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Within-Session Reliability of fNIRS in
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Abstract— Functional near-infrared spectroscopy
(fNIRS) seems opportune for neurofeedback in robot-
assisted rehabilitation training due to its noninvasive, less
physical restriction, and no electromagnetic disturbance.
Previous research has proved the cross-session reliability
of fNIRS responses to non-motor tasks (e.g., visual stimuli)
and fine-motor tasks (e.g., finger tapping). However, it is
still unknown whether fNIRS responses remain reliable
1) in gross-motor tasks, 2) within a training session, and
3) for different training parameters. Hence, this study
aimed to investigate the within-session reliability of
fNIRS responses to gross-motor tasks for different
training parameters. Ten healthy participants were
recruited to conduct right elbow extension-flexion in
three robot-assisted modes. The Passive mode was
fully motor-actuated, while Active1 and Active2 modes
involved active engagement with different resistance
levels. FNIRS data of three identical runs were used to
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assess the within-session reliability in terms of the map-
(R2) and cluster-wise (Roverlap) spatial reproducibility and
the intraclass correlation (ICC) of temporal features. The
results revealed good spatial reliability (R2 up to 0.69,
Roverlap up to 0.68) at the subject level. Besides, the
within-session temporal reliabilities of Slope, Max/Min,
and Mean were between good and excellent (0.60 < ICC <
0.86). We also found that the within-session reliability was
positively correlated with the intensity of the training mode,
except for the temporal reliability of HbO in Active2 mode.
Overall, our results demonstrated good within-session
reliability of fNIRS responses, suggesting fNIRS as reliable
neurofeedback for constructing closed-loop robot-assisted
rehabilitation systems.

Index Terms— Functional near-infrared spectroscopy
(fNIRS), within-session reliability, robotics, upper-limb
training.

I. INTRODUCTION

NONINVASIVE neuroimaging has great potential to reveal
spatial and temporal changes in neural activity under-

lying stroke rehabilitation [1]. As an established noninvasive
neuroimaging technique, functional near-infrared spectroscopy
(fNIRS) can reflect neural activation by measuring the concen-
tration changes of hemoglobin in target brain areas. Compared
with other modalities, such as functional magnetic resonance
imaging (fMRI), magnetoencephalography (MEG), and elec-
troencephalogram (EEG), fNIRS has the advantages of no
electromagnetic disturbance, less physical restriction, and ease
of use [2], [3]. These unique properties make fNIRS an excel-
lent choice to characterize neural activation in rehabilitation
training [4].

Robot-assisted rehabilitation enables repetitive and inten-
sive practice at a relatively low cost [5], [6], and has been
proven beneficial in improving motor performance in stroke
patients [7]. Closing the robot-assisted training loop with
fNIRS-based neurofeedback can help refine training protocols
in a timely manner, potentially enhancing patient engagement
and improving recovery efficiency [8], [9]. However, there
are three prerequisites for utilizing fNIRS as neurofeedback.
Firstly, fNIRS responses need to be demonstrated as reliable
in gross-motor tasks, such as elbow extension-flexion being
common in rehabilitation training. Secondly, reliable responses
should be captured even within a training session. This allows
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for rapid tuning of robotic parameters, which can be accom-
plished in just a few minutes at the run level. It is worth noting
that a session generally consists of a few runs, thus “within-
session” is essentially “between-runs”. Thirdly, it is crucial
to ensure the reliable of fNIRS responses for different robotic
parameters (e.g., resistance, speed, and trajectory, etc.), so that
these robotic parameters can be adjusted to elicited desired
brain activation during closed-loop training.

Previous studies have extensively investigated the reliabil-
ity of fNIRS responses to visual and auditory stimuli. In
Plichta et al.’s study [10], participants were asked to gaze
at the visual stimuli while hemodynamic responses in visual
cortex were measured using fNIRS. Their results showed good
reliability of fNIRS responses in terms of intraclass correlation
coefficient (ICC) of up to 0.84. Blasi et al. [11] conducted
an experiment to examine the reliability of fNIRS response
to social stimuli, both auditory and visual, in infants. Good
reliability was found at the group level (spatial overlap of
0.94). In addition to external stimuli, researchers also inves-
tigated the reliability of fNIRS responses to fine-motor tasks,
including finger opposing [1], finger tapping [2], [12], [13],
and hand grasping [14], [15]. Their results showed acceptable
reliability of fNIRS responses in fine-motor tasks. In brief,
previous research examining the reliability of fNIRS responses
has mainly focused on non-motor or fine-motor tasks, with
little investigation into gross-motor tasks.

Most existing studies have focused on the cross-session
reliability of fNIRS responses [1], [2], [10], [11], [12],
[14], [16]. For example, Tian et al. [16] conducted a
test-retest experiment to evaluate the cross-session reliabil-
ity of fNIRS responses induced by repetitive transcranial
magnetic stimulation (rTMS). They found moderate-to-high
reliability of both fNIRS amplitudes and spatial activation
patterns between two scan sessions with a two to three-
day interval. Broscheid et al. [17] evaluated the cross-session
reliability of the mean, slope, and area under the curve
for hemodynamic response function (HRF) derived from
oxyhemoglobin (HbO) and deoxyhemoglobin (HbR), report-
ing fair-to-good cross-session reliability of these temporal
features. Zhang et al. [13] reported a good within-session
reliability of fNIRS responses, as evidenced by a good consis-
tency (Pearson’s r = 0.77) in spatial activation patterns from
two half sessions. Bae et al. [15] investigated the reliability
of fNIRS spatial activation patterns from two runs that were
15 minutes apart and found very poor within-session reliabil-
ity. There is currently a lack of research on the within-session
reliability of fNIRS temporal features.

While previous studies have assessed the reliability of
fNIRS responses for different task types, there is limited
research on how task parameters affect the reliability of
fNIRS responses. To the best of our knowledge, only one
study [15] has investigated the reliability of fNIRS responses
for different training parameters. The velocity of robot-assisted
passive grasping was set to three levels (slow at 0.25 Hz,
moderate at 0.5 Hz, and fast at 0.75 Hz), and the reliability of
fNIRS responses was evaluated in terms of ICC. Their results
showed that there was almost no reliability of fNIRS responses
(ICC = 0.002) for each of the tested training parameters.

However, the results may be worth further investigation due
to the low ICC value. This may be attributed to the limited
number of subjects involved in the study or the significant
amount of random error in the experiment.

In this study, we focused on investigating the within-session
reliability of fNIRS responses during robot-assisted upper-
limb training, which is essential for developing fNIRS-based
neurofeedback that target specific brain regions (including
the contralesional area) and operate at relatively frequent
update rates (within several minutes at the run level). Prior
to implementing fNIRS-based neurofeedback to construct a
closed-loop robot-assisted rehabilitation system, the following
three problems need to be thoroughly explored and validated:
whether fNIRS responses remain reliable 1) in gross-motor
tasks, 2) within a training session, and 3) for different
training parameters. To achieve this goal, we used a cus-
tomized rehabilitation robotic system to precisely control the
training parameters, resulting in three types of robot-assisted
mode with varying resistance levels (Passive, Active1, and
Active2). The experiment consisted of three identical runs,
where participants were instructed to perform robot-assisted
right elbow extension-flexion based on visual cues. fNIRS
was used to measure hemodynamic changes in the left motor
cortex. Both spatial and temporal reliabilities were evaluated
for each robot-assisted mode and each hemoglobin species in
terms of the following reliability indices: 1) the coefficient
of determination R2, 2) the degree of spatial overlap Roverlap,
and 3) the ICC. In this context, “spatial reliability” refers to the
reproducibility of spatial activation patterns, while “temporal
reliability” refers to the consistency of temporal features.
On the basis of findings, practical guidance was provided for
future fNIRS-based closed-loop rehabilitation research.

II. MATERIALS AND METHODS

A. Participants
Ten healthy adults (five males and five females, mean

age = 23.4 ± 6.7 years, range 19 – 28 years) participated in
this study. All participants were confirmed to be right-handed
by the Edinburgh Handedness Inventory and reported no
history of neurological or psychiatric disorders. This study
was approved by the Ethics Committee of Southern University
of Science and Technology (20220161), and conducted in
adherence to the declaration of Helsinki. All participants
provided written informed consent after a detailed explanation
of the experiment and the fNIRS technique.

B. Robotic System
Details of robotic system design were described in our

previous publications [18], [19]. As illustrated in Fig. 1, the
robotic handle was connected to the motion module via a
three-axis forces sensor, which can measure the human-robot
interaction force at a 1000 Hz sampling rate. In addition, the
robotic system was equipped with 18 optoelectronic switches
to determine the coordinate origin and limiting positions.
This system supports upper-limb rehabilitation training in both
passive and active modes.
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Fig. 1. Experimental setup and task. (a) Overall setup consisted of
a visual interface, a custom-made rehabilitation robot system, and a
fNIRS neuroimaging system. (b) Experimental task was robot-assisted
right elbow extension-flexion in Passive, Active1, and Active2 modes.
In Active1 and Active2 modes, the participants were required to min-
imize the difference between target (solid circle) and actual (hollow
circle) handle positions to maintain constant motion.

C. Experimental Tasks and Procedures

In the current study, we aimed to investigate the
within-session reliability of hemodynamic responses evoked
by robot-assisted upper-limb training. The participants sat in
front of the robot with their right hands holding the right
handle naturally (see Fig.1.a). The height and position of the
seat were adjusted to make each of them feel comfortable.
During the experiment, participants were asked to perform
robot-assisted right elbow extension-flexion in the following
three robot-assisted modes:

Passive Mode: The extension-flexion movement was
entirely motor-actuated and guided by the robot.

Active1 Mode: The resistance value was set to 1.0 N·s/cm.
Participants actively conducted extension-flexion movements.

Active2 Mode: The resistance value was set to 3.3 N·s/cm.
Participants actively conducted extension-flexion movements.

Notably, the resistance of the robotic system remained
constant in both Active1 and Active2 modes throughout the
entire process of elbow extension-flexion. Thus, the intensity
levels of Passive, Active1, and Active2 can be classified as low,
moderate, and high, respectively (see Fig.1.b).

All extension-flexion movements were performed along the
vertical axis, and the distance from the proximal point to the
distal end was 20 cm. We selected a medium movement speed
of 8 cm/s and set a response delay of 0.5 s between extension
and flexion, resulting in an entire front-and-back straight-line

Fig. 2. Experimental procedures. The experimental session was divided
into three identical runs. Each run consisted of 30 trials, during which
each mode was randomly performed 10 times. A single trial included an
extension-flexion stage for 5.5 s and followed with a resting stage for
19.5 s.

movement lasting 5.5 s. During the elbow extension-flexion
movements, both the target and actual trajectories of the
robotic handle were displayed in real-time on the screen.
In Passive mode, the target and actual trajectories were iden-
tical. However, in Active1 and Active2 modes, participants
were instructed to minimize the discrepancy between the target
and actual handle positions to ensure a consistent motion.
We used the PsychoPy software [20] for controlling the
presentation of visual cues. The robot’s motion control and
position feedback were achieved via user datagram protocol
(UDP) communication.

As depicted in Fig. 2, the experiment session consisted of
three identical runs. Each run comprised 30 trials, where each
elbow extension-flexion mode (Passive, Active1, and Active2)
was randomly executed 10 times. Each trial encompassed a
task stage lasting 5.5 s (2.5 s of extension, 0.5 s of pause, and
2.5 s of flexion), followed by a rest period of 19.5 s between
trials. To ensure physical and mental relaxation, a 10 min
break was provided between runs. Prior to the experiment,
all participants were thoroughly briefed on experimental tasks
and procedures. Additionally, a 5 min pre-training session was
conducted to familiarize them with the operation of the robotic
system and training modes.

D. fNIRS Acquisition
fNIRS signal acquisition was conducted using a continuous-

wave fNIRS system (NIRScout, NIRx Medizintechnik GmbH,
Germany), equipped with 24 laser sources and 24 detectors
operating at wavelengths of 785 nm and 830 nm (see Fig.1.a).
To determine the optimal probe arrangement, covering the
pre-motor cortex (PMC), supplementary motor area (SMA),
and primary motor cortex (M1) of the left hemisphere [3],
[21], we employed the fNIRS optodes location decider (fOLD)
toolbox [22]. In order to maximize the utilization of fNIRS
probes, a sensitivity threshold of 15% was set, and optode
locations with coverage below this threshold were excluded.
As a result, a configuration of 6 sources and 6 detectors was
obtained, conforming to the 10-5 international system (Source
1 was positioned at FFT7h). This setup allowed for 17 fNIRS
measurement channels with an inter-optode distance of 3 cm
(as shown in Fig.3.a), enabling a sampling rate of 10.4 Hz.
Furthermore, photon transport simulations were performed by
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Fig. 3. Arrangement and sensitivity of fNIRS optodes and channels.
Optode array set up with 6 sources and 6 detectors resulting in 17 chan-
nels over the left PMC, SMA and M1 with 3 cm separation. Estimated
measurement sensitivity to brain regions.

Monte Carlo Extreme module embedded in the AtlasViewer
package [23], to evaluate the migration of photons within
the head tissues and identify the cortical regions that can
potentially be measured by the fNIRS channels. The sensi-
tivity profile (see Fig.3.b) demonstrates the capability of the
designed fNIRS channel arrangement to detect hemodynamic
responses in the aforementioned cortical regions.

Prior to the experiment, we conducted measurements of the
participant’s head circumference, nasion-inion distance, and
the distance between the left and right periauricles. An easy
cap with fNIRS optodes inserted at the 10-5 international
system was placed in the middle between nasion to inion and
left to right periauricles (reference point Cz). The PsychoPy
software was used to synchronize fNIRS recording via event
triggers.

The recorded data can be downloaded from the following
website: https://doi.org/10.6084/m9.figshare.22178630.v2.

E. Raw Data Quality Evaluation
In this study, we employed two commonly used metrics to

evaluate the quality of raw data: 1) Scalp Coupling Index [24],
and 2) Peak Power [25]. Both of metrics examine the signal for
the presence of heart beat signal, which indicates that fNIRS
optodes were in contact with the scalp.

1) Scalp Coupling Index (SCI): A signal with good
scalp-optode coupling is characterized by a strong pulsation
of optical signals at both wavelengths, and defined SCI as
the normalized cross-correlation between the raw data at each
wavelength. The SCI value of 0.75 is a commonly used
threshold for identifying good scalp-optode coupling.

2) Peak Power (PP): The spectral power of the
cross-correlated signal can be used as an estimator of
the strength of the cardiac signal. In contrast to the SCI, raw
signal containing movement artifacts yield PP value close
to zero. A threshold value of 0.1 for the PP is typically
associated to a good quality signal.

Both the SCI and PP values were calculated for each
channel, each run, and each subject using the MNE-NIRS
toolbox (v.0.6) [26].

F. fNIRS Preprocessing
FNIRS signals were preprocessed using the Brain AnalyzIR

toolbox (v.2022.4.26) [27] implemented in MATLAB 2021a

(MathWorks Inc., MA, USA). First, 20 s of raw light intensity
signals before the first stimulus and 25 s after the last stimulus
were trimmed to remove unwanted data. Next, the signals
were resampled to 10 Hz. Afterwards, the resampled light
intensity signals were converted into optical density. Finally,
the optical density signals were converted into the concen-
tration changes of oxygenated (1HbO) and deoxygenated
hemoglobin (1HbR) based on the modified Beer-Lambert
law [28]. The differential path length factor was adjusted
according to the age of each participant [29].

G. HRF Estimation With AR-IRLS Model
The HRFs of HbO and HbR were estimated for each

channel, each run, and each subject using the autoregressive,
iterative robust least-squares (AR-IRLS) [30]. Previous stud-
ies [31], [32] have demonstrated that the use of AR-IRLS
for solving general linear model (GLM) can remove serially
correlated errors and motion artifacts, thereby improving HRF
estimation. We used the AR-IRLS model embed in the Brain
AnalyzIR toolbox [27], and for the solution, please refer
to [30].

Specifically, the preprocessed single-run fNIRS data, which
includes all 30 trials (10 trials for each robot-assisted mode),
was used to construct the GLM model. The HRF was modeled
using finite impulse responses (FIRs), distributed over a range
from 0 to 20 s, with 0 s representing the onset of the task.
The weights β of the regressors were solved by the AR-IRLS
for each robot-assisted mode. Consequently, the single-run
HRF for each robot-assisted mode can be obtained by con-
volving the corresponding β coefficients with the FIR model.
By repeating this process, the HRFs were extracted for each
channel, each run, and each subject.

H. Within-Session Reliability Evaluation
To comprehensively assess the within-session reliability,

we focused on two different aspects. First, we examined the
within-session spatial reliability. The coefficient of determina-
tion (R2) and the degree of spatial overlap (Roverlap) were
calculated to assess the map- and cluster-wise spatial relia-
bility, respectively. Second, we examined the within-session
temporal reliability. The intraclass correlation coefficients
(ICC) of five commonly used temporal features were calcu-
lated to quantify the temporal reliability of HRF over three
runs.

1) Spatial Reliability: In this study, we evaluated within-
session spatial reliability based on activation patterns from
different runs. Subject-level activation pattern was constructed
by generating individual t-map. Specifically, we conducted
one-sample t-test on AR-IRLS produced β coefficients for
each channel and used the resulting t-value as activation
intensity of that channel (see details in Sec.II-I). The activation
pattern (t-map) was composed of activation intensities from
different channels. By repeating this process for three runs
(Run1, Run2, and Run3), three robot-assisted modes (Passive,
Active1, and Active2), and two hemoglobin species (HbO
and HbR), a total of 18 activation patterns can be obtained.
We utilized a linear mixed effects model to estimate the group-
level t-values and employed a similar approach to construct
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group-level activation patterns as we did for subject-level
activation patterns. With the estimated activation patterns,
we assessed within-session spatial reliability at both subject-
and group- levels using two metrics that have been utilized in
previous fNIRS research [2], [10].

First, the map-wise assessment was performed to investigate
the within-session spatial reliability of a global activation map
by computing the coefficient of determination (R2) of t-values
between two runs. A high R2 (close to 1) represents that
the variance in spatial activation of one run can largely be
explained by another run, indicating high map-wise spatial
reliability.

Second, the cluster-wise assessment was utilized to evaluate
the reproducibility of activated channels between two runs.
The activated channels were inspected based on the fixed
number of channels strategy [33]. In this study, we explored
a Top 20% channel quantity threshold, which means that the
four channels with the highest t-values (for HbO) or lowest
t-values (for HbR) in the activation pattern were considered
as activated channels. The degree of spatial overlap (Roverlap)
can be calculated by the following formula [10]:

Roverlap = 2 ×
Coverlap

C j + Ck
(1)

where C j and Ck are the numbers of activated channels in
two runs, and Coverlap is the quantity of identical activated
channels in both runs.

2) Temporal Reliability: We employed the following five
temporal features to depict the time course of hemodynamic
response [34], [35]:

TTP/TTN: The time to peak (or nadir) for HbO (or HbR).
Slope: The slope of a linear least squares fit to HRF between

0 and 4 s.
Max/Min: The maximum (or minimum) HbO (or HbR)

amplitude between 2 and 8 s.
Mean: The mean amplitude between 2 and 8 s.
Std: The standard deviation of amplitude between 2 and 8 s.
The determination of the time window is based on whether

significant change in feature values (see Sec.III-D).
The within-session reliability of these temporal features was

assessed using ICC, based on an absolute agreement, two-way
random effects model with repeated measures [14], [36]:

I CC (2, 1) =
M Ss − M Se

M Ss + (k − 1) M Se +
k
n (M Sr − M Se)

(2)

M Ss =
k

n − 1

n∑
j=1

(
y j − y

)2 (3)

M Sr =
n

k − 1

k∑
i=1

(
yi

− y
)2

(4)

M Se =
1

(n − 1) (k − 1)

k∑
i=1

n∑
j=1

(
yi

j − y j − yi
+ y

)
(5)

where k and n represent the number of runs and subjects (k =

3 and n = 10 in this study); M Ss , M Sr , and M Se denote the
between-subjects mean squares, between-runs mean squares,

and error mean squares, respectively; yi
j denotes the feature

derived from the averaged HRF for the i ′th run and the j ′th
subject, y j is the mean of feature for the j ′th subject, yi is
the mean of features for the i ′th run, and y is the mean of all
runs across all subjects.

A high ICC (close to 1) represents low total (between-runs
and error) variability relative to between-subjects variabil-
ity, indicating high within-session reliability of the temporal
feature. Conversely, a low ICC (close to 0) represents that
temporal features of different runs lack consistency [37].

Firstly, the temporal features were derived from the average
HRF across the four activated channels of Run1, as described
in Sec.II-H.1. The ICC values were then calculated for each
temporal feature to assess the cluster-wise temporal reliability.
Secondly, we compared ICC values across different numbers
of activated channel, ranging from 1 to 17 with a step size of 1.

All the reliability indexes, including the coefficient of
determination R2, the degree of spatial overlap Roverlap, and
the ICC, were evaluated according to the criteria proposed by
Cicchetti and Sparrow [38]. Index values were considered as
‘excellent’ above 0.75, ‘good’ between 0.59 and 0.75, ‘fair’
between 0.40 and 0.58, and ‘poor’ for values lower than 0.40.

I. Statistical Analysis
With the obtained regression coefficients β and the covari-

ance matrices Covβ and σ 2 (see Sec.II-G), statistical inference
was performed to estimate the activation level for each channel
by testing the null hypothesis, that the regression coefficients
β over the defined period (from 2 to 8 s) were not significantly
different from zero. The formula for such a one-sample t test
is given by [27]:

t =
c · β√

c · Covβ · cT
(6)

where t is the t-value of that channel and c is the contrast
vector. We set the elements of the contrast vector within
the predefined time window (from 2 to 8 s) to 1, while the
remaining elements are set to 0.

The quality of raw data from three runs was analyzed using
one-way ANOVAs. Our hypothesis was that there would be
no differences in the quality of the raw data across the three
runs.

The within-session spatial reliabilities (R2 and Roverlap)
were analyzed using three-way ANOVAs (or three Kruskal-
Wallis tests, if spatial reliabilities were non-normally dis-
tributed) with three factors: robot-assisted modes (Passive,
Active1, and Active2), pairwise runs (Run 1-2, Run 2-3, and
Run 1-3) and hemoglobin species (HbO and HbR). If there
is a significant effect of the first factor, it would support
our hypothesis that within-session spatial reliability may vary
between robot-assisted modes. Additionally, by examining the
impact of the second and third factors, we can determine how
within-session spatial reliability changes over time and identify
which type of hemoglobin species, HbO or HbR, demonstrates
greater spatial reliability.

The effects of robot-assisted modes and runs on temporal
features were analyzed with two-way ANOVA or two Kruskal-
Wallis tests, depending on feature distribution. Our hypothesis
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Fig. 4. The averaged (a) SCI and (b) PP values across all channels
and all participants. The dashed line indicates the threshold.

was that the temporal features of the Active mode are more
significant than those of the Passive mode and that the features
change over time.

Statistical analyses were performed using SPSS (IBM SPSS
Statistics 26.0, IBM Corporation, USA). The normality of
the data was evaluated using Shapiro-Wilk tests. A post-
hoc t-test was applied when significant main effects and
interactions were found. Statistical significance level was set
to 0.05 (confidence intervals are 95%) for all statistical tests.
Bonferroni correction was used for multiple comparisons.

III. RESULTS

A. Raw Data Quality
Fig. 4 illustrates the SCI and PP for three runs. The aver-

aged SCI values across all channels and all participants for
Run1, Run2, and Run3 were 0.92, 0.92, and 0.90, respectively.
All participants had SCI values above the threshold of 0.75.
One-way ANOVA revealed there was no significant difference
of SCI value between three runs (F(2,29) = 0.444, p = 0.646).
Similarly, the averaged PP values across all channels and all
participants for Run1, Run2, and Run3 were 2.05, 2.07, and
1.96, respectively. All participants had PP values above the
threshold of 0.1. One-way ANOVA indicated there was no
significant difference of PP value between three runs (F(2,29) =

0.314, p = 0.733). Since all channels had SCI values and
PP values exceeding the threshold, no channels were pruned
during the preprocessing.

B. Spatial Activation Patterns
Fig. 5 depicts the group-level t-maps for three robot-assisted

modes, organized into two rows corresponding to HbO and
HbR. In Passive mode, group-level analysis of HbO identified
channels #11, #12, #17, and #15 with the top four highest
t-values. Regarding HbR, channels with the top four lowest
t-values were #11, #12, #10, #17. In Active1 mode, #11,
#12, #17, #15 for HbO and #11, #12, #10, #8, for HbR
were channels with the top four highest or lowest t-values.
In Active2 mode, the four most activated channels for HbO
were #12, #17, #11, #15, and for HbR they were #11, #12,
#10, #15. All of these channels were significantly activated
(p < 0.001). Overall, the dorsal aspect of the left M1 revealed
consistent channel activation across three robot-assisted modes
and two hemoglobin species, with the most activated channels
concentrated in this region. Furthermore, there were notable

Fig. 5. Group-level t-maps of brain activation specific for three different
modes of elbow extension-flexion. The white number indicate the chan-
nel number and the asterisk indicates the corresponding range of the
p-value.

differences in activation level among the three robot-assisted
modes. The highest (or lowest) t-values for HbO (or HbR)
were observed in Active2 mode with values of 15.14 (-13.31),
followed by Active1 mode with values of 12.78 (-12.37),
and Passive mode with values of 9.75 (-9.48). These results
indicate that active movements elicited stronger activation
compared to passive movements. Additionally, the intensity of
fNIRS responses was positively correlated with the intensity
of robot-assisted mode (Passive < Active1 < Active2).

C. Within-Session Spatial Reliability
Fig. 6 illustrates the scatterplots of group-level t-maps,

which distributed across three planes in a 3D coordinate
system. Each point represents t-value at a single channel
derived from two runs (e.g., the point on the bottom plane
corresponds to the t-value from Run 1 and Run 2). The
solid line in each plane represents the linear regression line
(y = ax + b, where x and y are t-values from two different
runs) that best fits the data points. Channels exhibiting the top
four highest or lowest t-values in both runs were highlighted
in red (for HbO) or blue (for HbR) and labeled with their
respective channel numbers. As revealed in Fig. 6, the data
points were tightly clustered around the regression line, with
coefficients of determination (R2) greater than 0.75. This
indicates that more than 75% of the variability in t-values of
one run can be explained by t-values of another run. In other
words, these high R2 values prove excellent consistency in
channel activation between runs. Additionally, the degree of
overlap (Roverlap) ranged from 0.75 to 1.00 for HbO, and from
0.50 to 0.75 for HbR, indicating excellent cluster-wise spatial
reliability in HbO, and fair-to-good reliability for HbR.

In comparison to the spatial reliability observed at the group
level, the within-session spatial reliability at the subject level
was somewhat lower. As listed in Table I, the R2 for Passive,
Active1, and Active2 modes were fair (0.44 < R2 < 0.52),
fair (0.48 < R2 < 0.56), and fair-to-good (0.52 < R2 < 0.62)
for HbO. For HbR, the R2 were fair-to-good (0.57 < R2 <

0.61), fair-to-good (0.57 < R2 < 0.64), and good (0.62 <

R2 < 0.69) for Passive, Active1, and Active2 modes. The
Roverlap for all three modes ranged between fair and good
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Fig. 6. Scatter plots of group-level t-values for spatial reliability assessment. Each data point represents the t-value at a single channel derived
from two runs. The solid lines are linear regression lines that best fitted the scatter plot of data points. The red or blue points (labeled with the
channel number) indicate the channels with the top four highest (for HbO) or lowest (for HbO) t-values in both runs. R2 and Roverlap denote the
determination coefficient of the regression and the degree of spatial overlap, respectively.

TABLE I
SPATIAL RELIABILITY EXPRESSED WITH THE DETERMINATION COEFFICIENT OF THE REGRESSION (R2 ) AND THE DEGREE

OF SPATIAL OVERLAP (Roverlap) BASED ON THE OBTAINED INDIVIDUAL T-VALUES

(0.44 < Roverlap < 0.68) for both HbO and HbR. Although
the results of the three-way ANOVA did not reveal any
significant main effects on robot-assisted modes, pairwise
runs, or hemoglobin species, we observed: 1) the spatial
reliability exhibited a positive correlation with the intensity
of robot-assisted mode (Passive < Active1 < Active2); 2) the
spatial reliability was higher between adjacent runs (Run 1-2
& Run 2-3) compared to non-adjacent runs (Run 1-3);
3) the spatial reliability of HbR was higher than that
of HbR.

D. Temporal Activation Patterns
Fig. 7 shows the average fNIRS responses across all

channels and participants in Passive, Active1, and Active2
modes. A noticeable increase (or decrease) in HbO (or HbR)

can be observed during the elbow extension-flexion task
(from 0 to 5.5 s). The hemodynamic changes exhibit a rela-
tively steep slope between 0 and 4 s, with the peak (or trough)
of HbO (or HbR) typically occurring around 5 s. In Passive
mode, the mean peak (or trough) amplitudes for three runs
were 1.41 (-0.81), 1.01 (-0.66), and 1.30 (-0.75) µmol/L . For
Active1 mode, the mean peak (or trough) amplitudes for three
runs were 3.14 (-1.08), 2.40 (-0.85), and 2.00 (-1.02) µmol/L .
In the Active2 mode, the mean peak (or trough) amplitudes
for three runs were 4.02 (-1.22), 2.51 (-0.87), and 2.50
(-1.04) µmol/L . Active movements elicited higher activation
compared to passive movements, with the most significant
difference observed between 2 and 8 s. The time taken
to return to baseline (recovery time) for Passive, Active1,
and Active2 modes was approximately 15 s, 12 s, and
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Fig. 7. Grand-averaged time-course of HbO and HbR across all channels and all participants for Passive, Active1, and Active2 modes. Grey areas
indicate the extension-flexion stage (from 0 to 5.5 s).

TABLE II
TEMPORAL FEATURES BASED ON THE OBTAINED INDIVIDUAL HRF

10 s, respectively. Furthermore, a trend of decreasing acti-
vation over runs was observed in Active1 and Active2
modes.

Table II lists the averaged temporal features for each mode
and run, based on HRFs collected from ten participants. Two-
way ANOVA with Bonferroni corrected post-hoc multiple
comparison was used to analyze the effect of mode and
runs on each feature. Results showed that the mode had a
significant main effect on TTP (F(2,81) = 5.08, p = 0.004),
Slope (F(2,81) = 7.98, p = 0.001), Max (F(2,81) = 4.92,
p = 0.010), Mean (F(2,81) = 3.62, p = 0.031), and Std
(F(2,81) = 11.03, p < 0.001) of HbO, and TTN (F(2,81) =

13.17, p < 0.001), Slope (F(2,81) = 9.85, p < 0.001), Min
(F(2,81) = 3.69, p = 0.029), Mean (F(2,81) = 4.84, p = 0.010)
of HbR. Post-hoc t-tests revealed that the TTP and TTN were
significantly earlier in Active1 and Active2 modes compared
to Passive mode (p < 0.05). The Slope of HbO, and the
Slope and Mean of HbR were significantly larger/smaller in
Active1 and Active2 modes than in Passive mode. In addition,
the Max and Mean of HbO, and the Min of HbR were
significantly larger/smaller in Active2 mode than in Passive
mode (p < 0.05). No significant difference was observed
between features in Active1 and Active2 modes. Regarding
the runs, the two-way ANOVA revealed near significant main
effects of runs on Slope (F(2,81) = 2.62, p = 0.079), Max
(F(2,81) = 2.78, p = 0.068), and Mean (F(2,81) = 2.80,
p = 0.066) of HbO. Although the temporal feature difference
between runs was not statistically significant, a decreasing
trend in mean HbO (or increasing trend in HbR) features was
still observed over runs, especially between Run1 and Run2
in Active1 and Active2 modes.

Fig. 8. Radar charts of averaged intraclass correlation coefficients
(ICC) for temporal features across all participants.The scale of radar
charts ranges from 0 to 1 with an interval of 0.2.

E. Within-Session Temporal Reliability

Fig. 8 displays the within-session temporal reliabilities of
various features, as measured by ICC. The results show that
in Passive mode, the ICC values demonstrate good-to-excellent
reliability for Slope, Max/Min, and Mean for both HbO and
HbR, while TTP/TTN and Std exhibit poor-to-good reliability.
In Active1 mode, Slope, Max/Min, and Mean show excellent
reliability, and TTP and Slope have fair reliability, except for
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Fig. 9. Intraclass correlation coefficients (ICC) of temporal features for different number of activated channels. Channel activations were sorted
according to the t-values of the first run.

TTN in HbR. In Active2 mode, most features show poor-to-
fair reliability in HbO, except for TTP. In contrast, all features
exhibit good-to-excellent reliability in HbR. Overall, the ICCs
for Slope, Max/Min, and Mean are higher than those for
TTP/TTN and Std, especially in Passive and Active1 modes.
Additionally, most ICCs in Active1 mode are higher than those
in Passive and Active2 modes. The weak reliabilities in Passive
mode may be attributed to relatively weak and irregular fNIRS
responses. On the other hand, the poor reliability of HbO in
Active2 mode may be due to decreased activation over runs.
Notably, the TTP/TTN in Active2 mode is more reliable than
those in Passive and Active1 modes, which could be attributed
to the fact that the time to peak (or nadir) is not influenced
by the decrease in activation.

We further investigated the effect of channel number on
the within-session temporal reliability, and the results are
depicted in Fig. 9. In both Passive and Active1 modes,
for both HbO and HbR, the within-session temporal reli-
abilities of Slope, Max/Min, and Mean were consistently
good-to-excellent across nearly all channel numbers. However,
in Active2 mode, for both HbO and HbR, the within-session
temporal reliabilities of Slope, Max/Min, and Mean ranged
between poor and fair across all channel numbers. Compared
with the aforementioned features, TTP/TTN and Std displayed
less reliability across all channel numbers. In addition, the
results revealed that neither using the most activated channel
(Top 1) nor all channels (Top 1-17) resulted in the high-
est ICC. Instead, the average temporal features of the four
most activated channels (Top 1-4) exhibited the most reliable
performance. This suggests that employing too few or too
many channels may compromise the within-session temporal
reliability.

IV. DISCUSSION

The within-session reliability of fNIRS responses is the pre-
requisite for building robot-assisted rehabilitation systems with

fNIRS-based neurofeedback. Previous research has proved
the cross-session reliability of fNIRS responses to non-motor
tasks non-motor tasks [10], [11] and fine-motor tasks [1],
[2], [12], [13], [14]. However, it is still unknown whether
fNIRS responses remain reliable 1) in gross-motor tasks,
2) within a training session, and 3) for different training
parameters. Therefore, this study focused on investigating the
within-session reliability of fNIRS responses in robot-assisted
upper-limb training. The results revealed that 1) the raw data
quality was acceptable in robot-assisted upper-limb training,
2) the within-session spatial reliability was good-to-excellent
at the group level and fair-to-good at the individual level,
3) the temporal features, including Slope, Max/Min, and Mean,
had good-to-excellent within-session reliability in most cases,
4) the within-session reliability was positively correlated with
the intensity of robot-assisted mode (Passive < Active1 <

Active2), except for the temporal reliability in Active2 mode.
These findings are discussed in greater detail below.

Previous studies have extensively investigated the reliabil-
ity of fNIRS responses to non-motor tasks and fine-motor
tasks [1], [2], [10], [11], [12], [13], [14], [15], with little
investigation into gross-motor tasks that may induce large
motion artifacts (e.g., upper-limb training). During gross-
motor tasks, head or skin movements can lead to decoupling
between optodes and the scalp, potentially reducing the within-
session reliability. In this study, we utilized the scalp coupling
index (SCI) and the peak power (PP) to evaluate the quality
of raw data. The obtained results revealed that both the values
of SCI and PP exceeded the threshold, indicating that the raw
data quality was acceptable in gross motor tasks. In addition,
the quality of raw data did not change significantly over time.

The existing studies on examining the reliability of fNIRS
responses have relied mainly on assessing the reproducibility
of spatial activation patterns [2], [10], [11], [14], [15], [16],
[39], [40]. Thus, we conducted the same procedure to evaluate
the within-session spatial reliability. As illustrated in Fig. 6,



JIANG et al.: WITHIN-SESSION RELIABILITY OF fNIRS IN ROBOT-ASSISTED UPPER-LIMB TRAINING 1311

almost all points were located near the linear regression lines,
indicating that the map-wise spatial reliability was excellent
at the group level. In most cases, the top four most activated
channels were reproducible in both runs, resulting in goo-to-
excellent cluster-wise spatial reliability. Compared with the
group level, the within-session spatial reliability at the subject
level was lower (see Table I). The map- and cluster-wise
spatial reliabilities were fair-to-good (0.44 < R2 < 0.69,
0.44 < Roverlap < 0.68) at the subject level. The results
revealed acceptable within-session spatial reliability of fNIRS
responses.

Given that the majority of fNIRS studies employed temporal
features to characterize the changes in hemodynamic responses
over time [34] and form neurofeedback with temporal features
from multiple channels [41], investigating the within-session
reliability of these features has great significance. In this study,
we examined the within-session reliability of five commonly
used temporal features, including TTN/TTP, Slope, Max/Min,
Mean, and Std in terms of ICC. As illustrated in Fig. 8, the
reliabilities of Slope, Max/Min, and Mean were higher than
those of TTN/TTP and Std in Passive and Active1 mode.
However, the within-session reliabilities of Slope, Max/Min,
and Mean for HbO in Active2 mode were poor-to-fair (0.36 <

ICC < 0.41), which was significantly lower than those in
Passive (0.74 < ICC < 0.82) and Active1 (0.77 < ICC <

0.80) modes.
Closed-loop robot-assisted rehabilitation has the poten-

tial to enhance patient engagement and improve recovery
efficiency by allowing for timely adjustments of training
parameters based on neurofeedback [8], [42]. The question
then arises whether fNIRS responses remain reliable under
different training parameters. To the best of our knowledge,
only one study [15] has examined the reliability of fNIRS
response across various training parameters. The velocity of
robot-assisted passive grasping was manipulated at three levels
(slow at 0.25 Hz, moderate at 0.5 Hz, and fast at 0.75 Hz),
and the reliability of fNIRS responses was assessed using
the ICC. Their findings revealed that there was almost no
reliability of fNIRS responses (ICC = 0.002) for the tested
training parameters. The extremely low ICC value may be due
to the limited number of subjects (only 6 in their study) or the
significant amount of random error in the experiment (residual
error variance was several hundred times larger than between-
session variance). The small sample size likely resulted in low
between-subjects mean squares, while the substantial random
error contributed to high error mean squares. According to
Eq. 2, both of these factors may lead to a very low ICC.
Nevertheless, they attributed the poor reliability to weak
fNIRS responses to passive movements [43]. In the current
study, we examined the reliability of fNIRS responses during
both passive and active movements. Our results revealed that
the within-session reliability was positively correlated with
the intensity of robot-assisted mode (Passive < Active1 <

Active2),except for the temporal reliability of HbO in Active2
mode. Even in Passive mode, the fNIRS responses had excel-
lent within-session spatial (0.77 < R2 < 0.94, 0.75 <

Roverlap < 1.00) at the group level and temporal reliabilities
(ICC up to 0.81 and 0.82 for Slope and Mean of HbO). This

results strongly countered their conclusion that there was no
reliability in the fNIRS responses to robot-assisted passive
training.

Intriguingly, the within-session temporal reliability of Slope,
Max/Min, and Mean for HbO in Active2 mode was poor-
to-fair (0.36 < ICC < 0.41), which was lower than those
in Passive (0.74 < ICC < 0.82) and Active1 (0.77 < ICC
< 0.80) modes. The low within-session temporal reliability
was due to the significant decrease in fNIRS responses during
Run2 and Run3, when compared to those recorded during
Run1 (see Fig. 7 and Table II). During motor training, motor
skill acquisition [44], [45] and fatigue [46], [47] could result
in decreased activation. For healthy adults, robot-assisted
elbow flexion-extension is not a skilled motor task. Thus,
the decreased fNIRS responses observed during high-intensity
training in Active2 mode may be attributed to fatigue, which
is consistent with Shibuya et al.’s study [48]. The short rest
period in our experimental design could have contributed to
fatigue accumulation.

Plichta et al. [49] conducted a study showing that changes
in fNIRS responses depend predictably on task paradigm
and channel location. Specifically, for simple motor tasks,
the strongest fNIRS responses were observed in channels
located at the center of the region of interest, with responses
attenuated in peripheral areas [34]. Our results revealed
strong hemodynamic responses in the dorsal aspect of the
left M1 (see Fig. 5), whose activation has been proven to
correlate with right elbow movements [50]. In addition, both
the within-session spatial and temporal reliabilities of fNIRS
responses were higher in this region (see Figs. 6 & 9),
suggesting that fNIRS responses can be reliably measured by
placing a small number of optodes over the target brain area.
Such a few-channel arrangement is more practical in clinical
rehabilitation [51].

Several limitations need to be noted in this study. First,
the reliability of fNIRS responses needs to be further verified
in patients with upper-limb dysfunction. Second, the low
within-session reliability of fNIRS responses in Active2 mode
warrants further investigation, which could be achieved by
incorporating a longer between-runs rest. Third, short-distance
measurement and short-channel regression method [14] should
be employed to minimize scalp effect and systemic noise for a
more accurate reliability assessment. Additionally, future work
should also explore the inter-session reliability to facilitate the
application of fNIRS in longitudinally assessing rehabilitation
outcomes.

V. CONCLUSION

In this study, we investigated the within-session reliability
of fNIRS responses in robot-assisted upper-limb training.
The obtained results revealed fair-to-good spatial reliabil-
ity at the individual level and good-to-excellent temporal
reliability of Slope, Max/Min, and Mean. Besides, the
within-session reliability was positively correlated with the
intensity of the training mode, especially for the within-session
spatial reliability. We also found that fNIRS responses
within the most activated brain area had higher spatial
and temporal reliabilities. These results indicate that fNIRS
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can be used as reliable neurofeedback for constructing
closed-loop robot-assisted rehabilitation systems, which will
pave the way for the application of fNIRS in clinical
neurorehabilitation.
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