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Improving Walking Path Generation Through
Biped Constraint in Indoor Navigation

System for Visually Impaired Individuals
Qingquan Na , Hui Zhou , Hailei Yuan , Mengfan Gui , and Hongjing Teng

Abstract— This paper introduces a walking path gener-
ation method specifically developed for the Smart Cane,
which is a RNA (Robotic Navigation Assistance Device)
aimed at enhancing indoor navigation for visually impaired
individuals. The proposed approach combines the utiliza-
tion of a LIPM (Linear Inverse Pendulum Model) and LFPC
(Linear Foot Placement Controller) motion primitives to
generate walking paths specifically designed for visually
impaired individuals. The primary objective is to gen-
erate paths that conform to human motion constraints,
thereby guaranteeing an efficient and natural navigation
experience. Integrating autonomous navigation framework,
the Smart Cane facilitates safe and effective guidance
for visually impaired participants in the indoor environ-
ments. Furthermore, comparative experiments have been
conducted to validate the effectiveness of the proposed
method, providing evidence of its capability to generate
walking paths that conform to human motion constraints.
The experiment results indicate that the proposed walking
path generation method is a promising solution to enhance
the navigation experience of visually impaired individuals.

Index Terms— Robotic navigation assistance device,
visually impaired, path generation, kinodynamic planning,
navigation system.

I. INTRODUCTION

MORE than 250 million people worldwide suffer from
vision impairment, ranging from moderate impairment

to blindness, significantly impacting their physical health,
mental well-being, and overall quality of life [1].

Vision impairment has multifaceted consequences, notably
impacting the mobility of individuals to varying extents.
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Visual impairment often results in individuals voluntarily
reducing their walking speed during travel, thereby affecting
their efficiency and increasing the risk of accidental injury.
Furthermore, due to mobility restrictions imposed by vision
impairment and the absence of sufficient assistive tools, indi-
viduals with visual impairments are compelled to decrease
their frequency of travel [1]. A survey [2] conducted in China
regarding the weekly travel habits of individuals with blind-
ness revealed that around 30% of them rarely go outdoors,
while only 9% of limited vision individuals travel alone more
than four times a week. To address these limitations, various
RNA (Robotic Navigation Assistance Devices) [3] have been
developed to assist individuals with visual impairments.

In this paper, our primary focus is on addressing the indoor
navigation challenges faced by visually impaired individuals.
Our objective is to investigate the potential of employing RNA
to assist visually impaired individuals in navigating indoor
environments. In comparison to outdoor environments, indoor
environments pose more substantial challenges for navigation
due to various factors:

(1) Higher obstacle density [4], [5]: Indoor spaces have
a greater concentration of obstacles, including furniture and
walls, which poses challenges for visually impaired individuals
to navigate safely.

(2) Hanging obstacles [4], [5]: Indoor environments may
have hanging objects such as light fixtures or signage, which
can present additional obstacles that require spatial awareness
and obstacle detection.

(3) Lack of GPS positioning [6]: Unlike outdoor envi-
ronments, indoor spaces typically lack reliable GPS signals,
making traditional navigation methods based on satellite
signals ineffective. Thus, GPS-denied position algorithm is
needed for indoor navigation.

With the advancement of autonomous navigation sys-
tems [7] and SLAM (Simultaneous Localization and Mapping)
technology [8], [9] possibilities have been opened up for
the development of navigation frameworks for the visually
impaired population to address the aforementioned issues.

Building upon the aforementioned technological advance-
ments, we have developed the Smart Cane, an intelligent
assistive device integrated with numerous sensors and feed-
back mechanisms. In Figure 1, we provide the demonstration
of the Smart Cane in guiding a visually impaired individ-
ual within a real-world environment. We have designed two
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Fig. 1. The Smart Cane is an RNA-based device. It incorporates
perception, localization, planning, and control functions, which could
offer safe and effective guidance for individuals with visual impairments.
Real-world demonstrations have effectively showcased the use of the
Smart Cane for navigation.

configurations for this device, and the design of the hardware
structure is described in Section III-A.

The primary objective of the Smart Cane is to address the
key challenges faced by individuals with visual impairments
in navigating indoor environments. Leveraging the capabilities
of the Smart Cane, we have developed a comprehensive nav-
igation framework that incorporates localization, perception,
planning, and control. This software framework is described
in Section III-B.

This framework utilizes advanced Visual-Inertial odome-
try [10] or, alternatively LIDAR-Inertial Odometry [11] to
provide localization for both the system and individuals with
visual impairments, addressing the absence of GPS positioning
in indoor environments. Additionally, there are many static
obstacles in the real environment, i.e., hanging obstacles,
etc. This allows us to construct an ESDF (Euclidean Signed
Distance Field) [12] map, which is subsequently supplied
to the planning and control modules. Furthermore, we have
developed a walking path generation algorithm, specifically
customized to assist visually impaired individuals in indoor
environments characterized by a higher obstacle density.

Overall, the contributions of this study can be summarized
as follows:

(1) A safe and efficient walking path generation method was
developed. This method combines LIPM (Linear Inverted Pen-
dulum Model) and LFPC (Linear Foot Placement Controller)
motion primitives to generate walking paths for the visually
impaired. (see Section IV).

(2) The proposed algorithm was implemented on the Smart
Cane, followed by analysis and verification through indoor
experiments. Besides, comparative experiments in simulation
environments were also conducted (see Section V).

II. RELATED WORK

A. Navigation System for Visually Impaired
Research and commercial efforts have focused on devel-

oping real-time navigation systems for individuals who are
limited vision or visually impaired. These systems can be
classified into four types: mobile platforms, guide dog robots,
wearable devices, and robotic canes. Certain works, such as
mobile platforms [3] and guide dog robots [13], encountered
limitations in mobility due to the substantial size and weight
of the robot within confined indoor spaces. Furthermore, these

studies did not take into account characteristics of human
walking, which could potentially lead to user discomfort.
Moreover, the wearable device lacks intuitive steering assis-
tance, as mentioned in the study by Katzschmann et al. [4].

Recently, there has been a growing emphasis on devel-
oping robotic canes [3], [5], [14], [15]. It is a compact
device that utilizes machine vision and robotics technology
to adapt to challenging environments. However, there is a
lack of intuitive steering assistance in Co-Robotic Cane [5]
for visually impaired individuals. To address these limitations,
the Augmented Cane [14] was developed with the capabil-
ity of environment sensing and intuitive steering assistance.
However, due to the inherent nature of 2D radar and RGB
camera sensors, the device lacks the capability to map three-
dimensional spaces, leading to limitations in its capacity to
plan routes effectively and provide comprehensive guidance
to users.

Building upon these studies, autonomous framework tech-
nology is adopted in our Smart Cane to address the navigation
challenges for individuals with visual impairments in complex
indoor environments.

B. Walking Path Generation
1) Path Generation: Path generation is a well-established

research area in robotics, particularly in scenarios where feasi-
ble paths need to be generated while considering kinodynamic
constraints. Kinodynamic planning, which was introduced by
Donald et al. in 1993 [16], considers both the kinematics and
dynamics of a system to generate paths or trajectories that
adhere to these constraints.

Hybrid A* [17], [18] is a kinodynamic planning algorithm
specifically developed for autonomous driving vehicles, com-
bines both discrete and continuous state-space search tech-
niques to efficiently generate feasible paths for autonomous
vehicles. In the context of UAVs (Unmanned Aerial Vehicles),
the Fast-planner introduced by Zhou et al. [19] utilizes a state
space model of UAVs to expand motion primitives outward,
resembling the search process of A*. Falco is another local
planner [20], which generates cubic spline curves as a set of
feasible paths offline.

The aforementioned algorithms highlight the significance of
taking kinodynamic constraints into consideration and utilizing
search techniques to generate viable paths in various domains,
including autonomous driving and UAVs. Inspired by these
algorithms, we tailored our method specifically to address the
requirements of navigation for visually impaired individuals.

2) Human Walking Model: Our proposed walking path gen-
eration method is based on the principles of the human
walking model. Previous research have focused on two key
aspects: accurately representing real walking trajectories using
mathematical models [21], [22], [23] and implementing gait
control strategies on biped robots [24], [25], [26], [27]. These
efforts have significantly contributed to our understanding of
human locomotion and the advancement of walking-related
technologies.

Papadopoulos et al. [21] used motion capture to collect
human paths, and used inverse optimal control to obtain a
cost function to generate the human walking paths. However,
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Fig. 2. The hardware componences of this Smart Cane. In the
figure, blue elements denote v1-specific hardware, red represents
v2-exclusive components, and black indicates shared hardware
between both versions.

their unicycle kinematic model lacks gait points and overlooks
collision detection.

The development of bipedal robots has prompted extensive
research on the challenges of walking dynamics and balance
control. The conventional gait generation approach, based on
the ZMP (Zero Moment Point) [24] concept. The elongated
number of iterations in the solving process leads to a slower
solving speed. Furthermore, Kajita et al. [26] introduced the
SQD (Spatially Quantized Dynamics) method. However, the
SQD-based approach requires offline gait generation, which
limits its applicability to high-level tasks like path planning.
The LFPC (Linear Foot Placement Controller) [25] utilizes
a linear function to generate stable gaits with faster con-
vergence compared to the ZMP-based approach. In the field
of path planning, planners designed based on LFPC can
result in reduced computational overhead. Extensive studies
have demonstrated the effectiveness of LFPC in various gait
generation applications, positioning it as a promising solution
in the field.

Therefore, we propose a new method for generating walking
paths that combined LIPM and LFPC. This approach is specif-
ically designed to assist individuals with visual impairments
in navigating their surroundings.

III. SYSTEM OVERVIEW

A. Hardware Architecture

Two configurations of the Smart Cane have been designed,
utilizing the following hardware components, with a combined
weight of 1.5kg. Figure 2 illustrates the distinct subsystems
of both Smart Cane versions (V1 and V2), showcasing the
arrangement and interconnection of sensors, high-level navi-
gation unit, low-level control unit, and battery.

1) Power: We use a 10,000 mAh LiPo batteries with
an output capacity of 22.5W to power our system. The
NVIDIA Xavier NX requires 10W. In the V1 version, both
the Realsense D455 and IMU modules require 5W each.
In the V2 version, it involves a multi-line LiDAR and IMU
modules, both consuming 5W of power. Besides, kinesthetic
feedback component requires a power of 5W. According to
these power requirements, the selected batteries could meet
the power demands of our platform. The batteries exhibit a
capacity to sustain the complete operation of the system for a
duration spanning between 4 to 5 hours.

2) High-Level Navigation Unit: To ensure optimal computing
performance for the high-level navigation unit in the Smart
Cane, we have selected the NVIDIA Xavier NX as the
platform. The Xavier NX offers a six-core CPU, a 384-core
GPU, and 8GB of RAM, enabling efficient execution of local-
ization, planning, high-level control, and other task-specific
algorithms. This hardware configuration ensures real-time and
accurate processing for navigation tasks.

3) Low-Level Control Unit: To provide steering assistance
for visually impaired individuals, we have incorporated a
kinesthetic feedback into the Smart Cane. This feedback is
compored of an omnidirectional wheel and a motor [14].
To control the torque output of the motor, we utilize an
STM32F103 MCU (Microcontroller Unit) in our platform.
The MCU establishes communication with the high-level
navigation unit of the Smart Cane via a serial port, facilitating
synchronized control and seamless integration of the kines-
thetic feedback with other navigation features. By controlling
the motor’s rotation, the input from the controller is converted
into directional steering.

4) Sensors: The Smart Cane in its v1 iteration incorporates
an Intel Realsense D455 camera for capturing grayscale and
depth images, enabling mapping and localization. Further-
more, an IMU (Inertial Measurement Unit) is utilized to collect
orientation and motion data. These sensors play a crucial role
in environment perception and accurate navigation.

In the V2 version, the Smart Cane integrates a multi-line
LiDAR that provides 3D point cloud information along with
an IMU for gathering orientation and motion data. This
combination of sensors ensures the acquisition of detailed 3D
environmental data and accurate motion information, enabling
enhanced environmental perception and precise navigation for
the Smart Cane.

Additionally, we have integrated Bluetooth headphone into
our system to facilitate voice feedback. This allows real-time
communication of important information and instructions to
visually impaired individuals, enhancing their navigation expe-
rience and providing essential guidance and updates.

B. Software Architecture
The software architecture of the Smart Cane is designed

as a comprehensive system solution for limited vision nav-
igation, incorporating perception, localization, planning and
control functions. All these functions are implemented on
the microcomputer of the Smart Cane, providing a compact
and efficient solution. To ensure safe navigation in complex
environments, we have developed an pipeline framework that
integrates complete perception, localization, planning and con-
trol functionalities. Figure 3 illustrates the overall software
framework, demonstrating the seamless integration of these
components for effective and reliable navigation assistance.

1) Localization: To accurately estimate the real-time posi-
tion of the Smart Cane in its v1 version, we utilize VINS
(Visual Inertial Navigation System) as a visual odometry
framework, as described in [10]. VINS is a robust VIO (Visual
Inertial Odometry) system that combines visual and inertial
sensor measurements to estimate the motion and pose of the
Smart Cane.
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Fig. 3. This is the system architecture of Smart Cane, which enables the
implementation of localization, mapping, planner, and track controller
functionalities in a locally online manner. The primary objective of this
architecture is to ensure the safe guidance of individuals with visual
impairments.

In the V2 version, we leverage a faster-LIO [11], a robust
LiDAR-Inertial Odometry (LIO) algorithm, to achieve accu-
rate real-time positioning. This algorithm efficiently combines
data from the LiDAR and IMU sensors to estimate the Smart
Cane’s motion and pose.

The improved localization data obtained from the VINS
algorithm (in the V1 version) or faster-LIO (in the V2 version)
is subsequently employed by different modules within the
system. This enables the Smart Cane to accurately estimate
its position and orientation in real time, facilitating effective
navigation.

2) Mapping: In the V1 version, to represent the environ-
ment, we employ a fusion approach that combines depth
measurements from the stereo camera with pose estimation.
In the V2 version, we extend the environment representation
by incorporating 3D point cloud data provided by the multi-
line LiDAR.

This enables the mapping of an EDF (Euclidean Distance
Field) voxel map of the environment [12]. The map is updated
at a frequency of 10 Hz using an efficient O(n) algorithm.
Additionally, we adopt an incremental update strategy to
efficiently update the voxel grid within the sensing range [19].
This approach ensures real-time performance and efficient map
maintenance.

3) Planner: In this article, we propose the new walking
path generation method. This method combines LIPM and
LFPC motion primitives to generate walking paths for visually
impaired individuals. The algorithm includes a dynamic path
search that prioritizes safety throughout the process.

4) Track Controller: To guide the heading angle of visu-
ally impaired individuals, we implement ground kinesthetic
feedback based on the work of Slade et al. [14]. The output
motor’s motion is tracked and controlled by the controller,
which performs feedback control by comparing the current
pose information with the expected output information. This
facilitates effective guidance of visually impaired individuals
along the planned path generated by the planning module.

Our system, with its adaptable and modular structure, pro-
vides the flexibility to incorporate hardware components from
both the Smart Cane v1 and v2 versions. This adaptability is
instrumental in conducting thorough testing and validation of
planning algorithms across simulated and real-world settings.

Fig. 4. (a) Illustrates a 2D schematic of the human-cane system. Here,
the combination of the individual and the smart cane is simplified into
a system with a state represented as (x, y, θ). (b) demonstrates the
closed-loop structure of the track controller. Given a reference θ, the
controller outputs the motor velocity, influencing the θ of the human-
cane system.

By harnessing the capabilities of our Smart Cane hardware,
we can conduct comprehensive assessments of algorithm
performance, ensuring robustness and efficacy across diverse
environmental scenarios and conditions.

C. Human-Cane System Model
To illustrate how the SmartCane system effectively guides

the visually impaired, we simplified the relationship between
individuals and the SmartCane. The participants were
instructed to use the SmartCane before the experiment.

For ease of analysis, we considered the individual and the
cane as a unified system termed the ‘Human-Cane System’,
as shown in Figure 4(a), analyzed on a 2D plane. We define
system state as x = (x, y, θ) ∈ R3 in the world frame, where
x and y represent the position of the system’s position, and
θ represents the heading angle of the system. ds represents the
design of a safety distance, ensuring safe obstacle avoidance
for the human body. Additionally, l stands for the distance
from the front end of the cane to the Kinesthetic Feedback,
represented as the projected distance on the 2D plane, depicted
by the blue circular motion in the diagram. On the other hand,
v denotes the linear velocity generated by the Kinesthetic
Feedback motor. The system adjusts θ based on changes
in v, whereas the actual positional movement relies on the
individual’s walking.

Our system operates by utilizing a planner algorithm to
chart a reference path. This reference path is utilized to guide
the “Human-Cane System”, allowing it to navigate around
obstacles in the environment by controlling θ through the
Kinesthetic Feedback.
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D. Kinesthetic Feedback Track Controller
For track controller, a basic Proportional-Integral (PI) type

controller is employed. Furthermore, in Figure 4 (b), the
controller uses the reference heading provided by the Planner
to modify and control the speed output to the motor. Thus, the
following form of the PI controller is adopted.

v = K p (θref − θ)+ Ki

∫ t

0
(θref − θ)dτ (1)

where v is the non-dimensional speed control signal, K p
and Ki are the proportional and integral gain respectively.

The controller coefficients K p and Ki were established
through extensive testing, following a robust control param-
eter space approach [28]. Additionally, we conduct a simple
experiment to adjust K p and Ki , which enables the device’s
output to influence the user’s walking pattern.

IV. WALKING PATH GENERATION

In this section, we provide a detailed explanation of our
proposed method. Drawing inspiration from the principles of
hybrid A* [18], we have tailored our approach to specifically
address the requirements of navigation for visually impaired
individuals. Our method is specifically designed to operate in
real time on small, resource-limited platforms.

A. Problem Definition
The problem of generating walking paths for visually

impaired individuals is a crucial task that involves ensur-
ing both safety and efficiency. It can be formulated as a
search problem, taking into account several inputs. These
inputs include an environment map represented as an ESDF
(Euclidean Signed Distance Field) map, the initial human-cane
system state denoted as so = (x, y, θ)o, and the target state of
human-cane system denoted as sg = (x, y, θ)g .

The planner is designed to follow the human dynamic
constraints. Human dynamic constraints refer to the kinematic
limitations experienced during human locomotion. For exam-
ple, when a person is walking at a certain speed, they are
unable to make rapid turns. If the planner generates excessive
turning commands during the walking process, it may result
in significant deviations in the guidance system, potentially
leading to a sharp turn. In extreme cases, this could cause the
user to fall.

The objective is to find a path that not only adheres to
human dynamic constraints but also guarantees mobility and
comfort for the visually impaired individual. The path should
effectively guide the limited vision person from the initial state
to the target state. To achieve this, the Smart Cane’s grounded
kinesthetic feedback tracking control is employed.

B. Walking Path Search
Our walking path search method leverages the LIPM (Linear

Inverted Pendulum Model) [24] as a continuous motion model
and the LFPC (Linear Foot Placement Controller) [25] to
generate future walking points. By integrating these compo-
nents, we can ensure that the generated walking path satisfies

Algorithm 1 Walking Path Searching
Initialize Search
Initialize LFPC
while O is not empty do

nc ← O.pop()

C.insert(nc)

if NearEnd(nc) and ReachHorizon(nc) then
return RetrievePath(nc)

end if
inputs ← LFPC.setCtrlParam()

for each um in inputs do
LFPC.updateOneStep(um)

n p ← LFPC.getNodeState(um)

Prune(n p)

if checkSafe(n p) and C.contains(n p) then
gtemp ← nc.gc + Cost(n p)

if O.contains(n p) then
O.add(n p)

else
if gtemp ≥ n p.gc then

continue
end if

end if
n p.parent← nc
n p. fc ← gtemp + Heuristic(n p)

end if
end for

end while

human kinematic constraints, promoting mobility and comfort
for visually impaired individuals.

To accomplish this objective, we employ the A* algorithm
to systematically search for a safe and optimal path that aligns
with the specified constraints. Algorithm 1 outlines the search
process employed in our method, which shares similarities
with the A* algorithm. The open set O and closed set C
in our approach correspond to their counterparts in the A*
algorithm. However, there are some variations that distinguish
our method.

The data structure N stores expanded primitives, represent-
ing nodes or elements derived from the initial primitives in
the search space. N likely functions as a container to manage
these elements during the search.

To optimize our search process, we use the Prune() func-
tion, eliminating nodes within the same grid as the one with the
minimum gc value. Here, gc stands for the cost accumulated
from the start to the current node along the path. This step
reduces unnecessary exploration.

After pruning, the CheckSafe() function ensures the safety
of remaining nodes, considering specific constraints. It verifies
if nodes meet safety criteria, such as collision avoidance or
other domain-specific constraints.

During the algorithm, if a node nc popped from set O
isn’t close to the target and reaches the exploration boundary,
we update a new node n p using updateOneStep(). The
algorithm then calculates the gc value for n p, representing
the cost along the discovered path.
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Fig. 5. This is the “Walking Path Generation” process. In each search cycle, we follow the steps shown in (a)-(c). In step (a), we generate motion
segments using LFPC and LIPM. In step (b), these generated segments undergo collision checking, removing any segments that collide with the
environment. Finally, in step (c), the path with the lowest cost is chosen and output.

Following safety checks, the algorithm finds the minimum
cost and gc value path within the map. This involves exploring
paths to identify the safest and most cost-efficient path within
specified constraints.

In our methodology, we employ specific LFPC parameters
to generate various candidate gait points. These gait points act
as inputs for the LIPM, enabling the creation of motion prim-
itive segments—referred to as the Center of Mass (CoM) path
within the ESDF map for expansion. This process aligns with
the “Walking Path Generation” approach depicted in Figure 5.
Subsequently, these generated motion segments undergo col-
lision checking to refine the path, ensuring avoidance of
collisions with the surrounding environment. Ultimately, the
selection of the path with the lowest cost becomes the final
output, showcasing our method’s optimization for both effi-
ciency and collision-free traversal.

C. LIPM and LFPC
The algorithm includes an important function called upda-

teOneStep(), which leverages the LFPC and LIPM to enable
forward expansion [25]. By utilizing LFPC and LIPM, we can
generate motion primitives (CoM, Center of Mass path) within
the voxel map, facilitating the search for a path that guides the
user from the starting state to the end state.

1) LIPM: The LIPM (Linear Inverted Pendulum Model),
as depicted in Figure 6, simplifies the walking module to a
point mass at a fixed height with adjustable leg lengths [24].
This simplified representation allows for the analysis and
design of control strategies for walking motion.

In the continuous phase step, the LIPM is described by a
set of differential equation:

ẍ =
gx
h

(2)

Equation (1) can be solved to obtain the position and
velocity of the point mass, which are:

x(t) = x(0) cosh(t/Tc)+ Tc ẋ(0) sinh(t/Tc)

ẋ(t) = x(0) sinh(t/Tc)+ Tc ẋ(0) cosh(t/Tc) (3)

Fig. 6. An illustration of the generation of gait points and CoM paths
using LIPM and LFPC. LFPC determines the future gait point, while
LIPM solves for the corresponding CoM path.

Here, h is the height of the CoM, g is the acceleration due
to gravity, and Tc =

√
h/g.

The LIPM can be extended to the three-dimensional case
by decoupling the two axes and applying the same principles,
as follows:

ẍ =
gx
h

ÿ =
gy
h

(4)

2) LFPC: The LFPC (Linear Foot Placement Controller),
as shown in Figure 6, proposed by Ye et al. [25], calculates
the subsequent body position based on predefined controller
parameters and the body velocity at the moment of foot
contact. It predicts the foot landing position using a linear
function that depends on the body velocity, which is:

x f = a + bv (5)
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x f is the next step position relative to CoM (CoM as the
origin), v is the body velocity at the moment of falling, a and
b are the controller parameters.

Based on the given formula and information, the foot
landing points in the x-axis and y-axis directions can be
designed as follows:

x fl = aw + bvx

x fr = aw + bvx

y fl = al + bvy

y fr = −al + bvy (6)

where x fr , x fl represent the placement positions of the two
legs in the x-axis direction, y fr , y fl represent the placement
positions of the two legs in the y-axis direction, and aw, al , b
are controller parameters.

To incorporate the walking direction angle and describe the
walking gait pattern, a triplet (dl , dw, θ) is used, where dl
represents the step length, dw represents the step width, and
θ represents the angle between the walking direction and the
+x direction.

The LFPC allows for convenient adjustment of step length,
step width, and walking direction in 3D walking. We can
obtain a transformed foot landing position, which are:

x fr = −al × cos(θ)+ aw × sin(θ)+ b × vx

y fr = −al × sin(θ)− aw × cos(θ)+ b × vy

x fl = −al × cos(θ)− aw × sin(θ)+ b × vx

y fl = −al × sin(θ)+ aw × cos(θ)+ b × vy (7)

In the cited work [25], the Poincaré map was employed
to derive the equilibrium criterion of the LFPC. The study
showed that when the stable coefficient b of the LFPC velocity
feedback falls within a specific range, it satisfies the stability
condition of this control law. As shown in the following
formula:

Tc
cT − 1

sT
< b < Tc

cT + 1
sT

(8)

3) Analytic Expansions: The LFPC plays a crucial role in
generating multiple gait points by adjusting the parameters
(al , aw, θ), which determine the characteristics of foot landing
positions in terms of step length, step width, and walking
direction. A walk simulation is shown in Figure S1. This
enables the generation of diverse walking gaits tailored to the
specific requirements of visually impaired individuals.

To ensure a continuous and realistic generation of motion
paths, the LIPM is utilized. The LIPM simplifies the complex
dynamics of human walking by representing the walking
system as a point mass at a fixed height. This simplified model
allows for efficient analysis and simulation of human walking
motion.

During the search process for a suitable path, different
combinations of LFPC input parameters are simulated within
the LIPM for a single gait cycle. Each simulation gener-
ates a unique gait pattern, represented by continuous motion
primitives. These motion primitives are then expanded and
incorporated into the search tree as part of the path planning
process.

Fig. 7. In the simulation environment, the collision detection algorithm
is visualized in a top view. The visualization includes a blue sphere
representing the detection range with the CoM point as the center, and
a green sphere representing the detection range with the gait point as
the center.

By employing this expansion method, the planned path
considers the kinematic constraints related to the human body
within the human-cane system assumption. This assumption
aligns the smart cane’s movement speed with that of an indi-
vidual. Our algorithm relies on a state estimation specific to the
human-cane system. It is essential to note that our algorithm
aims to generate a reasonable path rather than an optimal
one, as it doesn’t precisely calculate the body speed needed.
This approach ensures that the planned path respects the
natural motion capabilities and limitations of visually impaired
individuals, and promotes safe and comfortable navigation.

D. Collision Detection
To ensure the safety of the generated path, the algorithm

incorporates collision detection between the path and the voxel
grid map. This collision detection is performed using the
CheckSafe() function in Algorithm 1. The planner simulta-
neously plans the CoM path and future gait points for the
visually impaired individual. The gait points guide the walking
direction but do not directly control the actual landing points.

For the purpose of collision detection, a simplified
approximation of the human lower limbs is utilized. This
representation consists of three spheres with different radii,
which approximate the shape of the lower limbs. These spheres
are centered at the current center of mass point, the previous
gait point (support leg point), and the upcoming gait point,
respectively. Figure 7 illustrates a top-down view of these three
spheres for collision detection. The blue sphere represents the
collision detection range centered around the center of mass
point, while the green sphere represents the collision detection
range centered around the gait point.

Collision detection plays a critical role in the context of
online motion planning. The ESDF map [12] is an essential
tool for collision detection. The ESDF map provides valuable
information regarding obstacle distances and gradients, which
enables efficient collision detection. By leveraging the current
ESDF voxel index, it becomes possible to directly compute the
distance from a point to an obstacle within the ESDF map,
resulting in low computational costs. This direct calculation
approach effectively transforms the physical 3D environment
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into a 2D representation, facilitating accurate collision detec-
tion and supporting the generation of paths in real-time.

E. Motion Primitives Cost
In the process of assisting limited vision individuals with

a Smart Cane, it is desirable to minimize the curvature of
the planned CoM path. This helps reduce torque between
the Smart Cane and the limited vision individuals during
turning, preventing overloading of the Smart Cane’s motor and
maintaining the limited vision’s balance.

To account for movement restrictions and the comfort of
visually impaired individuals, a penalty function method is
employed during heuristic numerical calculation and sub-node
expansion. For each path generated by the LFPC, the cost
function for the path between nodes ni and ni+1 can be defined
as:

c(ni , ni+1) = D(ni , ni+1)+ σ × θ + riski+1 (9)

riski+1 =

{
wo · (dmax − dobstacle)

0
(10)

Here, D(ni , ni+1) represents the Euclidean distance
between the two nodes. σ is the penalty coefficient for
generating turns, which influences the cost based on the angle
θ between the path segments. Additionally, riski+1 represents
the safety risk penalty value associated with the next node.

By summing these three components, the cost function
accounts for the distance traveled, the influence of turns, and
the potential risk due to obstacles or other safety consid-
erations. This allows for the evaluation and comparison of
different path options during the planning process.

According to the provided definition, in Algorithm 1, the
calculation of the Cost() function in the A* algorithm involves
the cost of the motion primitives generated by discretized
input.

V. EXPERIMENT AND ANALYTIC

The experiment aims to validate the effectiveness of the
Walking Path Generation (WPG) algorithm and its real-world
applicability for guiding users. Three experiments were
designed:

(1) System-Level Testing: Comparison between smart cane
and white cane in normal subjects who are blindfolded. Eval-
uate the navigational performance of the Smart Cane utilizing
WPG against White Cane in unfamiliar indoor environments
to assess the practicality and usability of the new system.

(2) WPG Performance Analysis: Simulated comparison of
WPG and the A* algorithm. Compare the performance dif-
ferences between WPG and the A* algorithm in simulated
environments to highlight the advantages of the WPG method.

(3) Guidance Experiments Evaluation: Comparative anal-
ysis of multiple methods in real environments with visually
impaired subjects. Execute comparative experiments utilizing
diverse methods in real-world settings to highlight and empha-
size the primary benefits offered by the WPG approach.

These experiments provide empirical evidence and insights
into the proposed method’s effectiveness and usability, both in
simulated and real-world scenarios.

Fig. 8. The Re-Planning strategy focuses on planning path within the
perceived area. In the figure, the white dots represent the unknown area
where information is not available, while the colored dots represent the
perceived area where sensory data is obtained.

A. Experiment Settings
The experiment settings of the experiment are as follows:
1) : The walking path planning method and the overall

navigation system software described in this paper were imple-
mented using the Robot Operating System (ROS) framework.
All experiments were conducted using an onboard computer
and a device designed for the Smart Cane. We set g =
10 m/s2, b = 0.4, 0.4 ≤ al ≤ 0.6, 0.1 ≤ aw ≤ 0.2,
and 0◦ ≤ 1θ ≤ 30◦ for LFPC and LIPM to generate
motion primitives. The duration of each step of LIPM is set
to tsup = 0.3s.

2) : Our approach utilizes a Re-Planning strategy for
dynamic path planning. It is important to note that planning
a path in an unknown environment may not yield meaningful
results. Thus, we address this challenge by updating the map
using sensor sensing range increments and generating a path
within that range. Our goal is to guide limited vision indi-
viduals as close to their destination as possible. In Figure 8,
we present a demonstration of our Re-Planning strategy in a
simulation environment.

3) : Our experiment utilizes a kinesthetic feedback track
controller, employing the Proportional-Integral (PI) control
methodology (refer to Section III-D). Preceding the formal
experiment, the controller parameters of K I and K P were
tuned specifically. The K I and K P settings vary among
individuals but adhere to the parameter ranges outlined as
follows: 0.3 ≤ K p ≤ 0.5, 0.02 ≤ K I ≤ 0.04.

4) : The experiment protocol was approved by the Nanjing
Brain Hospital Institutional Review Board (2023-KY116-01).
All participants were volunteers who were provided written
informed consent before the experiment.

B. System-Level Testing
The experiments were conducted to compare the perfor-

mance of users navigating with a white cane versus using
the Smart Cane in key activities. All ten participants received
detailed information about the study’s objectives and experi-
mental procedures. They were blindfolded individuals without
visual impairment and lacked prior experience with white
canes. Before the experiments commenced, each participant
underwent a brief tutorial on operating the Smart Cane.
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Fig. 9. The navigation performance of Smart Cane versus White Cane. For a representative participant, Smart Cane is used in (a) while white cane
is used in (b) (S:start point; G:goal point; The black circles are the location of the collision with the obstacle). The duration time of two canes is shown
in (c). The contact times of two canes are shown in (d). The length of paths of two canes is shown in (e). A two-way ANOVA model was used to
analyze the significance of the effect of using the Smart Cane or a white cane on the participants. (∗p < 0.05,∗∗ p < 5×10−3, and∗∗∗p < 5×10−4).

None of the participants had prior experience using guide
canes. Prior to the experiments, the walking planner and
feedback intensity were individually adjusted based on each
participant’s walking habits. The relevant information can be
found in Table S1 for reference. Throughout the experiments,
participants were instructed to navigate a pre-defined path as
accurately and swiftly as possible. The path layout included
randomly positioned obstacles marked as ‘a,’ ’b,’ ‘c,’ and ‘d,’
as illustrated in Figure S2.

In the experiment, the participants randomly used the
guide cane or the white cane first. The evaluation met-
rics used in the experiments included the duration time of
tasks, the number of contact times with obstacles, and the
length of the path. The length of the path was measured
using the VINS integrated into the Smart Cane for each
participant.

The navigation performance of Smart Cane versus White
Cane are depicted in Figure 9. In Figures 9(a) and (b),
we present the results of a representative participant utiliz-
ing either the Smart Cane or White Cane for navigation.
The participant’s walking trajectory exhibits smoothness and
consistently maintains a safe distance from environmental
obstacles. Notably, it can be observed that there is one contact
with obstacle in Figure 9(a) and five contacts in Figure 9(b).
This result supports the effectiveness of the Smart Cane in

assisting the participant to avoid collisions and navigate along
a safe path.

The statistical results of duration time, contact times and
length of path are shown in Figure 9(c)-(e), respectively.
A two-way ANOVA (analysis of variance) was used for statis-
tical analysis. Notably, all participants finished the experiment.
Using the Smart Cane, subjects took an average of 52 seconds
to walk through the corridor, compared to 70 seconds with a
white cane. Smart Cane users experienced only 1 collision,
while white cane users had an average of 6 contacts. On aver-
age, Smart Cane users walked 15.05m, while white cane users
covered 16.71m. The box plot demonstrates concentrated dis-
tance values for Smart Cane users while significant individual
variation with the white cane. These findings underscore the
advantages of the Smart Cane over traditional white canes,
including shorter duration, fewer contacts/collisions, and more
consistent path lengths.

C. WPG Performance Analysis
A* algorithm was also implemented for comparing with

our Walking Path Generation (WPG) algorithm [29]. We con-
ducted experiments in four distinct environments: “office1”,
“office2”, “pillar” and “school indoor”. The “school indoor”
map utilized in our experiments was obtained from the publi-
cation by [30]. This map (Figure 10 (a)) comprises long and
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TABLE I
PATH GENERATION COMPARISON

Fig. 10. Generate paths in four different simulation maps and compare
them to evaluate their performance: (a) school indoor (b) pillar (c) office1
(d) office2.

narrow corridors interconnected with lobby areas and includes
various obstacles such as tables and columns. Additionally,
the “office1”, “office2” and “pillar” maps were obtained
from [19]. These maps encompass various spatial layouts,
including office environments and specific structures such as
pillars. These maps were selected due to their representation of
typical features and characteristics found in various real-world
environments.

To ensure a fair comparison, we conducted 30 runs of
the algorithm in each environment. The comparison of the
paths generated in the four maps is shown in Figure 10.

The evaluation metrics included the running time of the
search (time complexity), the number of nodes visited (space
complexity), and the length of the final generated path (same
starting and ending points). The results of these experiments
are summarized in Table I.

Based on the statistical results, our method outperforms A*
in environments where small-scale planning is required (less
than 100m, in scenarios of office1, office2, pillar). It demon-
strates less execution time and storage space. Additionally, the
path generated by our method is represented in (x, y, θ) space,
whereas A* operates in (x, y) space.

One of the key advantages of our algorithm is the utiliza-
tion of expanding motion primitives for search. In contrast,
A* expands its search based on the map resolution. As a result,
our method significantly reduces the number of iterations for
searching when planning on a small-scale map. It should be
noted that when generating large-scale paths (greater than
100m, in scenarios of school indoor), the search efficiency
of our method is reduced. This is because each search in our
method requires generating motion primitives, which can be
time-consuming.

Since the Re-Planning strategy is adopted in Smart Cane,
we focus on generating paths within the sensing range of
the sensor. Typically, this range is small-scale (in our imple-
mentation, 10m). In this small-scale planning environment,
our method can generate plans within tens of milliseconds,
enabling us to achieve a replanning frequency of 10Hz. This
allows for real-time adaptability and efficient navigation in
dynamic environments.

D. Guidance Experiments Evaluation
This study aimed to evaluate navigation methods in

real-world scenarios with visual impaired participants. The
information of these participants can be found in Table S2 and
Table S3 of the supplementary materials. They also had 3 to
5 years of experience using a white cane for mobility. Person-
alized adjustments in walking planning and feedback intensity
were made based on individual habits and preferences.
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TABLE II
THE STATISTICAL RESULTS OF A GUIDANCE EXPERIMENT

INVOLVING 10 LIMITED VISION INDIVIDUALS(∗p < 0.05,
∗∗p < 5 × 10−3,and∗∗∗p < 5 × 10−4 )

Three random obstacles were placed in a narrow corridor
measuring 10 meters long and 2 meters wide. The obstacles
included low-height and hanging obstacles (refer to Figure 11).

In the experiment, ten participants were assigned Two-Point
Touch, the A* algorithm guidance, and our proposed WPG
guidance method in a randomized order. Two point touch
refers to a method used by limited vision individuals while
navigating with a white cane, involving the cane touching
the ground in two places alternately to detect obstacles and
gather information about the surrounding environment. All
participants were instructed to start from the same point
and navigated the 10-meter narrow corridor to reach the
finishing line. Due to safety considerations, the positions of
the obstacles were not changed.

Using the faster-LIO feature of Smart Cane V2, we accu-
rately recorded trajectories. The collected data, as presented in
Table II, revealed that the WPG navigation method displayed
the best performance with the lowest average duration and
collision frequency. These findings were consistent with results
obtained from experiments involving blindfolded novice par-
ticipants.

The Two-Point Touch method, while designed for safety,
resulted in longer task completion times and a higher fre-
quency of collisions, leading to task failure in some instances.
Comparatively, both the A* and WPG methods incorporated
collision detection mechanisms that effectively helped partic-
ipants avoid obstacles. The A* and WPG methods showed
a minor difference in average duration. However, a substan-
tial contrast was observed in collision incidents, with WPG
at 0.7 incidents and A* at 2.1 incidents. WPG demonstrated
a stronger capability to prevent collisions, thus providing an
obvious advantage over A*.

The statistical results of the guidance experiment are shown
in Table II. The average duration of the WPG method was
10.28 seconds, while the A* method was 16.42 seconds.
The results of the ANOVA model (∗ p < 0.05,∗∗ p < 5 ×
10−3, and∗∗∗ p < 5× 10−4) indicated that the effect of using
the WPG method or the A* method on the participants was
significant. Furthermore, the Tukey HSD test (alpha=0.05)
showed that the WPG method was significantly different from
the A* method.

Further analysis indicated that A* navigation induced
larger heading angle variations, while WPG, considering
human kinematic constraints, managed to minimize significant

Fig. 11. This is a trajectory comparison chart of a participant completing
the guidance experiments evaluation. For WPG and A* guidance, the
trajectory of the ‘Human-cane system’ state. For the 2P Touch method,
the trajectory represents the cane’s center point trajectory. The red
marks indicate areas where A* generates significant changes in heading
angles.

alterations in heading angles. This would contribute to the
superior collision avoidance capability of WPG compared to
that of A*.

VI. CONCLUSION

This paper presents Smart Cane, a comprehensive solution
designed to assist visually impaired individuals in navigation.
The developed software and hardware framework provides a
robust platform for addressing mobility challenges faced by the
visually impaired. The main contribution is the development
of a method for generating walking paths. The proposed
approach combines the utilization of a LIPM and LFPC motion
primitives to generate walking paths specifically designed
for visually impaired individuals. By comparing our pro-
posed method with the A* evaluation index in a simulation
environment, we demonstrated its superiority in generating
smaller-scale paths, leading to smoother navigation for visu-
ally impaired individuals. In addition, our findings highlight
the advantages of the Smart Cane over traditional white canes,
including reduced duration, fewer contacts/collisions, and
improved path length consistency. It minimized heading angle
variations compared to A*, resulting in smoother trajectories
for navigation.
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Our experimental design simulated certain real-world navi-
gation scenarios in a controlled setting. However, the guidance
experiments lacked consideration for dynamic objects, and
the positions of obstacles remained unchanged throughout
the trials. This simplification of real-world conditions is a
limitation of our study, and future research should aim to
include these factors for a more comprehensive evaluation.

Our forthcoming research endeavors seek to augment the
Smart Cane’s functionalities, specifically targeting real-time
environmental perception within complex, dynamic scenarios
encompassing diverse elements. Our future work aims to
design algorithms of walking path generation in 3D environ-
ment by addressing diverse ground irregularities. Moreover,
we also acknowledge that further research is needed to address
the challenges of dynamic shifting obstacles.
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