ± standard
deviation) ranging from 18 to 25 years) were recruited in insti-
tute of Automation, Chinese Academy of Sciences, Beijing,
China. All subjects met the following inclusion criteria: (1) not
taking any psychotropic medication; (2) no prior history of
neurological or psychiatric disorders; (3) no family history
of such conditions; and (4) passing the safety screening for
rTMS. In addition, this study was approved by the Institu-
tional Review Board of the Chinese Academy of Science. All
subjects signed an informed consent form.

B. Experimental Paradigm
This study utilized data from the dataset in our previous

study [32]. The details of the experiment have been reported
in the previous study, thus we briefly introduce the experiment
here. The experimental procedure is visualized in Figure 1(a).
Prior to cTBS stimulation (Pre), each participant completed
a set of behavioral tasks with each hand, followed by a
10-minute recording of rsEEG. After an appropriate rest
period, participants received a single session of cTBS lasting
40 seconds. Subsequently, behavioral tasks and rsEEG were
recorded for each hand immediately after cTBS (I-Post) and
again 80 minutes post-cTBS (S-Post).

We utilized the Nine-Hole Peg Test (NHPT) as the behav-
ioral task, employing a Nine-Hole Pegboard Kit (Jamar,
Chicago, USA) for testing. The completion time, measured in
seconds, served as the performance metric, and participants
were instructed to perform the task sequentially with their
left hand followed by their right hand. Prior to the start of
the experiment, participants received instructions and practice

for the NHPT task to ensure their familiarity and efficient
performance. During rsEEG data collection, participants were
instructed to keep their eyes open, minimize body and head
movements, and avoid systematic thinking, all of which helped
to ensure the accuracy of brain activity recording.

In this experiment, we employed the cTBS paradigm,
as shown in Figure 1(b). This paradigm involved continuous
stimulation for 40 seconds (total of 600 pulses), with triplets
of 50 Hz stimulation pulses repeated every 200 ms. The
cTBS stimulation was delivered using an M-series stimulator
manufactured by YINGCHI (Shenzhen, China). During the
stimulation process, we positioned the coil specifically in
the left primary motor cortex (M1) region, ensuring that it
remained tangent to the scalp. This positioning was based
on identifying the optimal coil position for inducing a motor
response in the first dorsal interosseous muscle (FDI) of the
contralateral thumb. To determine the appropriate stimulus
intensity for cTBS, we set it at 80% of the active motor thresh-
old (AMT). The AMT was defined as the lowest stimulus
intensity that elicited a motor response. During 10 consecutive
stimulation trials of static contraction of the right FDI muscle,
at least 5 stimuli were required to elicit a motor response of
200 microvolts, with the participant maintaining a maximal
autonomic contraction of approximately 20%. This ensured
consistent and reliable motor responses during the experiment.

C. EEG Data Acquisition and Preprocessing

We employed a 64-channel BrainAmp MRplus system
(BrainProducts Inc., Munich, Germany) to acquire EEG data
following the international 10–20 system. During the acqui-
sition, FCz and AFz were used as the ground and reference
electrodes, respectively. Additionally, a separate channel was
used to record the electrocardiogram signal, resulting in a
reduction in the number of EEG electrodes to 63. To ensure
high-quality acquisition, electrode impedances were main-
tained below 10 k�. The sampling rate was set at 5,000 Hz,
and a frequency filter was applied in-line to cover the range
from DC to 200 Hz, with additional notch filtering carried out
at 50 Hz to eliminate line noise interference. These measures
were taken to ensure reliable and accurate EEG data collection
during the experiment.

We performed offline processing of the EEG data using
the EEGLAB v2022.1 toolbox within the MATLAB R2021a
environment. For each continuous 10-minute rsEEG session,
the preprocessing steps for the data are shown in Figure 2(a).
Initially, the rsEEG data were bandpass filtered within the
frequency range of 0.5 to 30 Hz. Subsequently, to facilitate
further analysis, the sampling frequency was downsampled
to 250 Hz. Furthermore, automatic detection of bad channels
was executed employing available tools in EEGLAB, and
any identified bad channels were subsequently interpolated
using information from neighboring channels. Independent
component analysis (ICA) processing was then conducted
utilizing the MARA toolbox in EEGLAB to effectively elim-
inate artifacts related to eye, heart, and muscle activities,
thereby enhancing the overall data quality. Following the
completion of these aforementioned steps, we removed the
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Fig. 2. (a) The preprocessing of the electroencephalogram (EEG) data involves multiple steps. (b) shows the process before model inference,
involving calculating EEG data’s Hilbert power envelope, data concatenation, Principal Component Analysis (PCA), and inputting into the HMM for
inference. (c) The inference results of the HMM are aligned using cosine similarity.

initial 30 seconds and the final 30 s of each rsEEG segment
to facilitate subsequent EEG data analysis.

D. Hidden Markov Model

The Hidden Markov Model (HMM) is a probabilistic model
for time sequences that describes a time series as a sequence
of states, each with its own observation data model. The
HMM approach avoids the limitations of traditional microstate
modeling methods and is currently widely applied in MEG
and fMRI research. Therefore, we identified brain states from
the EEG of three sessions through the HMM approach. As
shown in Figure 2(b), we further processed each electrode
channel of rsEEG segments, including removing the linear
trend and applying the Hilbert transform to retain only the
amplitude information, which was then normalized to obtain
rsEEG amplitude envelopes. Subsequently, we concatenated
the amplitude envelopes of all participants within the same
session along the temporal dimension, thus creating three
group-level amplitude envelope matrices Y, with dimensions
being Nchannel × (Nsubject × Ntimepoint), where Nchannel = 63,
Nsubject = 22, and Ntimepoint = 135000 (Sampling rate: 250Hz,
the duration of data: 9 minutes). We performed a cross-channel
Principal Component Analysis (PCA) on these three groups
of amplitude envelopes, aiming to achieve dimensionality
reduction, thereby reducing the computational burden. It’s
noteworthy that too high explained variance can lead to model
overfitting, while too low explained variance might result
in loss of information, affecting the interpretability of the
model. The dimension of the reduced data matrix Yreduced
becomes NPC × (Nsubject × Ntimepoint). Our choice was based
on the results of multiple comparisons, ultimately deciding
to retain approximately 21 principal components (explaining

90% of the variance). Next, we modeled the power envelope
of resting-state brain activity using the HMM-Gaussian model.
The HMM-Gaussian model assumed that the observed data
(i.e., EEG time series) are generated from these brain states
through a multivariate Gaussian distribution, including the
covariance matrix and the mean distribution.

It is noteworthy that a major challenge in applying HMM
lies in the need to pre-determine the number of states in
the model (i.e., the K value). Traditionally, the selection of
the number of states in HMMs is based on the principle
of minimizing free energy, but we have observed that free
energy tends to decrease monotonically as the number of
states increases. Therefore, following the research methods
of Baker et al. [46], we utilized statistical metrics of state
occupancy to determine the optimal number of states. In our
analysis of HMMs with state numbers ranging from 4 to 20,
we calculated the maximum, minimum, and median values
of state occupancy for each state number. We found that at
9 states, there is a significant inflection point in the minimum
value of state occupancy. Additionally, with the number of
states set at 9, we repeatedly ran the model to assess the
robustness of state identification. The results show that state
identification maintained a high level of consistency across
multiple runs when the number of states was 9. Therefore,
in this study, we chose to set the number of states at 9.

E. State Alignment
We back-projected the state-specific mean distributions to

the EEG channel space using the inverse of the mixing
matrix (MT ) from PCA decomposition, creating averaged
activation maps for each HMM-based state. Cosine similarity,
as a matching measure, can effectively quantify the similarity
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Fig. 3. Distribution and significance test results for left-hand and right-
hand NHPT completion times (‘∗’ represents p < 0.05).

in the locations of high-power activities across different states
[33], [34]. Upon successfully estimating the group-level data
for Pre, I-Post, and S-Post, we conducted a comparative
analysis using cosine similarity (Figure 2(c)). Utilizing the
estimation results from Pre as the reference, we assessed
their similarity against the estimation results from I-Post and
S-Post. Cosine similarity values span from −1 to 1, with
higher values signifying greater resemblance between activated
regions. Subsequently, we computed the similarity between all
states in Pre and all states in I-Post and S-Post, selecting the
maximum value as the matching result. Through matching,
we ensured the comparability of data at different time points,
enabling a more accurate comparison of differences between
states at different time points and further analysis of the effects
of stimulation on neural activity.

F. HMM Global Statistics
The HMM inference results present us with invaluable state

time courses, offering insights into the dynamic behavior of
the brain during different cognitive states. These time courses
elucidate the probability of each state being active at each time
point, offering a detailed representation of the brain’s activity
patterns across various experimental conditions. Through the
use of the Viterbi algorithm, we can accurately map each
time point to its corresponding state, resulting in a clear and
comprehensive state time course matrix. The state time course
matrix plays a crucial role in uncovering the temporal prop-
erties of each brain state. This matrix enables us to quantify
and analyze the dynamic characteristics of brain activity for
each subject per session using a set of carefully computed
temporal metrics, including (1) state fractional occupancy,
which refers to the percentage of total time that each state
occupies in the entire EEG recording. (2) State occurrence
refers to the average number of times each state appears per
second. (3) The state interval time refers to the average time
interval between two consecutive occurrences of the same
state.

Furthermore, this method allows for the explicit estimation
of state transition probabilities, thereby providing a more
accurate description of the dynamic evolution of brain net-
works. State transition probability refers to the probability of
transitioning from one state to another within the sequence of
states.

G. Statistical Analysis
In this study, we employed a one-way repeated measures

Analysis of Variance (ANOVA) to assess the effect of session
on the completion time of behavioral task and the temporal
indicators of each state (state occupancy, occurrence rate,
and interval time). Before conducting statistical analyses,
we evaluated the normality of the data using the Shapiro-
Wilk test. Also, we applied the Mauchly’s test of sphericity
to ensure the assumption of sphericity. Repeated measures
ANOVA was performed in: (1) Section III-A Behavioral
results (Figure 3); (2) Section III-A. State Temporal Character-
istics (Figure 5); (3) Section III-E. State Transition (Figure 7).
Paired t-tests were conducted to assess differences between
paired data. A significance level was set at 0.05. All sta-
tistical results reported in this paper have been Bonferroni
corrected, and adjusted p-values are reported. T-tests in (1)
Section III-A Behavioral results (Figure 3) compared NHPT
completion times between each of the three sessions, result-
ing in two comparisons; (2) Section III-A. State Temporal
Characteristics (Figure 5) also involved t-tests, comparing
each state’ temporal characteristics between each of the three
sessions, resulting in two comparisons; (3) Section III-E.
State Transition (Figure 7) involved t-tests comparing every-
one’s state transitions in the Pre session with those in the I-Post
and S-Post sessions, leading to two comparisons. Finally,
in Section III-D of this article, we used Pearson correlation
analysis to calculate the correlations between each measure
and the completion time of NHPT, to evaluate the strength
and statistical significance of these correlations with NHPT
completion times. All statistical analyses were performed
using SPSS software (IBM SPSS Statistics, IBM Corporation).

III. RESULT

A. Behavioral Results
Figure 3 depicts the completion times of the NHPT at

each session for each hand. A one-way repeated-measures
ANOVA revealed that there was a significant effect of cTBS
on completion times of NHPT for either the left hand
(F (2, 42) = 3.092, p < 0.05) and the right hand (F (2, 42) =

3.657, p < 0.05) NHPT. Post hoc analysis revealed that the
completion time of NHPT for the left hand during the I-Post
session was significantly shorter than that during the Pre
session (p < 0.05). The time of NHPT during the S-Post
session tended to be shorter after cTBS (p = 0.16). This
indicates significant motor function improvement of the left
hand immediately after cTBS over the left motor cortex. For
the right hand, the completion time in the S-Post session was
significantly shorter than that in the Pre session (p < 0.05).
This may be due to the practice effect of NHPT.

B. State Spatial Feature
Figure 4 illustrates the average activation maps for each

state extracted in the three sessions. Therefore, cosine similar-
ity was calculated to align the three sessions of states, using
the maps in the Pre session as the baseline. We labeled these
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Fig. 4. State alignment results. The cosine similarity of each state in the I-Post and S-Post sessions relative to the corresponding state in the Pre
session is provided below each state in the figure.

states as State 1 to State 9 and named them S1 to S9, respec-
tively. These maps locate significant power increases/decreases
upon HMM state activation. S1 involved activation in the
right occipital- temporal junction. S2 displayed a pattern of
activation in the frontal cortex in the left hemisphere, while
S4 displayed a pattern of activation in the frontal cortex in the
right hemisphere. S3 and S6 displayed a pattern of activation
in the left and right hemispheric central regions, respectively.
S5 involves activation in the frontoparietal region. S7 involved
parietal activation along with prefrontal deactivation, and
S8 showed an opposite pattern of prefrontal activation and
parietal activation. These two states are thus reminiscent of a
dynamical top-down attentional control between the prefrontal
and parietal regions. S9 corresponds to a state with global
modulation of neural activity. Moreover, we used the states
in the I-Post and those in S-Post sessions as the baseline
separately, and then aligned the other two sets of states with
this baseline. We found that alignment results are consistent
using each session as the baseline in this study.

The results revealed that states S1, S3, S4, S7, S8 and S9
exhibited relatively high average similarity across the three
sessions, whereas states S2, S5, and S6 showed slightly low
average similarity. Therefore, cTBS induced a change in the
spatial pattern of S2, S5 and S6.

C. State Temporal Characteristics

In all sessions, the average duration of HMM states ranged
from approximately 30 to 160 ms, which is consistent with
previous research findings [33], [36], [37].

Figure 5 displays the results of crucial characteristics (state
fractional occupancy, state occurrence, and state interval time)
for the nine states in three sessions. As shown in Figure 5(a),
one-way repeated-measures ANOVAs show a significant main
effect of session on state fractional occupancy for each state
except S8 (all except S8: p<0.05; S8: p=0.7). Post hoc
comparisons revealed that fractional occupancy for S2, S3 and
S6 significantly decreased immediately after cTBS, whereas
the reverse was true for S4 and S5 (p<0.05). In the S-post,
fractional occupancy for S4 and S5 was significantly higher

than that in the Pre, whereas the reverse was true for S7
(p<0.05).

As shown in Figure 5(b), one-way repeated-measures
ANOVAs show a significant main effect of session on state
occurrence for each state except S8 (all except S8: p<0.05;
S8: p=0.17). Post hoc comparisons revealed that the frequency
for S1, S2 and S3 significantly decreased immediately after
cTBS, whereas S4 and S5 were more frequent immediately
after cTBS (p<0.05). In S-Post, the frequency for S5 was
significantly higher than that in Pre, whereas the reverse was
true for S6 and S7 (p<0.05).

As shown in Figure 5(c), one-way repeated-measures
ANOVAs show a significant main effect of session on state
interval time for each state except S3 and S8 (all except S3 and
S8: p<0.05; S8: p=0.056 S8: p=0.17). Post hoc comparisons
showed that the interval time for S1, S2 and S9 increased
immediately after cTBS, whereas that for S4 and S5 decreased
(p<0.05). The interval between S6 and S7 was longer in the
S-Post group than in the Pre.

These results suggest that cTBS altered the temporal profiles
of S1-S5 immediately after cTBS and the temporal profiles of
S5, S6 and S7 80 min after cTBS. S1, S2, and S3 occurred
less often with longer intervals immediately after cTBS. S4
and S5 occurred more often with short intervals immediately
after cTBS, leading to an increase in the percentage of total
time that S4 and S5 occupied in the entire EEG recording.
80 min after cTBS, the increase in the percentage of the total
time of S4 and S5 remained. 80 minutes after cTBS, S6 and
S7 occurred less often, and the interval time was long.

D. Relationship Between HMM States and Behavioral
Performance

For the performance of the behavioral task, two significant
differences were found (Figure 3), which included one imme-
diate effect on the left hand and one short-term effect on the
right hand. Correlation analyses between each of these two
differences and each of the brain state indices (state fractional
occupancy, state occurrence, and state interval time) with
significant differences were performed across the participants.
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Fig. 5. Distribution of time characteristics state fractional occupancy (a), state occurrence (b), state interval time (c) for each state and results of
significance statistical tests (‘∗’ represents p < 0.001).

As shown in Figure 6(a), based on the sessions between Pre
and I-Post, the occurrence of S1 was found to be significantly
positively correlated with the completion time of the left hand
NHPT (Pearson’s rho = 0.387, p < 0.01). This corresponds
to the immediate effect where, as shown in Figure 5(b), there
was a reduction in the occurrence of S1, and as depicted in
Figure 3, there was a decrease in the completion time for
the left hand NHPT. Moreover, the interval time of S1 was
significantly negatively correlated with the completion time
of the left hand NHPT (Pearson’s rho = −0.361, p<0.05),
corresponding to the immediate effect where, as shown in
Figure 5(c), the interval time of S1 increased and, as shown
in Figure 3, the completion time for the left hand NHPT
decreased. As illustrated in Figure 6(b), according to the
sessions between Pre and S-Post, the occurrence of S7 was
significantly positively correlated with the completion time of
the left hand NHPT (Pearson’s rho = 0.363, p<0.05). This
is in line with the short-term effect, where as depicted in

Figure 5(b), there was a reduction in the occurrence of S7, and
as shown in Figure 3, there was a decrease in the completion
time for the right hand NHPT. Furthermore, the interval time of
S7 was significantly negatively correlated with the completion
time of the left hand NHPT (Pearson’s rho = −0.333, p<0.05),
which aligns with the short-term effect, where as shown in
Figure 5(c), the interval time of S7 increased and, as depicted
in Figure 3, the completion time for the right hand NHPT
decreased.

These results indicate that immediately after cTBS, indi-
viduals with better NHPT performance for the left hand
showed a higher state occurrence of S1 and a lower state
interval time of S1. Additionally, 80 minutes after cTBS,
individuals with better NHPT performance for the right
hand showed a higher state occurrence of S7 and a lower
state interval time of S7. This suggests that the modu-
lation of S1 and S7 induced by cTBS influences motor
function.
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Fig. 6. The Pearson correlation between NHPT completion time and
brain states is shown. Pearson correlation values (r) and p values are
provided. The red shaded area represents a 95% confidence interval.
(a) represents the correlation between the immediate-term (Pre and
I-Post) left-hand NHPT completion time and the state occurrence and
state interval time of state S1. (b) represents the correlation between
the short-term (Pre and S-Post) right-hand NHPT completion time and
the state occurrence and state interval time of state S7.

Fig. 7. Changes in the transition probabilities of states S1 and S7.
(a) represents the state transition changes of state S1 between the
immediate -term and short-term sessions. (b) represents the state
transition changes of state S7 between the immediate-term and
short-term sessions.

E. State Transitions

Considering that the correlation between brain state indices
and NHPT completion times is primarily concentrated in S1
and S7, the state transition changes of these two states during
the immediate-term (Pre vs. I-Post) and short-term (Pre vs.
S-Post) intervals are displayed in Figure 7.

Figure 7(a) shows the changes in state transitions for S1.
During the immediate-term interval, the transition probabilities

from S1 to S2, S4, S7, and S9 significantly decreased
(p < 0.05), while the transition probability from S1 to S8
increased (p < 0.05). The transition probabilities from S2 and
S7 to S1 decreased (p < 0.05), while the transition probabili-
ties from S3, S4, S5, and S8 to S1 increased (p < 0.05). During
the short-term interval, the transition probabilities from S1 to
S2, S4, S7, and S8 decreased (p < 0.05), while the transition
probability from S1 to S6 increased (p < 0.05). The transition
probability from S5 to S1 increased (p < 0.05), while the
transition probability from S7 to S1 decreased (p < 0.05).

Figure 7(b) presents the changes in state transitions for S7.
During the immediate-term interval, the transition probabilities
from S7 to S1 and S4 significantly decreased (p < 0.05),
while the transition probabilities from S7 to S2, S3, S5, and
S9 increased (p < 0.05). The transition probabilities from
S1 and S6 to S7 decreased (p < 0.05), while the transition
probabilities from S5 and S9 to S7 increased (p < 0.05).
During the short-term interval, the transition probabilities from
S7 to S1, S3, and S9 decreased (p < 0.05). The transition
probabilities from S1 and S9 to S7 decreased (p < 0.05),
while the transition probability from S4 to S7 increased
(p < 0.05).

Our results above showed that there is a dynamic recon-
figuration pattern for transitions between brain states. The
probability of transition between state 1 and state 7 weak-
ened and continued until 80 minutes. The changes in state
transitions decreased from immediately to 80 min after cTBS.

IV. DISCUSSION

This study investigated the immediate and short-term
changes in behavior and brain dynamics induced by cTBS.
An HMM-based analytical framework was proposed to iden-
tify nine brain states from resting EEG data before stimulation
(Pre), immediately after cTBS (I-Post), and 80 minutes after
cTBS (S-Post). We found that cTBS not only induced behav-
ioral changes that outlasted the stimulation period but also
affected brain activities and organization of brain dynamics at
different time points after cTBS. Additionally, cTBS altered
temporal profiles of S1-S5 immediately after cTBS and tempo-
ral profiles of S5, S6 and S7 80 min after cTBS. Two specific
states (presented here as S1 and S7) exhibited specificity
in modulating completion times of the NHPT task for the
left and right hands at different post-stimulation intervals.
Furthermore, the transitions between S1 or S7 and other states
showed dynamic reconfiguration during after-effects sustained
time.

HMM-based brain states are believed to represent tran-
sient activations or deactivations of large-scale functional
networks and have the advantage of assessing the spontaneous
emergence of brain rhythms, i.e., large-scale oscillations of
neuroelectric activity [34]. In this study, we investigated the
neural dynamics mechanisms of these behavioral changes
induced by cTBS through hidden Markov modeling of EEG
power envelopes. Our study successfully identified nine HMM
states, the majority of which exhibited relatively high average
similarity across Pre, I-Post and S-Post sessions. These HMM
states identified EEG power modulations within well-known
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intrinsic functional networks, including the frontoparietal con-
trol network, bilateral auditory network, and visual occipital
network. In addition, three HMM states (S2, S5, and S6)
involving activation in the frontal and central regions showed
slightly low average similarity across three sessions, which
indicated that cTBS induced a change in spatial activa-
tion in the sensorimotor network and frontoparietal control
network.

The global statistics derived from HMM state dynamics
have a slightly different neurophysiologic significance [41].
For example, the frequency of occurrence of a particular state
may reflect the tendency of its underlying neural generator
to become activated. Hence, the reduction in the state occur-
rence and fractional occupancy and the increase in the state
interval time can be considered disengagement and instability
of the neural activity of the large-scale functional network.
Conversely, an increase in state occurrence and fractional
occupancy and a reduction in state interval time may be a
sign of dysfunctional hyperactivity of the functional network.
S1, S2, and S3 occurred less often with longer intervals
immediately after cTBS. S4 and S5 occurred more often with
short intervals immediately after cTBS, leading to a greater
presence of S4 and S5. The increment in the percentage
of total time of S4 and S5 was still maintained 80 min
after cTBS, S6 and S7 occurred less often, and the interval
time lasted longer. In other words, S1, S2, S3, S6 and S7
showed dysfunctional hyperactivity of the functional network,
while S4 and S5 showed instability of the neural activity of
the large-scale functional network. These findings suggested
that cTBS can modulate the temporal stability of HMM
states.

In this work, the observed alteration of HMM states pro-
vided correlation evidence with the behavioral performance
caused by cTBS. In particular, the left-hand completion time
of NHPT positively correlated with the occurrence of S1 and
negatively correlated with the interval time of S1 immediately
after cTBS. The HMM-based S1 was characterized as the
activation of right occipito-temporal area. Also, S2 was also
characterized as the activation of right occipito-temporal area.
From the topographic map, the HMM-based S1 and S2 jointly
represent the activation of microstate B as shown in our
previous study [32]. Indeed, in previous study, we found that
microstate B shows the greatest variation in the immediate
effects of CTBS, and the average occurrence rate during
immediate effects is positively correlated with left hand NHPT
performance. Although state temporal characteristics of S1
and S2 changed significantly in the I-post in this work, only
S1 is correlated with behavioral performance during immediate
effects. Therefore, our findings in this study further emphasis
that the right occipito-temporal area activation, especially S1,
plays a key role in modulating motor performance during
immediate effects after cTBS and that the HMM-based anal-
ysis method provides more refined detection of states on a
temporal and spatial scale. Importantly, we also found some
new results of short-term effect of cTBS. The average occur-
rence rate of the HMM-based S1 during immediate effects is
positively correlated with left hand NHPT performance. The
interval time of the HMM-based S1 during immediate effects

is negatively correlated with left hand NHPT performance.
These two correlations become weaker from I-post to S-post
(Occurrence rate: I-post: r=0.38, p=0.009; S-post: r=0.24,
p=0.12; Interval time: I-post: r=−0.36, p=0.016; S-post:
r=−0.26, p=0.07). The changes in the dynamic characteriza-
tion of state 1 are related to the impact of cTBS on left-handed
behavior and these changes weaken with the weakening of
aftereffect of cTBS. These results indicate that the dynamic
characteristics of state 1 are potential biomarkers for charac-
terizing the aftereffect changes of cTBS. Moreover, we also
found that the average occurrence rate of the HMM-based
state 7 during short-term effects is positively correlated with
right-hand NHPT performance. This result was also not found
in our previous research [32]. In addition, compared with
results from previous study, the above research results indicate
that the recognition of finer states in HMM helps us to gain
a deeper understanding of the dynamic response of the brain
to cTBS.

After cTBS over the left motor area, the left hand shows
a decrease and then an increase in completion time, which
may be due to the gradual weakening of the immediate effect
following the stimulus over time. For the right hand, the
completion time decreases with the increase in time, reflecting
the adaptability and skill enhancement in repeated practice.
Thus, the significant improvement in the right hand during
the S-Post period may be due to repeated practice. Although
cTBS induced significant changes of behavior performance,
the behavioral differences before and after cTBS are relatively
small. This may be attributed to the following two reasons:
1) Our study involved a healthy population. All participants
were right-handed and we simulated the right motor area as
functionally weaker area. Therefore, the enhancement effect
for the left-hand is limited. 2) We assessed the effect of a single
cTBS session. Compared to future continuous rehabilitation
courses for stroke recovery, the effect of a single session is
limited.

Previous studies have suggested that improvements in motor
function after stroke rely on a balance of neuronal activ-
ity between the two cerebral hemispheres, which may be
accomplished via reciprocal inhibition [39], [40]. In our study,
we can hypothesize that after cTBS stimulation to the left
motor cortex, there is a decrease in the proportion of activation
in the left motor cortex, leading to reduced excitability, while
there is an increase in the proportion of activation in the
right motor cortex, leading to heightened excitability, thereby
promoting improvement in left-hand NHPT performance. Our
results showed that the activation regions of S2 (associated
with activation in the left motor cortex) and S6 (associated
with activation in the left sensorimotor area) may be located
near the actual stimulation site, resulting in more pronounced
spatial modulation effects and lower average similarity across
the three sessions. Moreover, the results showed a lower
presence of S2 and S6 after cTBS than before cTBS. Addition-
ally, S4 (associated with activation in the right motor cortex)
showed more presence during EEG recordings. These find-
ings emphasized the inhibitory regulation of the contralateral
hemisphere’s brain activity in relation to the enhancement of
motor abilities on the ipsilateral side. cTBS not only has local
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but also remote effects, and these remote effects are probably
mediated via interhemispheric inhibition.

Furthermore, we focused on the transition trajectory of
S1 or S7 and analyzed the transition probabilities with other
HMM microstates. We found significant changes in transition
probabilities between the S1 and S7 states and most other
states within the immediate term, which showed a reorganiza-
tion of motor-related network states. As the after-effects persist
of cTBS, there were fewer interactions with states showing
significant transition probability changes associated with
S1 and S7, which showed adaptive compensation during the
process of restoring the brain’s original equilibrium disrupted
by cTBS. Combined with a previous study [45], our findings
suggested that cTBS leads to increased selective integration
within sensory-motor regions and reduced communication
with other networks. Reconfiguration and rebalancing of
brain microstates may be a possible neurophysiological basis
of motor function improvement induced by cTBS.

V. CONCLUSION

In summary, we have provided evidence for altered brain
dynamics after cTBS in healthy subjects over the left motor
cortex. Our results reveal that cTBS modulates the spatial sig-
nature and temporal activities of HMM states. These findings
suggest that the HMM approach can capture the intricate and
diverse temporal dynamics of brain states modulated by cTBS,
offering novel insights into understanding these biological
and neural mechanisms. In future research, it is necessary
to improve the Hidden Markov Model (HMM) method to
enhance the robustness and reliability of the results. And, more
participants and stroke patients should be recruited to validate
the findings of this study. Moreover, the effects of continuous
theta burst stimulation (cTBS) or repetitive transcranial mag-
netic stimulation (rTMS) beyond 80 minutes should also be
further investigated. Finally, this work may provide a new tool
for brain state monitoring based on electroencephalography
(EEG), which can be used for detection and assessment in
various research areas related to this field.
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