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Deep Learning Model to Evaluate Sensorimotor
System Ability in Patients With Dizziness for

Postural Control
Ahnryul Choi, Euyhyun Park, Tae Hyong Kim , Seungheon Chae, Gi Jung Im, and Joung Hwan Mun

Abstract— Balanced posture without dizziness is
achieved via harmonious coordination of visual, vestibular,
and somatosensory systems. Specific frequency bands of
center of pressure (COP) signals during quiet standing are
closely related to the sensory inputs of the sensorimotor
system. In this study, we proposed a deep learning-
based novel protocol using the COP signal frequencies
to estimate the equilibrium score (ES), a sensory system
contribution. Sensory organization test was performed with
normal controls (n=125), patients with Meniere’s disease
(n=72) and vestibular neuritis (n=105). The COP signals
preprocessed via filtering, detrending and augmenting
during quiet standing were converted to frequency
domains utilizing Short-time Fourier Transform. Four
different types of CNN backbone including GoogleNet,
ResNet-18, SqueezeNet, and VGG16 were trained and
tested using the frequency transformed data of COP
and the ES under conditions #2 to #6. Additionally,
the 100 original output classes (1 to 100 ESs) were
encoded into 50, 20, 10 and 5 sub-classes to improve the
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performance of the prediction model. Absolute difference
between the measured and predicted ES was about 1.7
(ResNet-18 with encoding of 20 sub-classes). The average
error of each sensory analysis calculated using the
measured ES and predicted ES was approximately 1.0%.
The results suggest that the sensory system contribution
of patients with dizziness can be quantitatively assessed
using only the COP signal from a single test of standing
posture. This study has potential to reduce balance testing
time (spent on six conditions with three trials each in
sensory organization test) and the size of computerized
dynamic posturography (movable visual surround and
force plate), and helps achieve the widespread application
of the balance assessment.

Index Terms— Sensorimotor system, balance, dizziness
rehabilitation, postural control, deep learning, Meniere’s
disease, vestibular neuritis.

I. INTRODUCTION

VERTIGO, as a subtype of dizziness, refers to a perceptual
phenomenon characterized by a false sensation of

moving or surrounded by moving objects [1]. It can evoke
nystagmus and walking abnormalities along with nausea and
vomiting [2]. The etiology of dizziness is largely divided
into vestibular disorders related to the vestibular system
and non-vestibular disorders, which include psychogenic and
cardiogenic impairment, with more than three-fold higher
incidence of vestibular disorders [2]. Vestibular disorders can
be divided into peripheral types (85%) caused by dysfunction
of labyrinth and vestibular nerve, and central disorders (15%)
caused by defective or increased levels of vestibular nuclear
complex [3]. Typical peripheral vestibular disorders include
Meniere’s disease, which is associated with membranous
labyrinth, and is caused by endolymphatic hydrops [1] and
vestibular neuritis, a neurological degeneration caused by
viruses [4]. These peripheral disorders lead to difficulties in
maintaining the correct posture when standing or walking due
to dizziness.

Maintaining a successful postural balance without dizziness
is achieved by harmonious coordination and integration of
visual, vestibular, and somatosensory systems [5], [6]. The
visual and vestibular systems contribute to postural stability
via feedback from the external environment and by controlling
the position and movement of the head [7]. The somatosensory
syst em controls muscle activity by the nervous system to
increase joint stability, thereby helping maintain a stable
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Fig. 1. Computerized dynamic posturography.

Fig. 2. Six conditions used in the sensory organization test (SOT).

posture [8]. Each sensory system detects posture changes
independently via the sensorimotor pathway. The central
nervous system activates muscles appropriately for posture
control based on integrated information obtained from the
sensory system [9]. Therefore, dizziness occurs when the
sensory information entering the central nervous system does
not correspond with patterns experienced during the growth
process [10]. This type of dizziness can occur due to abnormal
excitation or damage anywhere along the sensory and central
nervous systems.

Clinical diagnosis and rehabilitation assessment of the dizzi-
ness is performed by computerized dynamic posturography
(Fig. 1). Sensory organization test (SOT) in computerized
dynamic posturography is clinically the most widely used
balance assessment method certified by the American Society
of Otolaryngology and Neuroscience [11]. SOT is a test
constructed to induce posture control by altering human
sensory system inputs (Fig. 2). It assesses balance by
isolating sensory and motor factors [12]. Thus, each of
the somatosensory (forward/backward rotation of footstep)
and visual inputs (eye closure) or their combination can be
manipulated to measure the degree of perturbation prior to and
following human orientation and determine the contribution
of each sensory system to posture control based on an
equilibrium score (ES). ES is a parameter that represents
the normalized scores by dividing the forward and backward

rotation angles of the center of gravity (CG) during six
conditions of the SOT in computerized dynamic posturography
by the maximum rotation angle (12.5◦). This parameter is used
to evaluate and record the individual’s postural control ability.
However, a computerized dynamic posturography system,
which includes movable visual surround and dual force plate,
is relatively large in size compared with the challenge of space
utilization. In addition, evaluating each sensory system through
artificial manipulation with each test condition has limitations
in that it cannot simultaneously evaluate the role of the
integrated sensory system in posture control [13]. Therefore,
there is a need for a novel evaluation protocol that can identify
the integrated sensory contribution via simple postures such as
quiet standing.

The rest of this article is organized in the following
order. Section II includes previous studies related to the
clinical rehabilitation assessment methodologies of dizziness.
Section III presents the role of deep learning approach and
objectives of this study. Section IV presents materials and
methods including experiments and technical details of a novel
deep learning-based evaluation protocol for postural control.
The experimental results of the proposed deep learning model
are presented in Section V. Finally, Section VI interprets the
results along with the limitations of this study and provides
future research directions.

II. CLINICAL REHABILITATION ASSESSMENT OF
POSTURAL CONTROL

Clinical rehabilitation assessment of dizziness is based on
perturbed test (PT) and not-perturbed test (NPT), depending
on the presence of a support in a standing position [14].
PT evaluates balance by inducing balance perturbations such
as reaching task or leaning actions [15], or constrained
movements of external devices. Krishnan et al. [16] performed
a balance recovery evaluation for rapid arm flexion/extension
movements during standing posture using a force plate.
Patients with multiple sclerosis showed less anticipatory
muscle activity than normal controls, leading to larger center
of pressure (COP) displacement during the balancing recovery
stage [16]. As a mechanical perturbation, the SOT protocol
in computerized dynamic posturography is clinically the
most widely used balance assessment method [11]. SOT
protocol quantifies the contribution of the residual sensory
system following perturbed or removed sensory inputs due
to anterior and posterior movements of the visual surround
or force plate. Laufer et al. [17] evaluated the role of
visual and somatosensory inputs in maintaining standing
balance in hemiplegic patients within two months of stroke.
The SOT protocol was used to confirm the increased
dependence of visual system in maintaining balance in the
patient group compared with the normal control group [17].
Jayakaran et al. [18] compared the postural control ability of
patients with dysvascular transtibial amputation and traumatic
transtibial amputation and normal patients with or without a
dysvascular condition utilizing SOT protocol. In #3 and #4
conditions of SOT, both the dysvascular transtibial amputation
and traumatic transtibial amputation groups experienced
higher anterior/posterior sway than the adult group without
dysvascular conditions [18]. More recently, the correlation
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between postural instability and autonomic dysfunction was
evaluated in patients with early Parkinson’s disease [19]. The
SOT protocol of the computerized dynamic posturography was
used in case of postural instability, combined with testing
for autonomic function test and heart rate variability. As a
result, it was confirmed that postural instability in patients
with early Parkinson’s disease was strongly correlated with
dysfunction of the parasympathetic autonomic nervous system.
Additionally, various studies used SOT protocol to evaluate
postural control in patients with dizziness based on the
presence of abnormal vestibular or somatosensory system [20],
concussion [21], stroke [22], and Parkinson’s disease [23].
However, as mentioned above, there is a limitation in that the
size of the computerized dynamic posturography is relatively
large. Also, the role of the integrated sensory system cannot
be quantified by evaluating posture control through artificial
manipulation of each sensory system.

In contrast, NPT is used to evaluate the COP trajectories
in a standing posture without any external artificial perturba-
tion [24], which can be measured with a relatively simple and
small pressure sensing device. COP trajectory is a variable that
reflects body motion to maintain balance [25], and time series
variables such as moving area and speed of COP trajectories
can be utilized to evaluate the balancing ability. Furthermore,
specific frequency bands of COP signals are closely related
to the sub-structure of the sensory system [26]. Bizid et al.
[27] evaluated the effects of voluntary muscular contraction
and fatigue induced by electrical stimulation on postural
control. The COP frequency was evaluated by dividing into
low (0 – 0.5 Hz, visuo-vestibular system), medium (0.5 –
2 Hz, cerebellar regulation), and high frequency (2 Hz or
more, somatosensory system) bands, and it was confirmed that
muscle fatigue affects the somatosensory system in postural
control [27]. Suarez et al. [28] utilized COP frequencies
to evaluate posture control in patients with hearing loss
carrying cochlear implants. In their work, COP frequencies
were divided into bands 1 (0-0.1 Hz), 2 (0.1-0.78 Hz), and 3
(0.78-25 Hz). Bands 2 and 3 were related to the vestibular
system [28]. More recently, the COP frequency bands related
to the sensory system for evaluating balance in patients with
scoliosis were divided into 0-0.1 Hz, 0.1-0.5 Hz, and 0.5-
1.0 Hz [13]. Scoliosis increased the energy rates of medium
and high frequency bands compared with the control group,
suggesting that scoliosis caused by morphological changes in
the whole spine can be treated with compensatory balancing
strategies mediated via vestibular and somatosensory systems.
The contribution of the sensory system was analyzed in
four different bands (moderate: 1.56-6.25 Hz, low: 0.39-
1.56 Hz, very low:0.1-0.39 Hz, and ultralow: less than
0.10 Hz frequencies) in another study [25]. Since frequency
bands used by different studies might overlap or differ with
high variability in subjects and experimental conditions, the
ability of the sensory system to control posture might not be
accurately determined [14], [29].

III. ROLE OF DEEP LEARNING AND
OBJECTIVES OF THIS STUDY

While existing studies have the presence of specific COP
frequency bands for visual, vestibular, and somatosensory

systems, clear band distinction is a challenge. Although the
underlying factors are unclear, the range of bands affecting
each sensory system is wide and reflects various diseases
related to dizziness or subject characteristics. A machine
learning model can be used to distinguish the specific
frequency bands related to each sensory input due to
ambiguous boundaries. Machine learning model provides an
effective solution by modeling and training various complex
COP frequencies and their effects on each sensory system as
inputs and outputs, respectively. As a representative machine
learning model, artificial neural network refers to a distributed
adaptive computational system that utilizes interconnected
neurons similar to the neural network structure of a
human [30], [31]. Furthermore, as a type of specialized neural
network, a convolutional neural network (CNN) has been
used in various applications [32], [33]. CNN automatically
extracts discriminative feature points composed of multiple
convolutional and subsampling layers, and shows superior
performance compared with conventional single-layer neural
networks [34]. It is less cumbersome to learn key features from
raw data via multiple layers of the model and thus extract input
variables manually, which improves learning accuracy [35].

Therefore, in this study, we proposed a novel protocol to
evaluate the capabilities of the sensory system by utilizing
COP signals during a quiet standing posture. We compared
four typical CNN model architectures (GoogleNet, ResNet-18,
SqueezeNet, and VGG16) using the frequency of COP signals
in standing posture to estimate the ES, a sensory system
variable in the SOT protocol. To improve the performance
of the CNN models, the encoding and decoding technique
that trains and tests by grouping the model output into sub-
classes was included. Additionally, the clinical application
of the model in patients with diseases associated with
peripheral vertigo, Meniere’ disease, and vestibular neuritis
was evaluated.

IV. MATERIALS AND METHODS

A. Experiments
1) Participants: This study involved normal controls and

patients who underwent dynamic posture tests at Korea
University Anam Hospital from January 2018 to December
2020. Patients with established peripheral vestibular disorders
such as Meniere’s disease and vestibular neuritis were selected.
Among the total patients, those with musculoskeletal disorders
and visual impairments, and children who encountered
difficulty standing for more than 20 seconds were excluded.
Patients who had to rely on a harness for support due to
loss of balance during the experiment were also excluded.
Finally, a total of 302 patients participated in this study.
Seventy-two patients with Meniere’s disease (age: 15∼87
years; height: 143.3∼181.2 cm) based on the 2016 American
Society of Otolaryngology (AAO-HNS) diagnostic criteria for
probable and definitive Meniere’s disease were selected [36].
Another 105 patients were selected for the vestibular neuritis
group (age: 22∼83 years; height: 147.5∼184.3 cm) with
acute onset (within one day) symptoms along with sustained
vertigo, and unidirectional horizontal spontaneous nystagmus
aggravated by the head-shaking test and positive unilateral
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bedside head impulse test. Patients with vestibular neuritis
showed normal results in other auditory and brain MRI tests.
This study also included 125 normal controls (age: 18∼80
years; height: 144.2∼184.3 cm) who sought medical attention
for dizziness but were diagnosed by clinicians as having
no abnormalities in the visual, somatosensory, or vestibular
systems. The research protocol was approved by the Clinical
Research Review Committee of Korea University Anam
Hospital (IRB No.2018AN0297) and complied with the tenets
of the Declaration of Helsinki.

2) Apparatus and Experimental Procedures: As a com-
puterized dynamic posturography (Fig. 1), an EquiTest
System (Neurocom International Inc., Clackamas, OR, USA)
developed by Nashner and Peters in 1985 was used in
this study. This system is now most commonly used in
hospitals [37]. The test equipment consists of a movable visual
surround to stimulate vision, a fixed frame and harness set
for preventing injury when falling during examination, a dual
force plate that moves forward and backward to measure
reaction force, and a computer with Windows operating system
that analyzes integrated data.

For each patient, SOT was conducted to evaluate the sensory
system via three trials, with 20 seconds each under six testing
conditions while standing on a plate (Fig. 2). The six testing
conditions are as follows: 1) standing with eyes open while
the force plate and visual surround are fixed; 2) standing with
eyes closed while the force plate and the visual surround are
fixed; 3) standing with eyes open when the force plate is
fixed but the visual surround rotates; 4) standing with eyes
open when the visual surround is fixed while the force plate
is rotated up and down; 5) standing with eyes closed when
the visual surround is fixed and the force plate moves up and
down; and 6) standing with eyes open when both the visual
surround and the force plate are rotating. Here, up and down
rotations of force plate and visual surround were calculated
based on forward and backward movements of the center of
gravity of the human body. Consequently, conditions #2 and #5
determined the role of the somatosensory or vestibular system
in maintaining balance under closed eye state while conditions
#4, #5, and #6 inhibited the function of the somatosensory
system due to rotation of the force plate. In addition, it was
possible to examine whether the effect of inappropriate vision
was suppressed due to the rotation of the visual surround under
conditions #3 and #6.

3) Equilibrium Score and Sensory Analysis: The ES was
measured based on the rotation angle (θ) of the center of
gravity of a human under six test conditions of SOT. While
standing, the sway angle at the center of gravity was up to
12.5◦ (8.0◦ forward and 4.5◦ backward). The ES is calculated
by normalizing the maximum angle to 100% (Eq. 2). Thus,
if the angle was 0◦, the score was 100 in the most stable state.
If the angle was 12.5◦, the score was 0 since the state was right
before falling.

Equillibrium score (E S) =
12.5 − (θmax − θmin)

12.5
× 100

(1)

Based on the six ESs, we calculated the ratio of visual,
vestibular, and somatosensory systems, and visual preference

Fig. 3. Overall methodological protocol used to evaluate sensory
system capabilities based on raw COP signals during quiet standing.

contributing to posture control [38]. The ratio of somatosen-
sory system was the ES under condition #2 divided by the
ES under condition #1, which indicated postural stability
when the visual system was removed. The ratio of visual
system was calculated by dividing the ES in condition #4 by
the ES in condition #1, which was referred to as postural
stability when the somatosensory system changed due to
the movement of the force plate. The ratio of vestibular
system was calculated by dividing the ES in condition #5
by the ES in condition #1, which suggested postural stability
when visual and somatosensory inputs were removed and
changed, respectively. Finally, the ratio of visual preference
was calculated by dividing the total ES under conditions #3
and #6 by the total ES under conditions #2 and #5, to measure
the degree of excessive dependence on visual information.

B. Proposed Evaluation Protocol for Postural Control
The estimation of ES (conditions #2 to #6) using COP

trajectories under open eye condition in a quiet standing
posture is shown in Fig. 3. The input matrix of the deep
learning model was created via preprocessing and frequency
transformation of COP signals in the anterior/posterior
direction during standing posture. The output vector is defined
as a sub-class by encoding the ES derived from SOT. These
inputs and outputs are used to train a CNN deep learning
model. The final ES calculations and sensory analysis are
performed by decoding the model output.

1) Data Preprocessing (Model Input): We eliminated linear
trend lines of the COP trajectory before and after condition #1
for normalization of the position of subject’s ground reaction
force. Next, to eliminate noise, we applied low-pass filters
for COP trajectories with removed trend lines. The fourth
Butterworth filter was applied with a cut-off frequency of 5 Hz.
The cut-off frequency was verified using a power spectral
density test [38]. Subsequently, the data were augmented
to enhance the performance of the learning model. As an
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Fig. 4. Convolution neural network (CNN) model architectures: (A) GoogleNet, (B) ResNet-18, (C) SqueezeNet, and (D) VGG16.

augmentation technique, jittering and scaling usually utilized
in time series data were applied for augmentation within -20
% to 20 % of the raw COP signals. Processed COP data were
converted into frequency domains via a Short-time Fourier
Transform (STFT) process. Fourier transform has a limitation
in that it cannot account for frequency variation over time.
Therefore, we used STFT to observe changes in frequency
over time by applying a moving window filter as shown in
Eq. 1:

X (n, w) =

∑inf

k=−inf
[k] h[k − n]e−jwk (2)

where h(n) denotes a Hamming window function, and n and w

represent time and frequency measurements, respectively. Test
condition #1 data were obtained at 100 Hz for 20 seconds with
a discrete interval of 0.01 seconds. In response, windows were
divided into 50 data sections (0.5 seconds each), allowing 50
% data overlap. Based on STFT results, we calculated the
power spectral density of the spectrogram.

2) Encoding of Equilibrium Scores (Model Output): We
performed an encoding process for classification of ES
(conditions #2 to #6) for use in the output of the learning
model. Since the ES ranges from 1 to 100, a method to
improve the performance of the prediction model by reducing
the class was proposed. In this study, the 100 original classes
(1 to 100 ESs) were encoded into 50, 20, 10, and 5 sub-
classes. In case of encoding into 20 sub-classes, each class
was distributed into 5 scores (ES from 1 to 5 as class 1,
ES from 6 to 10 as class 2, . . . , and ES 96 to 100 as class 20).
In encoding into 10 sub-classes, each class was divided into
10 scores (ES from 1 to 10 as class 1, ES from 11 to 20 as
class 2, . . . , and ES 91 to 100 as class 10).

3) Convolutional Neural Network Architectures: The power
spectral density of spectrogram during quiet standing (SOT
condition #1) and encoded classes under conditions #2
to #6 were used as input and output in CNN training,
respectively. As inputs in deep learning model, spectrograms
were converted to RGB three-channel images. The images
were resized to obtain a resolution of 224 by 224. Four
different types of CNN backbone architecture including
GoogleNet, ResNet-18, SqueezeNet, and VGG16 were

TABLE I
HYPERPARAMETER TYPES, RANGES AND THE

SELECTED VALUE IN RESNET-18 CNN MODEL

used in this study (Fig. 4). These models were chosen
from the most popular architectures reported in previous
studies [39], [40].

To improve the performance of the CNN model, optimal
hyperparameters were extracted using Bayesian optimization
technique. The objective function was determined by the
classification error, and five parameters (Initial learning rate,
L2 regularization value, optimizer type, and mini batch size,
maximum epochs value) were selected as design variables.
Optimization was repeated 30 times, and the variables
when the error was minimized were selected as the final
hyperparameters of the models. Table I shows the data types,
ranges, and the final values of hyperparameters.

A total of 604 raw experimental data points were collected
from 302 participants, each performing two trials. These data
were randomly divided into training and test datasets in a
50:50 ratio. This process was repeated five times using the
five-fold cross validation technique. Augmentation techniques
were primarily applied to the training dataset, and model
testing utilized only the SOT experimental data [41]. A total
of 2,718 STFT spectrogram transformed data comprising both
four-level augmented (2,416 datasets) and raw experimental
(302 datasets) datasets were used for training of the models.
To address the issue of non-uniform distribution of ES scores
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and encoded classes, we adjusted the weights in the loss
function based on the square root of class frequency [42]. The
weights (w) used in the loss function are as follows:

wc =
1

√
n

where, c and n represent the encoded class number and the
number of samples for that class, respectively. For each cross-
validation, training was carried out by assigning different
weight values based on the number of each class in the
training set. Classes estimated in our proposed model and
those converted to ESs measured via computerized dynamic
posturography devices were evaluated comparatively using a
confusion matrix. Matlab software (Ver. 2020b, MathWorks
Inc., Natick, MA, USA) was used for training, validation,
testing, and optimization of CNN models with a processor
of RTX2080Ti GPU with 4352 CUDA cores, 1665 MHz base
clock speed, and 11 GB RAM.

C. Performance Measures
Accuracy and f-1 score parameters were used to compare

CNN without output encoding models (GoogleNet, ResNet-18,
SqueezeNet, and VGG16 architectures). Additionally, absolute
difference between actual ES values from SOT protocol and
the values predicted from CNN without output encoding
models was employed. Afterwards, the CNN architecture with
the highest performance based on f-1 score was selected. The
confusion matrices were derived from each encoding model
applying the selected CNN architecture, and performance
comparison was conducted using absolute difference between
actual ES value and the decoded ES values predicted by
the encoding models. The decoding values were set to the
midpoint of the predicted encoding model class. For instance,
in 10 sub-classes, the predicted ES values for the 1st through
5th classes would be set to 5, 15, 25, 35, and 45 scores,
respectively. Finally, the sensory contributions calculated from
the measured ES and estimated from the model were compared
using a paired t-test. The Statistical Package for the Social
Sciences was employed for all statistics (SPSS, v.18.0.0), and
the significance level was set at p<0.05.

V. RESULT

A. Model Input
Fig. 5 presents anterior/posterior COP and medial/lateral

displacement under six SOT conditions. Representative test
results of a normal person showed varying displacement pat-
terns under each condition. In addition, both anterior/posterior
and medial/lateral directions showed the magnitude and
fluctuation of displacement, which were increased under
conditions #4-#6 than in conditions #1-#3.

A representative spectrogram of anterior/posterior direction
of COP time series data for each group (normal, Meniere’s
disease, and vestibular neuritis) is presented in Fig. 6. Based
on low-pass filter cut-off frequency, the concentrated power
spectral density shown in frequency bands was smaller
than 5 Hz. In all groups, the increase in power spectral
density was less than approximately 3 Hz when the conditions
increased from 1 to 5 or 6. Based on group, the power

Fig. 5. The anterior/posterior and medial/lateral center of pressure
(COP) displacement in the six conditions used for the sensory
organization test.

Fig. 6. A representative spectrogram in the anterior/posterior direction
of COP trajectory based on SOT involving normal controls, and patients
with Meniere’s disease and vestibular neuritis.

spectral densities of patients with Meniere’s disease and
vestibular neuritis were higher than those of the normal group.
In particular, the difference was significant under conditions
#4-#6 (perturbation of somatosensory system). However, there
was no significant difference in power spectrum density value
or distribution by disease (Meniere’s disease vs. vestibular
neuritis).

B. Performance of CNN Model Architectures

The GoogleNet, ResNet-18, SqueezeNet and VGG16 CNN
architectures were trained within a total of 25 epochs. The
validation accuracy in all four CNN architectures increased
and the loss decreased as the epoch increased (Fig. 7).
Specifically, the ResNet-18 model demonstrated a clear trend
of markedly improving accuracy and decreasing loss at the
initial training stage. It reached a steady state with almost
no change in value until saturation. Additionally, the ResNet-
18 showed the highest accuracy in epoch 25, followed
by VGG16, SqueezeNet, and GooggleNet with the lowest
validation accuracy.

The scatter plots used to evaluate the performance of
the CNN model with four architectures are presented in
Fig. 8. The representative comparison between the measured
and predicted ES values in SOT condition #5 is displayed.
Each predicted value was normalized to a percentage and
displayed in intense blue color. Compared with GoogleNet
and SqueezeNet, the blue intensity of the diagonal elements
was stronger in the ResNet-18 and VGG16 architectures, and



1298 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 32, 2024

Fig. 7. Validation accuracy and loss in GoogleNet, ResNet-18,
SqueezeNet, and VGG16 architectures of CNN models.

Fig. 8. Representative scatter plot using GoogleNet, ResNet-18,
SqueezeNet, and VGG16 architectures of CNN models (Examples of
cross-validation #4 and SOT condition #5).

Fig. 9. Performance measures of GoogleNet, ResNet-18, SqueezeNet,
and VGG16 architectures in CNN models.

the misclassification excluding the diagonal elements showed
a relatively small distribution.

Fig. 9 presents the performance index of each architecture
of the CNN model calculated via 5-fold cross-validation. The
ResNet-18 model showed the highest indicators except for
specificity with accuracy (76.0 ± 1.0%) and F-1 score (76.0 ±

1.1%). Comparing the ES measured in SOT with the predicted
ES based on CNN models, the ResNet-18 score of about
2.9 ± 1.3 was better than that of GoogleNet (5.9 ± 2.8),
SqueezeNet (6.3 ± 2.8), and VGG16 (4.7 ± 3.5). Therefore,
the performances of ResNet-18 in the CNN model were the
best among the four different architectures.

Fig. 10. Confusion matrix for predicted ESs of condition #2 to #6 using
the ResNet-18 CNN model with (A) 5 sub-classes, (B) 10 sub-classes,
(C) 20 sub-classes, and (D) 50 sub-classes encoded output.

Fig. 11. Effect of different sub-classes encoded output on the
performance of ResNet-18 CNN model.

C. Effects of Output Encoding on CNN Model
Performance

The encoded label in conditions #2-#6 using power spectral
density of COP trajectories in condition #1 was evaluated
using the confusion matrix. Fig. 10 (A) to (D) display the
confusion matrices of ResNet-18 CNN model composed of 5,
10, 20, and 50 sub-classes encoded using ES 100 points. The
average f-1 scores for models with 5, 10, 20, and 50 sub-
classes were 84, 92, 97, and 93%, respectively. The blue
intensity of diagonal elements in confusion matrices of models
was prominent in all conditions except condition #2 of the
model with 5 sub-classes encoded output. The f-1 score of
the model composed of the encoded 20 sub-classes for each
condition ranges between 95 and 98%, and the highest f-1
score was in condition #2 (Fig. 10 (C)). Also, the distribution
of estimation labels deviating from the true label tended to
increase in conditions #2 to #6. However, the blue intensity
of diagonal elements in confusion matrix appeared to be
prominent in all conditions, indicating satisfactory testing of
the training model.

Fig. 11 shows the absolute difference values of the
ResNet-18 model composed of the output extracted by
encoding 100 ES points into 5, 10, 20, and 50 sub-classes.
Overall, the estimation error (the absolute difference in the
ESs measured with SOT and predicted by CNN models)
in condition 2 was the lowest with 2.2 ± 0.8, and the
errors in conditions #4, #5, and #6 were similar to the mean
3.3, 3.5, and 3.5, respectively. In addition, the ResNet-18
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TABLE II
ABSOLUTE DIFFERENCE BETWEEN ESS MEASURED WITH SOT IN

COMPUTERIZED DYNAMIC POSTUROGRAPHY AND PREDICTED

WITH THE DEEP LEARNING MODEL

Fig. 12. The contribution of each sensory system is calculated as a
sensory analysis score using measured and predicted ESs from our
proposed model.

model estimated by encoding 20 sub-classes yields the lowest
absolute difference values in all conditions compared with
those of the model with 5, 10, and 50 sub-classes. In the
conditions ranging from #4 to #6, the absolute difference
values in estimation decreased as the number of sub-classes
increased. The values reached a minimum in the model with
20 sub-classes, followed by an increase.

Table II lists the absolute differences between the measured
ES and the estimated ES for each patient group. Overall
absolute error was between 1.1 and 2.2. The error tended to
increase for conditions #2 to #5 and #6. However, absolute
errors were found to be similar across groups (normal, 1.7;
Meniere’s disease, 1.7; and vestibular neuritis, 1.6).

Results of calculating capabilities of each sensory system
using measured and estimated ESs from the model are
presented in Fig. 12. The measured values of overall data
were 96 ± 5.7, 83.4 ± 11.4, 63.4 ± 14.3, and 94.2
± 7.9 for somatosensory system, visual system, vestibular
system, and visual preference, respectively. The error of each
sensory system performance using the estimated ES values
in the model were around 1% on average without showing
statistically significant difference between the two groups for
each sensory system (p > 0.05).

VI. DISCUSSION

The specific frequency band of the COP signal measured
in the standing posture has been found to be closely related
to sensory inputs for postural stability. In this study, a deep
learning model was proposed to estimate the contribution of
sensory input signals for visual, vestibular, and somatosensory
systems and visual preference using the power spectrum

density information of the COP signal. In particular, a novel
strategy was suggested to encode the output of the training
model into sub-classes by compression, leading to improved
performance. The results of this study could contribute to the
simplification of medical device complexity and reduction of
processing time for the diagnosis of dizziness, contributing to
the universalization of the diagnosis and rehabilitation.

Meniere’s disease and vestibular neuritis are the most
common peripheral vestibular disorders along with benign
paroxysmal positional vertigo. Meniere’s disease is known
to be caused by endolymphatic hydrops of the inner ear.
Clinically, vertigo attacks occur due to vestibular excitation,
and persistent condition results in vestibular dysfunction.
Vestibular dysfunction in Meniere’s disease has been reported
in various ways over a long period of time (35∼50%
decrement over 5 to 10 years) [43]. Vestibular neuritis is a
disease characterized by acute unilateral loss of vestibular
function. Viral infection, and vascular and immunological
factors are thought to be the cause of this disease. In most
cases of vestibular neuritis, severe vestibular dysfunction
occurs in the acute phase, with varying manifestations, such as
continued decline in vestibular function, partial improvement,
or complete recovery during the recovery phase [43]. The deep
learning algorithm in this study can be used to estimate the
contributions of vision, vestibular, and somatosensory systems
and visual preference in postural control. Specifically, our
model provides robust training by using three different types
of patient data (normal control vs. Meniere’s disease vs.
vestibular neuritis groups).

During SOT, frequency power spectral densities of COP
signals in patients with vestibular disorders (Meniere’s and
vestibular neuritis) differed from those of the normal group
(Fig. 6). In the normal group, the more difficult the condition,
the greater the density in the low frequency band and the more
sway compared with condition #1 as the remaining sensory
system must be controlled when the visual or somatosensory
system was eliminated or disturbed (Fig. 5). This result was
consistent with previous studies showing a larger power
spectrum under increasingly difficult SOT conditions [38].
This also corresponded to a previous study showing that
perturbed sensory systems increased the energy usage by
the rest of sensory system to maintain a balanced posture
control [13]. Even in patients with Meniere’s disease and
vestibular neuritis, the more difficult the condition, the greater
the power density in the low frequency band. Compared with
the normal group, the power density was more concentrated
in conditions #4-#6 than in conditions #1-#2, indicating that
the vestibular system did not adequately contribute to posture
control. SOT test conditions #4-#6 required control of visual
and vestibular systems or only the vestibular system due to
abnormal somatosensory system. In particular, condition #5
and #6 required an important role of the vestibular system
because elimination or disruption of the visual system (Fig. 2)
resulted in concentrated power density in the low frequency
band.

The structure of the proposed prediction model in this
work differed from that of a general machine learning model.
CNN models are deep learning networks generally used
in other studies. However, the application of classifiers by
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coding/decoding outputs was new in our study. The ES value
used to estimate in this work yielded scores ranging between
1 and 100. Thus, a classifier or regression for the last layer
of deep learning was needed. Classifier is typically used to
determine the type or presence of output [33]. For a regressor,
it is mainly used to estimate time series data [44], [45].
Correctly classifying 100 ES classes can be very challenging.
Therefore, in this work, a novel architecture was proposed to
improve performance by encoding the 100-point ES in units
of 2, 5, 10, and 20 points, and the final five-point interval
had the highest performance (Fig. 10 & 11). Of course, the
five-point interval encoding has an inherent error of up to
two points within the class. However, reducing the number
of classes dramatically improved the model’s performance.
As a result of the training, the final ES estimation error was
1.1 - 2.2, similar to the maximum error of two points in the
class, meaning that the performance of the trained model was
maximized. Based on the trial-and-error results in this study,
it is evident that a study to optimize the number of classes
through manifolding or clustering will be necessary.

This study has several limitations. First, only data of patients
with peripheral vertigo (Meniere’s disease and vestibular
neuritis) were used in the training model to develop a new
method for the evaluation of sensory system. In addition
to diseases investigated in this study, other diseases also
show vertigo seizures, such as benign paraplegia [46] and
delayed lymphoma [47]. However, this work proposed a
new protocol and a deep learning model for diagnosis of
sensory system performance contributing to posture control.
In the future, various diseases associated with dizziness
should be included to enhance the model value. The training
was limited by the sensory system evaluation based on ES
values of SOT. In fact, ES was the result of normalizing
the maximum front/posterior sway based on experimental
data suggesting the anterior/posterior human sway within
12.5◦. Therefore, we only utilized the point-in-time data
where maximum/minimum values occurred. Thus, there was
a limitation in that we could not represent all maximum
before/after sway values that differed from person to person.
In the future, analysis of additional parameters such as PSI
index [48] and entropy [49] is needed to further validate
the proposed protocol. Finally, there are limitations on the
aspect of deep learning models. Despite utilizing Bayesian
optimization techniques for hyperparameter tuning, there
are constraints such as high computational costs and the
early restriction of the acquisition function, which may lead
to overlooking important features [50]. Additionally, only
limited deep learning architectures (GoogleNet, ResNet-18,
SqueezeNet and VGG16) were employed in this study. Due
to the rapid advancements in the field of machine learning,
recent powerful deep learning architectures such as attention-
56 are being introduced. In the future, it is essential to conduct
studies aimed at maximizing performance by leveraging state-
of-the-art deep learning models and robustly validating them
using external datasets.

In this work, we proposed a novel protocol to evaluate
the capability of the human sensory system contributing to
posture control using human COP signals in a standing posture
alone. We constructed CNN model with power spectrum

density as input and ES value extracted from SOT as output
through frequency transform of COP signals. Four different
types of CNN backbone architecture including GoogleNet,
ResNet-18, SqueezeNet, and VGG16 were used in this study.
Additionally, the 100 original output classes (1 to 100 ESs)
were encoded into 50, 20, 10 and 5 sub-classes to improve
the performance of the prediction model. As results, absolute
difference between the measured and predicted ES ranged
between 1.1 and 2.2 (ResNet-18 with encoding of 20 sub-
classes model), resulting in an error of approximately 1.0%.
The results suggest that the sensory system contribution of
patients with dizziness can be quantitatively assessed using
only the COP signal from a single test of standing posture.
This study has potential to reduce balance testing time (spent
on six conditions with three trials each in sensory organization
test) and the size of computerized dynamic posturography
(movable visual surround and force plate), leading to further
widespread utilization of balance assessment strategies.
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