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Abstract— Measuring causal brain network is a sig-
nificant topic for exploring complex brain functions.
While various data-driven algorithms have been proposed,
they still have some drawbacks such as ignoring time
non-separability, cumbersome parameter settings, and
poor robustness. To solve these deficiencies, we devel-
oped a novel framework: “time-shift permutation cross-
mapping, TPCM,” integrating steps of: (1) delayed improved
phase-space reconstruction (DIPSR), (2) rank transforma-
tion of embedding vectors’ distances, (3) cross-mapping
with a fitting estimation, and (4) causality quantification
using multi-delays. Based on the synthetic models and
comparison with baseline methods, numerical validation
results demonstrate that TPCM significantly improves the
robustness for data length with or without noise inter-
ference, and achieves the best quantification accuracy
in detecting time delay and coupling strength, with the
highest determination coefficient (R2

= 0.96) of fitting
verse coupling parameters. The developed TPCM was
finally applied to ictal electrocorticogram (ECoG) analysis
of patients with drug-resistant epilepsy (DRE). A total of
17 patients with DRE were included into the retrospec-
tive study. For 8 patients undergoing successful surgeries,
the causal coupling strength (0.58 ± 0.20) within epilep-
togenic zone network is significantly higher than those
suffering failed surgeries (0.38 ± 0.16) with P < 0.001
through Mann-Whitney-U-test. Therefore, the epileptic brain
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network measured by TPCM is a credible biomarker for
predicting surgical outcomes. These findings addition-
ally confirm TPCM’s superior performance and promising
potential to advance precision medicine for neurological
disorders.

Index Terms— Causal brain network, robustness, quan-
tification accuracy, ictal electrocorticogram (ECoG), epilep-
togenic zone, surgical outcome.

I. INTRODUCTION

A. Background

CAUSAL interaction is a fundamental problem in natural
sciences, engineering, and socioeconomic systems [1],

[2], [3], [4], [5]. Herein, the detailed dynamics of complex
systems are usually unknown, while only their generated time
series are observable. Correctly identifying causal interac-
tions among these variables is indispensable, as it provides
quantitative insights to study the internal dynamics of a
target system [6], [7]. In neuroscience, specifically, assessing
directed connectivity and constructing topological causality
mapping of the brain network are crucial for exploring brain
function [8], [9], [10]. Causality coupling analysis has been
successfully applied in brain disease classification, pathologi-
cal mechanism investigation, precise diagnosis, and treatment,
etc. [11], [12], [13], [14], [15], [16]. The Granger causality
(GC) is currently the most successful technology, providing
a data-driven framework to compute causality based on their
predictability relationship [17]. The basic GC is a bivariate
measure through an autoregressive model, with some later
variants extending to multivariate systems using multivariate
autoregressive models (MVAR) and proposing conditional
Granger causality (cGC) algorithm [18], [19], [20]. Transfer
entropy (TE) is another development in nonlinear causality
estimation by calculating conditional mutual information dif-
ferences [21]. Together, TE and its variants, partial transfer
entropy (pTE), symbolic transfer entropy (STE), frequency
domain transfer spectral entropy, etc., facilitate nonlinear
causal discovery among variables [20], [22], [23], [24]. How-
ever, all these methods, GC, TE, and their variants, are
based on the assumption of independent separation of sys-
tem variables and lead to inevitable information loss in the
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computation process. In realistic coupling systems, time-non-
separability (TNS) is prevalent among system variables [7],
[25], [26].

By introducing nonlinear attractor reconstruction, conver-
gent cross-mapping (CCM) has been recently developed
and implemented for causality estimation in non-separable
dynamic systems [7]. Nowadays, CCM-inspired techniques
have gained widespread attention in many fields [25], [27],
[28], [29], [30], [31]. For example, it has been used to
analyze functional connectivity during the resting state for
discovering default brain networks [32]. Brain-heart inter-
actions are also detected by CCM measure, exploring how
the human’s cardiovascular system is coupled with the
central nervous system [28]. CCM is further applied to
explore the underlying pathological mechanisms of certain
neurological disorders, facilitating their precision medicine
approaches [29], [30], [31].

B. Problems Statement
TNS is invited by Takens’s embedding theory, which reveals

that in a deterministic nonlinear dynamic system, the infor-
mation of the entire dynamic system could be generally
embedded into only one single variable and thus could be
reconstructed by the observation data of that variable [7], [26].
When predicting the dynamic system, removing some vari-
ables’ information from others is usually impossible [26]. For
example, the human brain is an extremely complex networked
dynamics system, where the activities of neuronal popula-
tions are closely interconnected, including physical synaptic
connections and functional coupling (in fact, the intrinsic
laws are still poorly understood), which together constitute a
complex, sophisticated brain function characterized by typical
non-separability. TNS indicates that in such a complex system,
the effect variable is unlikely to be fully separated from the
cause variables; otherwise, it will lead to a failed estima-
tion [30], [33], [34], [35]. All traditional measures, including
GC-, TE-based algorithms ignore TNS premise, leading to
failed quantification. They follow the premise of separation
of variables: variable X is regarded as cause effect on Y if
the predictability of Y declines when X is removed from the
universe of all possible causative variables [7]. The rigorous
concept of TNS can also be found in [26].

Herein, we give a numerical example to illustrate it. Con-
sider a typical 2-species logistic coupling model [7]:{

x (t + 1) = x (t)
[
3.78 − 3.78x (t) − C ∗ y (t)

]
y (t + 1) = y (t)

[
3.77 − 3.77y (t) − 0 ∗ x (t)

] (1)

where C is the coupling coefficient, and an explicit causality
Y → X is defined. The TE and GC results are represented in
Fig. 1. Moreover, significance tests are performed to determine
the existence of a causal relationship between variables [8],
[23], [36]. Herein, we computed the 100 surrogate causalities
Y ′

→ X , where Y ′ is surrogate series of Y after random
disordering [37], [38]. When data length is 1000, for GC and
TE calculation, there are no significantly difference between
raw causality Y → X and 100 surrogate causalities Y ′

→ X ,
thus they fail to identify the true causality. In TE and GC

Fig. 1. Numerical examples of failed estimation in time non-separability
system using TE and GC method. The error bars indicate the standard
deviation of every 100 calculations by randomizing the initial value.

calculation, X and Y are considered as two mutually separated
variables, and Y is removed from the set of hypothetical causal
variables without reducing Xs predictability; therefore, they
generate an incorrect estimation: Y does not cause X .

CCM starts with phase space reconstruction (PSR) from
Taken’s embedding theorem. For a multivariate complex sys-
tem, each variable’s embedding dimension and delay need to
be considered simultaneously, and comprehensively to charac-
terize system dynamics more accurately with low redundancy.
Considering a time series X = x (t) , t ∈ [1, L], the corre-
sponding reconstruction manifold MX is constructed as:

MX =

[
Xm,δ

1 , . . . , Xm,δ
i , . . . , Xm,δ

L−(m−1)δ

]T
(2)

where Xm,δ
i = {x (i) , x (i + δ) , . . . , x (i + (m − 1) δ)} is with

an embedding dimension of m and a delay coefficient of
δ. Various methods are used to determine parameters m
and δ, however they often yield different results, leading to
instable causality results. And the process of determining the
parameters is also tedious and time-consuming. These short-
comings regarding the parameter settings inspired our study
to introduce a novel parameter-free phase space reconstruction
method.

Referring to CCM, based on the reconstruction manifold
MX and MY , a cross-mapped estimate of Y (t), denoted by
Ŷ (t) |MX is generated to compute causality coupling from
X to Y . It introduces exponentially weighted distances from
nearby points on a manifold MX by false nearest neighbors
(FNNs) estimation. However, CCM leads to poor robustness
because short series cannot produce a refined prediction
Ŷ (t) |MX by FNNs information. Consider the system modeled
by Eq. (1) with data length ranging from L = 200 to
L = 4000 samples. As the L increases, the CCM results
grow up from around 0.22 to 0.8. It implies that for the same
dynamics system, the observed series’s length can lead to large
differences in causal quantification and even false estimates.
Meanwhile, the distributions of observed raw series Y and
predicted series Ŷ |MX by cross-mapping between manifolds
when data length L = 200 and L = 4000 are represented in
Fig. 2. Obviously, the CCM results of short and long series
vary greatly, and short series lead to unrefined cross-prediction
due to the lack of state space information via FNNs.

In conclusion, data-driven causality measures still face the
following limits: (1) traditional GC, TE, and their variants lead
to poor effectiveness ignoring the TNS properties of complex
systems; (2) recent CCM-inspired measures still suffer from
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Fig. 2. Numerical examples of the CCM method indicate the poor
robustness; The error bars in the graph indicate the standard deviation
of 100 calculations.

the limits of cumbersome parameter setting, poor robustness,
and poor effectiveness in detecting coupling strength and time
delay.

C. Contributions and Structure of This Study
Finally, we apply the TPCM method to a real-world neuro-

electrophysiological dataset. As a retrospective study, 17 DRE
patients with totally 55 seizures were included. 8 patients
underwent successful surgeries, while other 9 patients under-
went failed surgeries. Based on the TPCM calculation and
statistical analysis, we examined multi-frequency ECoG, and
characterized the causal coupling dynamics in the epileptic
brain network involving surgical outcomes. Meanwhile, a com-
parative study with other baseline methods is also included.
The specific contributions of this study can be summarized as
follows.

(1) We introduced a novel causality algorithm,
called“TPCM”. It is a parameter-free measure that eliminates
the time-consuming and inconsistent parameter settings,
meanwhile maintaining excellent quantification accuracy.

(2) TPCM also achieves the best quantification robustness.
It proposes incorporating the normalized rank ordering of
pairwise distances in two manifolds instead of the traditional
FNNs prediction [39], [40].

(3) TPCM method was also applied to analyze DRE’s ECoG
brain network. It subsequently can be found that the causal
coupling within EZs were closely related to the surgical out-
comes, which were expected to be a more favorable biomarker
for predicting surgical outcomes of DRE.

The remainder of this paper is structured as follows.
Section II explains the proposed TPCM. Section III introduces
synthetic datasets used for validation experiments. Section IV
presents the numerical experiment results. Section V gives
TPCM’s pilot application on the ECoG analysis. Finally,
Section VI discusses and concludes this study.

II. METHOD

Inspired by a recent study about an embedding method,
we introduce a novel parameter-free algorithm to generate
a delayed attractor manifold in this study. Considering a
dynamics system with time series X = x (t) , Y = y (t) , t ∈

[1, L]. To estimate the causality X → Y , set the time delay
as τ . The delayed sub-series are generated as:{

X τ
= x (t1) , t1 ∈ [1, L − τ ]

Y τ
= y (t2) , t2 ∈ [τ, L]

(3)

Based on the delayed sub-series X τ , the attractor manifold
Mτ

X of variate X is generated as follows. The corresponding
embedding vectors are calculated with constant embedding
parameters δ = 1 and m = 2:

Mτ
X =

[
Xm,δ

1 , . . . , Xm,δ
i , . . . , Xm,δ

L−τ−(m−1)δ

]T

=


x (1) x (2)

x (2)
...

x (L − τ − 1)

x (3)
...

x (L − τ)

 (4)

where Xm,δ
i = {x (i) , x (i + δ) , . . . , x (i + (m − 1) δ)}

Then the covariance matrix C can be obtained as:

C = (Mτ
X )

T Mτ
X (5)

C has been performed eigendecomposition as:

C = 838T (6)

where 8 is a square matrix with each column being eigenvec-
tors, 3 is a diagonal matrix with the diagonal elements being
the eigenvalues. Finally, project Mτ

X to its principal directions
and obtain the final attractor manifold:

M̃τ
X = Mτ

X × 8 (7)

where M̃τ
X =

[
X ′

1, . . . , X ′

i , . . . , X ′

L−τ−1
]T .

The above steps, Eq. (4) ∼ (7), consider the time delay
effect in causal coupling. They do not require the choice of
embedding parameters, avoiding the tedious process of param-
eter selection and quantification bias resulting from different
embedding parameter settings. The above process is termed
“delayed improved phase-space reconstruction (DIPSR)”. The
series Y = y(t) can also be processed by DIPSR to obtain the
attractor manifold: M̃τ

Y =
[
Y ′

1, . . . , Y ′

i , . . . , Y ′

L−τ−1
]T .

Then we calculate pairwise Euclidean distances between all
the points in the delayed attractor manifold M̃τ

X and M̃τ
Y : EXτ (i, j) = dist

(
X ′

i , X ′

j

)
EY τ (i, j) = dist

(
Y ′

i , Y ′

j

) (8)

Sparsify the distance matrices EXτ and EY τ , remove each
distance matrix’s trivial elements surrounding the central diag-
onal, and then the pairwise Euclidean distances are retained:{

EXτ = U pper T riangular (EXτ , k)

EY τ = U pper T riangular (EY τ , k)
(9)

where U pper T riangular is the upper triangular matrix, k
is the first diagonal meets that std (EXτ (k)) ≥ std (EXτ ) or
std (EY τ (k)) ≥ std (EY τ ).

Sort the remained distances EXτ and EY τ in ascending order
and obtain the index ranks, IXτ and IY τ . Then, normalize these
retained distances to range (0,1] by the corresponding ranks:{

RXτ = R (IXτ )

RY τ = R (IY τ )
(10)

where R =
[
1 : length (I )

] /
length (I ). Get the

cross-mapping of normalized ranks by other variables,
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Fig. 3. Flowchart of the proposed TPCM algorithm.

which has been proven a more reliable indicator of manifold
structure [40]: {

RXτ →Y τ = RXτ (IY τ )

RY τ →Xτ = RY τ (IXτ )
(11)

Obtain the square error (SE) between the true ranks and
cross-sorted ranks:

SE (RXτ →Y τ ) = (R − RXτ →Y τ )2 (12)

where R ≤ T , T is an adaptive threshold that meets:
T = 0.01 × max

[
std(Y τ ′)
std(Y τ )

,
std(Y τ ′)
std(Y τ )

]
. Where, Y τ ′ is the first

derivative.
Normalize the square error SE (RXτ →Y τ ) by the expected

error of randomly distributed ranks: N SE (RXτ →Y τ ) =
Null−SE(RXτ →Y τ )

Null , where uncorrelated ranks are defined as
Null (R) = R2

− R +
1
3 . To create a smoother estimate of

asymmetric divergence between the manifolds, compute the
cumulative average of N SE (RXτ →Y τ ) as

[N SE (RXτ →Y τ )] (R) =

∑
N SE (RXτ →Y τ ) (r)∑

r
(13)

Finally, by fitting the polynomial function
[N SE (RXτ →Y τ )], the TPCM causality quantification

with time delay τ is obtained by y-intercept of fitting
function:

T PC Mτ (X → Y ) = f[N SE(RXτ →Y τ )] (0) (14)

This y-axis intercept quantifies the causal coupling strength
because it captures the behavior of the error function
[N SE (RXτ →Y τ )] when distance reaches minimal, revealing
the topology for testing the smooth estimation of asymmetric
divergence between two manifolds. A series of time delays are
set as {τ1, τ2, . . . τi , . . . τmax } and the corresponding delayed
causality results are computed as: T PC Mτi (X → Y ). Based
on the findings of existing studies, in data-driven causality
estimation, when the delay τi is equal to the true delay of a
coupled system, the corresponding calculated causality result
will reach maximum. Therefore, in this study, when the TPCM
curve reaches an extremum value point, the delay index at this
point is the system’s true delay. The final causality X → Y
can also be obtained:

T PC M (X → Y ) = max
{
T PC Mτi (X → Y )

}
(15)

Flowchart of the proposed TPCM is shown in Fig. 3.

III. NUMERICAL EXPERIMENT

To verify the TPCM’s performances, we carried out a
series of numerical experiments. All operation codes run on a
PC with Intel Core i5-9400F @ 2.9 GHz, 24.0 GB RAM,
Windows 10 operating system, and Matlab R2020a (The
MathWorks Inc.).

The first synthetic dataset (1) in numerical experiments is a
discrete-time multivariate logistic coupling model [34], [41],
[42]:

x (t + 1) = x (t)
[
rx − rx x (t) − βx,y y (t − τ1)

]
+ εX

y (t + 1) = y (t)
[
ry − ry y (t) − βy,x x (t − τ2)

]
+ εY

z (t + 1) = z (t)
[
rz − rzz (t) − βz,y y (t − τ3)

]
+ εZ

(16)

where rx = 3.78, ry = 3.77, rz = 3.75, βx,y , βy,x and
βz,y are coupling parameters controlling causal connection
strength. εX , εY and εZ are zero-mean white Gaussian noise,
and their standard deviation σ will be referred to as the
system’s noise level. The system noise in either variable in Eq.
(16) propagates to later values of the variable and to another
variable through coupling terms. τ1, τ2 and τ3 are intrinsic
time delays.

The second synthetic dataset (2) is a nonlinear
strongly-coupled dynamics system, modeled as [8] and
[37]:

x (t + 1) = 3.4x (t)
(

1 − x2 (t)
)

e−x2(t)
+ εX

y (t + 1) = 3.4y (t)
(

1 − y2 (t)
)

e−y2(t)
+ C1 y (t − τ1) x (t)

+εY

z (t + 1) = 3.4z (t)
(

1 − z2 (t)
)

e−z2(t)
+ C2z (t − τ2) y (t)

+εY
(17)
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Fig. 4. (a) Example time series of dataset (1) ∼ (2), and (b) validation
schemes based on the baseline methods, CCM, CCMdelay, TE, pTE,
GC, cGC. Note that, in each simulation, 100 implementations for each
specific condition are performed by randomizing the model’s initial
values to avoid chance errors.

where εX , εY and εZ are white Gaussian noise. This exam-
ple is an appropriate simulation model for evaluating the
causality measures containing nonlinear relationships. It is
obvious that causality coupling X → Y , Y → Z are
nonlinear connections. In Eq. (17), the parameter C1 and C2
indicate the coupling strength. Example time series of dataset
(1) ∼ (2) and the detailed experiment schemes are repre-
sented in Fig. 4. Moreover, for baseline methods involving
phase space reconstruction (i.e., CCM, TE and pTE), their
embedding parameters are uniformly determined by the Cao
method [43], [44].

IV. NUMERICAL RESULTS

A. Numerical Experiment Results of Dataset (1)
Based on dataset (1), we first test the TPCM’s robustness

for data length. We considered two coupling scenarios, uni-
directional and bidirectional causality connections, and then
performed 100 implementations by randomizing the model’s
initial values at each data length condition. The results cal-
culated by the baseline methods and developed TPCM are
shown in Fig. 5. In addition, we also computed the surrogate
causality X ′

→ Y and Y ′
→ X , where X ′ is surrogate

data after randomly disordering the raw series X . The TPCM
results present the best robustness and highest stability from
short to long series. In contrast, traditional methods show
poor robustness and high relative variation, meaning that these
methods require sufficiently long time series when quantifying
causality, otherwise leading to misleading results. TE, pTE,
GC and cGC measures cannot effectively detect bidirectional
causality, demonstrating these methods’ failure in nonlinear
non-separability systems.

Fig. 5. Robustness results for data length in causal estimation
using dataset (1). In each validation condition, six methods carry out
100 implementations by randomizing the logistic model’s initial values
and then recording the mean value and standard deviation of the
100 implementation results. The surrogate causalities are also calcu-
lated and labeled as X′

→ Y and Y′
→X.

Fig. 6. Coefficient of variation (CV) of six different methods in estimating
dataset (1), (a) unidirectional causal model, and (b) bidirectional causal
model.

Coefficients of variation (CV) are also calculated for all
results, defined as the mean value of 100 realizations divided
by the standard deviation. CV is an effective index that can
accurately quantify causality estimates’ consistency. The CV
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Fig. 7. Robustness results of different methods interfered by systematic
noise: (a) the causality results of X → Y and (b) the causality results of
Y → X. The error bars in the graph indicate the standard deviation of
100 calculations.

results in Fig. 6 confirm the TPCM’s best robustness showing
the lowest CV in unidirectional causality of X → Y and
bidirectional causality of X ↔ Y .

Noise interference is another important consideration for
causal estimation algorithms. However, previous studies have
not reported the algorithms’ robustness disturbed by system
noise. In this study, the TPCM’s robustness is further explored
by comprehensively considering system noise interference,
using the dataset (1) defined by Eq. (16), where σX =

σY = σZ∈ {0.001, 0.002, 0.003, 0.004, 0.005}. Other numer-
ical experimental settings are detailed Fig. 4.

The causal coupling of each dynamics model is calculated
using different algorithms, and 100 quantification results by
randomizing initial value of each model are obtained sepa-
rately, with the mean ± std as shown in Fig. 7. The results
indicate that as noise’s effect increases, the TPCM results
gradually decrease. For coupling X → Y, when the noise
intensity increases from σ = 0.001 to σ = 0.005, the
average result of the causal quantification TPCM(X → Y)

gradually decreases from 0.85 to 0.68. Similarly, the average
result of TPCM(Y → X) decreases from 0.6 to 0.12. These
findings align with expectation that the noise injected into the
dynamical system disrupts the causally driven structure, and
the noise is more destructive to the weaker coupled system.
Moreover, the TPCM results are consistent for each noise
condition over the entire data length range. For example, for
σX = 0.001, TPCM(X → Y) results always remain near 0.9,
and TPCM(Y → X) results remain near 0.6. In summary, the
developed TPCM method maintains the optimal robustness
under noise interference.

Fig. 8. Time delay detection results of TPCM and CCM methods
in unidirectional and bidirectional logistic models. The shading area
indicates a standard deviation of every 100 realizations.

The last numerical experiment using dataset (1) is time
delay detection in the coupling system. Traditional CCM
algorithm cannot detect time delays, even lead to false esti-
mates. Recently, a time delay version inspired by CCM has
been developed, termed “CCMdelay” herein for a comparative
study.

Based on dataset (1), three typical delayed causality sce-
narios are generated, i.e., unidirectional coupling system,
bidirectional causality with different delays, and bidirectional
causality with the same delay. Other specific settings are set,
as shown in Fig. 4. For comparison purposes, the TPCM and
CCMdelay methods are included in the calculations, and the
results are shown in Fig. 8.

The unidirectional coupling model is set with three delays
τ2 = 2, 4, 6, and the TPCM(X → Y) result curves in Fig. 8
peaked at time points 2, 4, and 6, respectively. Therefore,
TPCM method accurately detected the true coupling delay.
In contrast, the peak point of CCMdelay(X → Y) curves are
lagging the actual delay. Namely, CCMdelay cannot accurately
detect the causality delay. The reasons for this result may
include the existence of autoregressive lag order in raw series,
the estimation error of the simplex projection, etc. For bidi-
rectional model, the TPCM method can also accurately detect
the accurate delays τ1 = 0,τ2 = 2, 4, 6, while the detection
accuracy of CCMdelay is limited, with the results larger than
actual delays. Finally, for the third delayed causality scenario,
TPCM can also accurately detect all delays and guarantee the
quantification accuracy of both causal strengths. In the present
numerical experiments, the causal strength determined by the
coupling coefficient relationship (βyx = 0.08 >βxy = 0.02) is
correctly quantified: T PC M(X → Y ) > T PC M(Y → X).
In summary, TPCM achieves the best performance in delayed
causality detection.

B. Numerical Experiment Results of Dataset (2)
Dataset (2) is a widely used synthetic model to test non-

linear strongly coupled systems verified in TE and GC-based
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TABLE I
PATIENT DEMOGRAPHICS AND CLINICAL INFORMATION

Fig. 9. Robustness results for data length in estimating dataset (2).
In each validation condition, all methods carry out 100 implementations
by randomizing the synthetic model’s initial values.

measures. Herein, we first test the TPCM’s robustness using
dataset (2). The results in Fig. 9 show that the TPCM achieves
the best robustness. TPCM results always remain stable when
series’s length increases from 200 to 4000 samples; mean-
while, it successfully quantifies two different causal strengths,
X → Y,C1 = 0.9 and Y → X,C2 = 0.3.

The CCM, TE, and pTE methods are also able to
detect the correct causality, but these results are less sta-
ble, such as the CCM(X → Y) result curve gradually
increases from about 0.4 to 0.8, and the relative change
rate reaches 0.8−0.4

0.4 ×100% = 100%, TE(X → Y) gradually
rises from 0.06 to 0.28, with a relative change rate of
0.28−0.06

0.06 ×100% = 367%, pTE(X → Y) gradually increases
from 0.02 to 0.135, and the relative change rate of
0.135−0.02

0.02 ×100% = 575%. In addition, for shorter series, such
as for a length of 200, the error bars of the TE(X → Y) and
pTE(X → Y) curves are overlapped with the results of the
random shuffle substitution data TE(X′

→ Y), pTE(X′
→ Y),

with quantification accuracy of 65% and 31% respectively.
Similarly, the pTE method suffers from incorrect estimation
when data lengths below 1000. As for GC and cGC, they
both fail to measure nonlinear causality, showing no signif-
icant difference between surrogate causalities and estimated
causalities.

By varying the coupling parameters of synthetic model,
we further test the TPCM method’s quantification accuracy.
When parameter C1 increases from 0.1 to 0.9 with a step
of 0.1, the causality results are calculated by TPCM and
other baseline methods. Theoretically, the causality results will
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Fig. 10. Estimated causality results using six different methods. The
solid curves are mean values with error bars versus different param-
eters C1 ∈ [0.1,0.9], and dashed lines indicate the fitted curves. The
coefficients of determination (R2) are also recorded in each figure.

Fig. 11. Delay time detection of dataset (2) with the true delay of τ1 =

3 (first row), τ1 = 4 (second row) and τ1 = 5 (third row) in different
coupling parameters C1 ∈ [0.1,0.9].

rise with increasing parameter C1 linearly. The mean value
of 100 implementations is sketched versus the parameter C1
along with its standard deviation as an error bar. The causality
results against C1 along with the fitted curve are plotted in
Fig. 10. The coefficients of determination (R2) are calculated
to check the fitting, which indicates the precision of coupling
estimation.

It can be found that the TPCM method can accurately
identify causal relationships with an R2 of 0.96, which is
higher than other methods. The coefficients of determination
for the CCM and TE methods were R2

= 0.94 and R2
= 0.95,

respectively, which also confirmed the good quantification
performance of these two methods to some extent. However,
when the coupling parameters are low, i.e., for weaker causal
relationships, all methods except TPCM suffer from false
estimation. As marked by the dashed box in Fig. 10, the
statistical results of CCM(X → Y) and the shuffled causal
estimates CCM(X ′

→ Y) partially overlap, which means that
some of the results of the CCM will be judged as no causality,
i.e., the CCM cannot infer the real existing causal coupling

Fig. 12. Schematic of successful and failed surgeries, and sample ictal
ECoG signals in clinically annotated EZ.

X → Y, and when C = 0.1, the CCM’s causal quantification
accuracy are only 75% and 78% when C = 0.2. Similarly,
when the parameter C = 0.1, the TE method also suffers from
low quantification accuracy. And the GC and cGC methods are
invalid in these nonlinear causal systems. This result is con-
sistent with previous studies [7]. Therefore, in summary, the
developed TPCM achieves the highest quantification accuracy.

Finally, time delays of dataset (2) are set τ1 = 3, 4, 5 to
validate the TPCM’s quantitative accuracy in delayed models.
Fit the coupling parameter C and detected delayed causality
(i.e., the maximum point of the causal coupling curve for each
coupling parameter condition) and calculate the corresponding
R2. The results are shown in Fig. 11. In each C condition,
TPCM can accurately detect both time delay and coupling
strength, while the delays detected by the CCMdelay lag behind
the true delays. In addition, TPCM’s R2 results are 0.93,
0.93 and 0.92, respectively, confirming the TPCM’s optimal
quantification performance in delayed systems.

V. APPLICATION ON ICTAL ECOG ANALYSIS

A. Dataset Description
Epilepsy is one of the most common neurological disorders,

affecting approximately 70 million individuals worldwide.
There is approximately one-third of epilepsy patients who are
resistant to antiepileptic medications [45], called “drug resis-
tant epilepsy (DRE)”. For patients with DRE, neurosurgery
is the most effective treatment. Successful surgery requires
complete removal or disconnection of the epileptogenic zone
(EZ), while current surgical success rates are extremely low.
Only approximately 50% of patients with DRE who undergo
surgery achieve seizure freedom. Surgical failure can lead to
potential consequences such as permanent nerve damage, per-
sistent seizures, etc. Therefore, predicting surgical outcomes
has attracted considerable attention among clinicians.

As shown in Fig. 12, clinically annotated epileptogenic zone
(EZ) is surgically resected, (or thermally ablated). A successful
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surgery entails the complete removal of the actual epilepto-
genic zone, whereas a failed surgical treatment may leave
residual epileptogenic zones. Additionally, the ictal ECoG
signals sampled from areas in contact with the EZ do not
exhibit significant differences. Quantitative analysis of individ-
ual ECoG channels in isolation poses challenges in effectively
advancing precision medicine for DRE [45].

Epilepsy is growingly considered as a network-related dis-
order [45]. Network neuroscience has constituted a more
powerful methodology in precision medicine for DRE [46],
[47], [48], [49]. Causal brain network, defined as the directed
influence (or causal driving effect) that one brain region
or neuron exerts over another [2], has become a useful
quantitative method. Seizure generation is believed to be a
process driven by the epileptic network; thus, understanding
the causal connectivity within epileptogenic zone (EZ, a clini-
cally annotated region which are surgically resected), is crucial
in revealing the triggering mechanism of epileptic seizures
originating. Characterizing causal connectivity in epileptic
network would considerably facilitate accurate prediction of
DRE surgical outcomes.

In this paper, we apply the TPCM method to a retrospective
study on ECoG epileptic network. A public dataset [45],
totally 17 DRE patients from two clinical centers with
55 seizures, were included in this retrospective cohort study.
During ECoG detection, each DRE patient will have a number
of seizures, usually lasting tens of seconds to several minutes.
For the 8 successful surgeries, there are 29 seizures were
recorded by ECoG. For the 9 failed surgeries, there are totally
26 seizures.

At all centers, data were recorded using Nihon Kohden
or Natus acquisition system with a typical sampling rate
of 1000 Hz. For each patient, the clinically annotated EZ is
defined as the anatomical area to be treated (i.e., resected).
Surgical outcomes were classified by epileptologists using the
Engel Surgical Outcome Scale classification system. Success-
ful surgical outcomes are defined as free of disabling seizures
(Engel class E I) and failed outcomes as not free of disabling
seizures (Engel classes, E II ∼ E IV) at 12+ months post-
operation. Furthermore, the number of seizures per patient
varies from 1 to 6. The detailed demographics and clinical
information are listed in Tab. I.

For each ECoG recording, we uniformly intercepted the 10s
onset signal for the brain network analysis. Before estimating
the causal connectivity, the intercepted ECoG was bandpass
filtered between 0.5 and 300 Hz with a fourth-order Butter-
worth filter, and notch filtered at 60 Hz and its harmonics
with a stopband of 2 Hz. In addition, ECoG channels deemed
‘bad contacts’ (e.g., broken or excessively noisy or artifactual)
by the clinicians were discarded. Then we computed TPCM
results of ECoG recordings within epileptogenic zone, includ-
ing different frequency bands: δ (0.5 ∼ 4 Hz), θ (4 ∼ 8 Hz), α

(8 ∼ 13 Hz), β (13 ∼ 30 Hz), γ (30 ∼ 80 Hz), high frequency
oscillation (HF, >80Hz) and full band (0.5 ∼ 300 Hz).

B. Causal Brain Network Results
Using the TPCM method, we calculated the causal coupling

between each two preprocessed ECoG in the EZ regions.

Fig. 13. The sample results of full-band ECoG (0.5 ∼ 500 Hz) causal
network calculated by the TPCM method. (a) a failed surgery of patient
JH108; (b) a successful surgery of patient Pt2.

To more intuitively present the specific analysis of this study,
we firstly give the full-band ECoG causal network calculated
by our TPCM method for two typical DRE patients, namely
JH108 with failed surgery, and Pt2 with successful surgery.
JH108 have 8 EZ contacts, including rdi1∼rdi4, rsi1∼rsi4,
and Pt2 includes EZ contacts of PST1∼PST4, AST1∼AST2,
MST1∼MST2. It can be found from Fig. 13 that the causal
strength of successful surgery is significantly higher than that
of failed surgery. It provides a preliminary finding of the
difference in EZ brain network between the successful and
failed groups.

Similarly, we analyzed all patients’ causal EZ networks
using the proposed TPCM method, including all frequency
bands ECoG: Full, δ, θ , α, β, γ , HF. All the causal networks
of 17 DRE patients are divided into two groups: the successful
surgery group and the failed surgery group. Corresponding
statistical violin plots are shown in Fig. 14. The statistical P
values are listed in Tab. II. For full frequency band ECoG,
the causal strength of successful surgeries (0.58 ± 0.20) is
significantly higher than that of failed surgeries (0.38 ± 0.16),
and it represents the largest difference, with the smallest
P value of 3.63e-4. For the other ECoG frequency bands,
the statistical strengths of causal network are respectively: δ:
0.62 ± 0.15 Vs. 0.50 ± 0.20; θ : 0.59 ± 0.19 Vs. 0.46 ± 0.23;
α: 0.56 ± 0.22 Vs. 0.41 ± 0.18; β: 0.57 ± 0.23 Vs. 0.43 ±
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Fig. 14. Statistical violin plots of causal EZ networks from all subjects
with 55 seizures. For comparison, in each frequency-band plot, there
are successful surgeries (the left violin plot filled with saturated color)
and failed surgeries (the right violin plot filled with unsaturated color).
The marker “∗” indicates the P value through Mann-Whitney-U-test. ∗:
P < 0.05; ∗∗: P < 0.01; ∗∗∗: P < 0.001.

TABLE II
STATISTICAL RESULTS OF ALL SUBJECTS IN EZ REGIONS

0.21; γ : 0.64 ± 0.19 Vs. 0.44 ± 0.22; HF: 0.61 ± 0.21 Vs.
0.42 ± 0.18.

Other baseline methods, CCM, TE, pTE, GC and cGC were
also applied to calculate the same ECoG recordings. Their
specific analysis is exactly the same as the TPCM results. The
P values obtained by Mann-Whitney-U-test when successful
surgery group Vs. failed surgery group are listed in Tab. II.
By comparison, the TPCM results demonstrate the most sig-
nificant statistical difference, confirming its best performance
in predicting DRE’s surgery outcomes. In addition, the CCM
method achieves a sub-optimum with P = 5.02e − 04.

VI. DISCUSSION AND CONCLUSION

A. Implications for Causal Brain Network Measure
Quantifying causality coupling from observed time series is

a significant topic in studying complex physiology system.
The commonly used methods still suffer from the follow-
ing defects, cumbersome parameter setting, poor robustness,
and accuracy. These limits seriously affect further devel-
opment in study complex physiology system. This study
develops a novel TPCM algorithm to solve those problems and

TABLE III
RUNNING TIMES OF ALL METHODS (SECOND)

improve quantification performances. The four steps, DIPSR,
rank transformation of embedding vectors’ distances, cross-
mapping with a fitting estimation, and multi-delays causality
quantification, together construct TPCM computation. Two
datasets in this paper are widely used in many previous
studies, and are provenly reliable. The baseline methods for
comparable studies are the most mainstream data-driven algo-
rithms at present, including CCM, TE, pTE, GC, cGC, etc.
Synthetic datasets confirm the effectiveness and superiority
of developed TPCM method. In each numerical experiment
condition, we perform 100 calculations by randomizing the
synthetic models’ initial values, and retain the statistical value
(mean±std) of 100 values as the result of one certain exper-
imental condition. Such scheme eliminates accidental errors
and ensuring the reliability of the numeric verification.

In addition, the computation cost is also of interest. In fact,
we aim to achieve the best causal quantification without
significantly increasing the running time. Here we list the
running time of all methods when computing both dataset (1)
and (2) modeled by Eq. (16) and (17). The two datasets are
unified as unidirectional coupling X → Y , with the data length
L of 1000 and 4000 samples, respectively. Other parameters
are set as follows, Eq. (16): βx,y = 0, βy,x = 0.08, τ1 =

τ2 = σ = 0; Eq. (17): τ1 = τ2 = σ = 0, C1 = 0.9, C2 =

0.3. To eliminate chance errors, the calculations are repeated
100 times for each model, and running times are summed up
in the Tab. III. Compared with the methods based on phase
space reconstruction (CCM, TE and pTE), the running time of
TPCM is significantly reduced. Although TPCM takes longer
to run compared to the Granger-based methods, this trade-off
is acceptable given the superior performance of TPCM.

Some potential efforts may be made to promote further
TPCM-related studies. The current study only experimented on
limited datasets (1) ∼ (2). Applying TPCM method to various
synthetic datasets, e.g., coupling Lorenz system [50], neural
mass model [23], [50], etc., is necessary. Meanwhile, more
numerical verification indexes, e.g., sensitivity and specificity
are also suggested. Frequency-domain expansion of traditional
CCM method, termed “FDCCM”, has been shown better
general applicability and resilient to noise in measuring causal
network [30]. In future studies, the frequency-domain TPCM
method will be developed tentatively.

B. Implications for ECoG Epileptic Network
Based on the network neuroscience framework, causal brain

network analysis has demonstrated its advantages in DRE
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research [51], where neurophysiological signals, fMRI, scalp
EEG and iEEG are most frequently analyzed. As for the
DRE study about their surgical outcomes, previous publi-
cations of iEEG analysis did not adequately account for
causal interactions between multiple brain areas, especially
within the clinically annotated EZs closely related to DRE’s
treatment [52], [53], [54], [55], [56]. Systematic analysis of
iEEG causal brain networks in all frequency bands within
EZ regions is warranted, potentially facilitating DRE pre-
cision medicine. In this retrospective study, we established
the DRE’s causal epileptic network involving multi-frequency
ECoG and EZ regions. Quantitative results using the developed
TPCM together with statistical analysis have been performed.
We found that the causal brain network strength in the EZ
regions can clearly distinguish surgical success from failure.
For DRE patients, there represents an anomalous network
dynamic in epileptic focus. For patients with failed surgery,
the resected EZ is only part of or completely not the true
epileptic focus.

Comparing the causal network results of two groups (suc-
cessful and failed surgery), typical frequency-band network,
such as HF, have stable statistical significance, and the EZ
network strength of success group is significantly higher
than that of failure group. To some extent, it also supports
the unique effect of high-frequency oscillations (HFOs) on
identifying epileptic focus. Research on DRE’s HFOs analysis
is currently very manifold [53], [57], [58]. It is worth noting
that the ECoG calculation of the full frequency-band shows the
largest statistical difference, meaning that neuroelectrophysio-
logical activity of each frequency band may be involved in the
triggering mechanism of epileptic seizures. Therefore, the full
frequency-band analysis is more effective than single feature
band (δ, θ , α, β, γ , etc.,).

Finally, future work will recruit more DRE subjects and
may extend to multicenter clinical studies, including more
types of DRE (CC1 ∼ CC4), and other neuroelectrophysiolog-
ical recordings, such as stereoelectroencephalogram (SEEG).
Moreover, the brain network dynamics will be combined with
artificial intelligence techniques to more precisely predicting
surgical outcomes for DRE patients.

C. Conclusion

In conclusion, to improve the data-driven causality
algorithm’s universality, robustness and accuracy, we pro-
pose a novel almost-parameter-free framework, TPCM, under
the premise of time non-separability of complex systems.
Meanwhile, the developed TPCM eliminates the cumber-
some parameter settings and simplifies the computational
process. Numerical experiments using two synthetic datasets
have tested the TPCM’s superior performances. The TPCM
is finally applied to ECoG analysis of patients with DRE.
The EZ network’s causal strength of successful surgeries is
significantly higher than that of failed surgeries with P =

0.00036 through Mann-Whitney-U-test. These findings further
confirm TPCM’s promising potential to advance precision
medicine for neurological disorders.
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