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Brain Network Evaluation by Functional-Guided
Effective Connectivity Reinforcement Learning
Method Indicates Therapeutic
Effect for Tinnitus

Han Lv*, Jinduo Liu™, Member, IEEE, Qian Chen™, Junzhong Ji**, Jihao Zhai, Zuozhen Zhang,
Zhaodi Wang, Shusheng Gong, and Zhenchang Wang

Abstract—Using functional connectivity (FC) or effec-
tive connectivity (EC) alone cannot effectively delineate
brain networks based on functional magnetic resonance
imaging (fMRI) data, limiting the understanding of the
mechanism of tinnitus and its treatment. Investigating brain
FC is a foundational step in exploring EC. This study
proposed a functionally guided EC (FGEC) method based
on reinforcement learning (FGECRL) to enhance the pre-
cision of identifying EC between distinct brain regions.
An actor-critic framework with an encoder—decoder model
was adopted as the actor network. The encoder utilizes
a transformer model; the decoder employs a bidirectional
long short-term memory network with attention. An FGEC
network was constructed for the enrolled participants per
fMRI scan, including 65 patients with tinnitus and 28 control
participants healthy at the enroliment time. After 6 months
of sound therapy for tinnitus and prospective follow-up,
fMRI data were acquired again and retrospectively catego-
rized into an effective group (EG) and an ineffective group
(IG) according to the treatment effect. Compared with FC
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and EC, the FGECRL method demonstrated better accuracy
in discriminating between different groups, highlighting the
advantage of FGECRL in identifying brain network features.
For the FGEC network of the EG and IG per state (before
and after treatment) and healthy controls, effective ther-
apy is characterized by a similar pattern of FGEC network
between patients with tinnitus after treatment and healthy
controls. Deactivated information output in the motor net-
work, somatosensory network, and medioventral occipital
cortex may biologically indicate effective treatment. The
maintenance of decreased EC in the primary auditory
cortex may represent a failure of sound therapy, further
supporting the Bayesian inference theory for tinnitus per-
ception. The FGEC network can provide direct evidence for
the mechanism of sound therapy in patients with tinnitus
with distinct outcomes.

Index Terms— Tinnitus, sound therapy, fMRI, brain net-
work, reinforcement learning.

. INTRODUCTION

INNITUS occurs in up to 25% people worldwide [1].

Continuous bothersome noise can lead to a significantly
greater likelihood of suicide because of anxiety, depression,
or sleep disorders [2]. Tinnitus treatment is of great concern.
According to the evidence-based guidelines for treating tinni-
tus [3], sound therapy is a recommended treatment that can
be commonly used in clinics.

However, doctors always encounter unsatisfactory treatment
effects from sound therapy in the clinic. It was reported
that approximately 20% to 40% of patients respond poorly
to months of treatment [4], [5]. Moreover, sound therapy is
time consuming. In general, at least four weeks are needed
before determine the effect of treatment. Thus, it is valuable
if there is a way to character tinnitus patients with different
treatment outcomes before sound therapy. Non-responders
may be suggested to try another kind of treatment without
delay. We can also try to analyze the mechanism of tinnitus
with objective evidence.

Functional magnetic resonance imaging (fMRI) studies can
provide objective evidence for the analysis of tinnitus. Pre-
vious fMRI studies indicated that tinnitus is characterized
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by abnormal functional activity in the central nervous sys-
tem [6]. Functional connectivity (FC) plays a vital role in
understanding the interconnections between brain regions in
patients with tinnitus [7], [8], [9]. Effective treatment may alter
the topological features of the brain network [10], [11], and
effective connectivity (EC) has become a cutting-edge research
topic [12]. The elucidation of the brain’s EC network prior
to tinnitus treatment [13] advances our understanding of the
tinnitus mechanism because of its better description of the
brain’s directed information flow. However, FC or EC alone
may not fully characterize the features of brain networks.

Several novel brain EC learning methods based on deep
learning techniques have been proposed, offering signifi-
cant advantages over traditional machine learning methods
in handling noisy and nonlinear data [14], [15]. Liu et al.
proposed an algorithm that employs generative adversarial
networks (GANs) to model brain EC networks (EC-GAN).
The generator utilizes structural equation models to quantify
the causal relationships among brain regions; the discrimina-
tor distinguishes between the joint distribution of real and
generated fMRI time series [16], [17]. Li et al. introduced
causal recurrent variational autoencoder (CR-VAE), a method
that learns EC using an encoder and multihead decoders,
embracing the general concept of Granger causality typically
used in FC analysis [18]. These advancements demonstrate the
potential of deep learning approaches in brain EC analysis.

We hypothesized that FGEC would be a better tool to iden-
tify the feature of functional connectivity than FC or EC alone,
thus it would identify the neural activity feature of tinnitus
with distinct outcomes. This study advocates implementing an
assisted learning mechanism to enhance the precision of the
brain’s EC network, leveraging FC as a guide for estimating
EC using a novel deep learning method.

This approach leverages the excellent optimization and
noise-resistance capabilities of reinforcement learning, poten-
tially uncovering different underlying brain network patterns in
patients with tinnitus and healthy individuals. An EC network
that integrates FC information can be expected to delineate the
brain network more effectively than the performance of an FC
or EC network alone. This study elucidates the mechanism of
tinnitus from the perspective of directed information flow in
brain networks.

[1. MATERIALS

This study was registered on ClinicalTrials.gov (ID.
NCTO03764826). Our research was approved by the ethics
committees of Beijing Friendship Hospital, Capital Medical
University (ID. 2018-P2-182-01). Written informed consent
was obtained from all study subjects.

A. Participants

All participants were prospectively enrolled in the study.
The inclusion criteria were (1) age between 18 and 70 years,
(2) right-handed, and (3) no contraindications to MRI acqui-
sition. Tinnitus patients needed to be willing to be treated
and followed-up for 6 months. The exclusion criteria were
(1) history of tinnitus treatment, (2) hyperacusis, head trauma,

suspected Meniere’s disease, or other neurological diseases,
and (3) cerebral focal lesions. Ultimately, 65 patients with
non-pulsatile tonal-like tinnitus and 28 healthy control (HC)
participants were enrolled. None of the participants was
excluded.

B. Sound Therapy and Treatment Effects Evaluation

All patients with tinnitus were examined for tinnitus fre-
quency (Tf), minimum masking levels, tinnitus pitch matching,
and loudness matching (L). The narrowband sound used for
the treatment was set by an otologist (with more than 10 years
of tinnitus treatment experience) from our institution. The
loudness was set at 5 dB lower than the loudness matching.
The bandwidth was set according to Tf and was 1/3 of an
octave. Patients received sound therapy for 20 minutes per
session, three sessions per day, for 24 weeks using headphones
and SpeechEasy eMasker (Micro-DSP Technology Co., Ltd.,
China). The HCs did not receive any intervention.

For patients with tinnitus, the Tinnitus Handicap Inventory
(THI) score was acquired before and after treatment the
same day before MRI data acquisition. THI is a self-reported
measure commonly used to evaluate tinnitus severity. Effective
treatment was defined as a more than 17 point reduction in the
THI score or a THI score reduced to less than 16 points [19].
Based on the treatment effect, patients were categorized into
an effective treatment group (ET) or an ineffective treatment
group (IT). Changes were calculated for the THI score and
percentage improvement in the THI score (absolute change in
the THI value divided by the value at baseline).

C. Medical Imaging Data Acquisition and Preprocessing

MRI data of the patients and HCs were acquired at the
enrollment time. Patients were also scanned at the 24th week
after treatment; the HCs were scanned after 24 weeks of
follow-up. For all subjects, data were obtained using a 3.0T
MRI system (Prisma; Siemens, Erlangen, Germany) with a
64-channel phase-array head coil. We acquired high spa-
tial resolution T1-weighted images and blood oxygenation
level-dependent resting-state fMRI (rs-fMRI). The fMRI scan-
ning parameters were: 240 total number volumes; 33 slices;
slice thickness/gap = 3.5 mm/1 mm; repetition time (TR)/echo
time (TE) = 2000 ms/30 ms; matrix = 64 x 64; field of
view = 224 x 224 mm?.

Data  preprocessing was performed using SPM
12 (http://www.fil.ion.ucl.ac.uk/spm) and the Graph-
theoretical ~ Network  Analysis  Toolkit =~ (GRETNA,

http://www.nitrc.org/projects/gretna/)  [20]  installed in
MATLAB 2016a (MathWorks; Natick, MA, USA). The
first ten volumes of rs-fMRI data were discarded. In brief,
we performed slice timing, realignment, spatial normalization
into the Montreal Neurological Institute template using
T1-weighted imaging, resampling to 3 x 3 x 3 mm voxels,
smoothing using a 6 mm full-width at half maximum
Gaussian kernel, detrending temporal filtering (0.01- 0.1 Hz),
and segmentation according to a brain atlas that included
246 sub-brain regions [21]. The time series of each region of
interest (ROI) was extracted.
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Fig. 1. The architecture of the proposed method FGECRL.
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exploration of its core components below.

A. The Architecture of FGECRL

The FGECRL approach integrates the actor—critic algorithm
into learning effective brain connectivity while leveraging FC
as guidance. By comparing the three pivotal components,
namely, the actor, critic, and reward, the comprehensive
structure of the FGECRL framework is visualized in Figure 1.
The following sections provide a comprehensive breakdown of
each of these three components.

B. Actor

The actor component within the FGECRL was formulated
as an encoder—decoder model crafted to accept noise variables
and authentic fMRI time-series data as inputs. Its purpose
is to produce directed graphs manifested as graph adjacency
matrices representing effective brain connectivity networks.
Given its innate capability to extract contextual insights, this
encoder—decoder model is particularly suitable for handling
fMRI time-series data. The next section presents an intricate
breakdown of the implemented Encoder and Decoder compo-
nents.

1) Encoder: In FGECRL, we integrate a Transformer-based
encoder. The schematic of this encoder’s architecture is illus-
trated in Figure 2.

The initial step in the encoder process embeds the inputs
through a linear layer. The derived embedded inputs proceed
through numerous identical encoder blocks. Each encoder
block comprises a multihead self-attention layer and a feed-
forward layer. Recent research has underscored the efficacy of
multihead self-attention in extracting valuable insights from
fMRI data, encompassing both temporal and spatial features.
This mechanism diminishes the need for external information
and enhances the capacity to capture intrinsic correlations
within the dataset. In our setting, we use three feedforward

Encoder blocks

Fig. 2. Encoder architecture.

layers for input embedding. For each encoder block, We set
the number of heads for multi-head attention to 16, and the
number of hidden layer nodes is 256. We stack 6 encoder
blocks together to effectively extract the spatio-temporal fea-
tures of fMRI. For the fMRI data X, the operations within
the encoder blocks for the fMRI data X can be described as
follows:

On = WeX" & bias?,
Ky = WEX" + biasK,
Vi = WY X" + biasV, (1)

where X' represents the A-th input, achieved by partition-
ing the embedded input X’ into H groups. The attention
mechanism can be described as a function that takes both
a value and a set of key-query pairs as input and produces
an output by calculating a weighted sum of the values. O, K
and V describe the query, key, and value, Q, K is used to
calculate the similarity of the input features and acquire the
attention features with value V. W<, WX and WY denote the
network parameters for the self-attention layer, respectively,
bias?, biasX, and bias" are the bias vector. The computation
of multi-head self-attention follows this formulation:

K t
Self Atty = sof tmax( 2Ky, )

VDk,
where D denotes the count of elements in the last dimension
of K. We then derive multi-head attention by concatenating all
H sets of self-attention, leading to the following expression:

Multi Head = Concat (Self Atty, ..., Self Atty). 3)
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Fig. 3. Decoder architecture.

Subsequently, the outcome of the multi-head attention process
is passed through a feedforward layer comprising two linear
layers and a ReL.U activation function.

Block = ReLU (Multi Head W, + bias1)W, + bias>. (4)

2) Decoder: The decoder utilizes the Bi-directional Long
Short-Term Memory (BiLSTM) architecture, complemented
by an attention layer. This selection is motivated by the
BiLSTM’s effectiveness in capturing global information and
addressing gradient vanishing or exploding concerns during
extended sequence training. The BILSTM model encompasses
numerous LSTM cells, and its comprehensive structure is
visually depicted in Figure 3.

The BiLSTM model encompasses two distinct layers: the
forward layer and the backward layer. Each layer is set to
16 hidden nodes. For the attention layer, the input dimen-
sion is twice the output dimension of the BiLSTM module,
and the number of hidden layer nodes is set to 256. In detail,
the forward layer, operating from time step 1 to T, refines
the long-term memory and preserves the hidden state. When
provided with the encoder output enc; from the z-th time step,
the hidden state can be characterized as follows:

H = flene, Wi + HwoD 4 biasD),  (5)

where Wl(f), Wz(f), and bias) correspond to the parameters
of the forward layer, with the function f representing the
LSTM model. The process of the backward layer mirrors that
of the forward layer, albeit with the time step ranging from 7
down to 1:

<~ <~
H, = fenc,; Wi ® + H_ W2 ® 4 bias®), (6)

where W) (b), Wz(h), and bias® represent the parameters of
the backward layer. Upon combining the hidden states from
both layers, the resulting hidden state of the Bidirectional Long
Short-Term Memory (BILSTM) is obtained. The output can
be expressed using the following equation:

— <«
O, = [H;, H W + bias. @)

Finally, the output becomes the input for the attention layer,
leading to the production of the decoder output.

C. Critic

The employed critic takes the form of a two-layer feed-
forward neural network, utilizing a ReLU activation function.
The encoder output serves as the input for this critic network.
The loss function hinges on the mean-square error between the
network’s output predictions and the actual rewards generated
by the actor network.

During the training phase, we observed that the critic net-
work can be effectively replaced with an exponential moving
average, an approach used to estimate the local mean of a
variable. By adopting this method, variable updates become
intertwined with historical values over a specific timeframe,
thereby enhancing the model’s resilience. The mathematical
formulation for this strategy is as follows:

Vi=zaVi1+ 0 —-a)S;, ®)

where o € (0,1) and S; represents the value at the ¢-th
time step. This approach can effectively decrease processing
time without compromising outcomes. This efficiency stems
from the relatively straightforward nature of the critic network,
which implies its impact is constrained. Furthermore, the
employment of exponential moving averages can be regarded
as a streamlined version of the critic network.

D. Reward

The reward serves as a metric to gauge the quality of the
graph produced by the network. Consequently, the objective
of either the actor network or the entire system is to maximize
this reward. Notably, the Bayesian Information Criterion score
(BIC) is extensively utilized in source-based causal discov-
ery approaches due to its consistency and local consistency
stemming from its decomposability [22]. Motivated by these
attributes, we opt for BIC as our reward function, which the
actor aims to maximize. For a given graph G, its mathematical
representation is as follows:

BIC(G) = —2log p(X; 8, G) + dg logm, 9)

where 6 is a set of parameters, dy is the dimensionality of 6,
and 6 is is the maximum likelihood estimation of 6.

In our approach, we adopt the acyclicity constraint formu-
lated by Zheng et al. [23]. For a given binary adjacency matrix
M representing a DAG G, M remains acyclic when and only
when A(M) = 0:

A(M) = trace(e™) — d, (10)
where M represents the matrix exponential of M. Thus, our
reward function can be expressed in the following manner:

reward(G) = —[BIC(G) + AA(M)], 1D
where A > 0 serves as a parameter subject to adjustment
during training. In cases where ensuring acyclicity isn’t a

requisite for fMRI data, it’s advised to set A to a constant
value of 0.
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E. Estimating EC With FC Guidance

Studies indicate that FC can elucidate the presence of links
between distinct brain regions; EC can reveal the effect of
these links on behavioral and cognitive functions [25]. The
exploration of functional brain connections lays the ground-
work for investigating EC. We introduced an assisted learning
approach employing FC as guidance for EC estimation to
refine the precision of the brain’s EC network.

We employed the Pearson correlation to establish the foun-
dational structure of the causal diagram (FC network). This
FC network subsequently guided the estimation of brain EC.
The following sections elaborate on the sequential processes
of the Pearson correlation and EC estimation.

Suppose the brain FC network derived from PC is denoted
as W, and we have an element w; ; € W. This element,
w;, j, characterizes the statistical correlation between variables
(brain regions) x; and x;. The calculation of w; ; follows this
formulation:

gz, = I T, (12)

Ox;Ox;

where cov(.) indicates the covariance between two variables,
while oy, and oy; denote the standard deviations of variables x;
and x;. The symmetry of w; ; and w;; is upheld due to the
FC network’s lack of directionality, rendering it impervious
to variations in the arrangement or magnitude of variables
Xi and x j-

From the insights of the obtained FC network, the FC
network W acts as a query-key pair, and the EC network from
deep reinforcement learning acts as the value vector. As a
result, the predictive EC guided by the FC network can be
formulated as follows:

G’ = G - Softmax(W), (13)

where - denotes dot product operation and G € G signifies the
EC network for an individual subject, mirroring the dimen-
sionality of the FC network W in R"*". The resulting brain
EC network of the subject is denoted as G’.

F. FGECRL Algorithm Description

In this section, we outline our novel algorithm in
Algorithm 1. Following the parameter initialization, the
actor-critic approach is utilized alongside generated graph
scores, ensuring alignment of the projected optimal score
within the [0, Sp] range. Furthermore, we enhance search space
optimization by updating reward parameters at a frequency
of fg.

IV. RESULTS
A. Tinnitus Patients Data

Sound therapy treated 27 patients effectively (effective
group, EG); 38 patients were not responsive to the treatment
(ineffective group, IG), according to the improvement in the
THI scores at week 24. No significant difference was found
in the clinical factors among the EG, IG, and HCs (Tablel).
In addition, the changes in THI scores and the percent-
age improvement in THI scores were significantly different
between the EG and IG (Tablel).

Algorithm 1 FGECRL Algorithm
Input

: fMRI time series data X;Score parameters:
Sr, Sy, So; penalty parameter A, A;
maximum number of iterations T'; update
frequency f

Output: Brain effective connectivity network

while r < T do
graphs, Encoder < Actor(X)
Critic < Critic(X)
S < BIC(graphs)
adjusting score S < Sy S‘j} __SSLL
R < Reward(S, graphs)
loss < Loss(R, Cri)
updating network parameters
if + mod ty = 0 then
Sy < min (Sy, Siin)
A< min(A+ A, Sy)
end

end

Learn the FC by Pearson correlation as eq.12;
Estimate EC with the guidance of FC as eq.13;
return Brain effective connectivity network

Demographic data were compared using two sample 7-tests,
Chi-square test, or paired-sample z-tests.

B. Evaluation Metric and Statistical Analysis
The Accuracy was defined as the proportion of correct

predictions of the positive and negative instances. It can be
calculated by:

TP+TN

; (14)
TP+ FP+TN+FN

Accuracy =

where T P represents True Positives, the number of instances
correctly predicted as positive; T N represents True Negatives,
the number of instances correctly predicted as negative; F P
represents False Positives, the number of instances falsely
predicted as positive; and F N represents False Negatives, the
number of instances falsely predicted as negative. It reflects the
ability to differentiate subjects in different groups. A higher
accuracy indicates better ability to identify the feature of
functional connectivity. Taking into account the issue of imbal-
anced samples across different classes, we use the Balanced
Accuracy Score (b-Accuracy) to evaluate the performance of
a classification model. It can be calculated by:

1 TP TN
- x( +
2 TP+FN FP+TN

), (15

b-Accuracy =

It calculates the average accuracy across all classes, where the
accuracy of each class is determined by dividing the number
of correctly classified samples in that class by the total number
of samples in that class. A higher b-Accuracy indicates better
performance of the model in handling imbalanced data.

We analyzed all of the possible connections of the nodes
of the brain atlas. Results reflected the global measure of
the connectivity. For the analysis of the ability of different
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TABLE |
PATIENT DEMOGRAPHICS
Tinnitus patients, Effective Group Tinnitus patients, Ineffective Group Healthy controls
Baseline, n=27 Treated, n=27 Baseline, n=38 Treated, n=38 Baseline, n=28 6-months, n=28  P-value
Age (years) 50.59 + 11.79 47.42 £12.24 46.71 £ 7.90 0.375¢
Gender (male/female) 11/16 29/9 16/12 0.014°
Handedness 27 right-handed 38 right-handed 28 right-handed > 0.99¢
THI score 64.81 +23.23 31.63 £20.58 44.74 4+ 20.92 50.16 4+ 21.96 NA < 0.01¢
ATHI score 33.19 £ 19.70 —5.42 £16.49 NA NA
% improvement of THI score 52.11 4+ 20.45 —19.66 + 53.24 NA NA
Duration, months > 6& < 48 > 6& < 48 NA NA
Tinnitus Pitch 250 — 8,000 Hz 1,000 — 8,000 Hz NA NA
Laterality 8 left, 4 right and 15 bilateral 12 left, 8 right and 18 bilateral NA 0.756°
@ Two-sample t-tests.
b Chi-square test.
¢ Paired-sample t-tests.
methods that identify the feature of brain networks, we calcu- Accuracy
lated the accuracy of each applied method, i.e. FC, EC, and 1001 EC
FGECRL. Results were calculated between groups using Chi- FC — T
square test. Paired Chi-square test was used for comparison of %0 FGECRL
the same group of subject, e.g. EG before and after treatment. — .

Chi-square test was used for comparison of different groups,
e.g. EG versus HC.

Then we calculated the strength of effective connectivity
in different brain regions. Comparisons among groups were
performed by two sample f-tests or paired-sample -tests.
We constructed the FGEC network of the whole brain for
different groups of subjects and demostrated the matrix of
the network. For the comparison, we applied two-way mixed-
model analysis of variance (ANOVA) and post hoc analyses.

SPSS 26 software (IBM Corp., Armonk, NY, USA) and
R 4.2.1 (R Development Core Team) were used for statis-
tical analysis. P values < 0.05 were considered statistically
significant.

C. The Results of Classification

To verify the networks estimated by the FGECRL were
discriminative in classification tasks, a set of classification
experiments was conducted on the fMRI data of the patients
with tinnitus (before and after treatment) and HCs. The study
obtained EC networks using reinforcement learning (FGECRL
without FC guidance, EC), FC networks using Pearson’s
correlation (PC), and new EC networks (FGECRL). Thus,
the brain network of each participant can be identified using
different methods. The study used the random forest method
to classify EG, IG, and HC and the k-fold method for cross-
validating the classification, with k set to 10.

The comparison results are shown in Figure 4 and Figure 5.
The results of the FGECRL were better than those of the
FC and EC methods under different circumstances. First,
EC, FC, and FGECRL were used to differentiate tinnitus
before and after treatment. For patients treated effectively
(EG), the discrimination accuracies for the three methods were
36.36%, 44.32%, and 57.95%, the balance accuracies were
36.14%, 43.38%, and 59.29%, respectively (Figure 4A and
Figure 5A). For patients who were not treated effectively
(IG), the discrimination accuracies were 40.63% 39.84%, and
57.03%, the balance accuracies were 40.35% 41.31%, and

of 1 | raf
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Fig. 4. The classification results accuracy of FC, EC, and FGECRL
methods between groups. A, to differentiate EG before and after treat-
ment, the accuracy of discrimination for the three methods was 36.36%,
44.32%, and 57.95%, respectively. B, to differentiate IG before and after
treatment, the accuracy was 40.63% 39.84%, and 57.03%, respectively.
C, to differentiate all of the patients in EG versus HC, the accuracy
was 43.75%, 52.84%, and 64.20%, respectively. D, to differentiate all
of the patients in I1G versus HC, the accuracy was 64.81%, 69.91%, and
77.78%, respectively.

61.85%, respectively (Figure 4B and Figure 5B). Second, the
ability of different methods to classify patients and HCs was
compared. EC (43.75%) and FC (52.84%) have only moderate
accuracy in discriminating between the EG and HCs. However,
the FGECRL method can effectively discriminate between
different groups of subjects with an accuracy of 64.02%, the
balance accuracies were 49.56%, 56.46%, and 67.92%, which
has the same trend (Figure 4C and Figure 5C). For IG and
HC, the discrimination accuracies for EC, FC, and FGECRL
were 64.81%, 69.91%, and 77.78%, the balance accuracies
were 67.94%, 72.66%, and 79.49%, respectively (Figure 4D
and Figure 5D). These results highlight the advantages of the
FGECRL in identifying the brain network’s directed informa-
tion flow.

To clearly show the significant differences, we used the
Friedman test and T test to attest to the significant difference
between these methods. If the p-value obtained from the test
is less than 0.05, we consider that a significant difference
exists in the corresponding experimental results. In detail,
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Fig. 5. The classification results b-Accuracy of FC, EC, and FGE-

CRL methods between groups. A, to differentiate EG before and after
treatment, the balance accuracy of discrimination for the three methods
was 36.14%, 43.38%, and 59.29%, respectively. B, to differentiate 1G
before and after treatment, the accuracy was 40.35% 41.31%, and
61.85%, respectively. C, to differentiate all of the patients in EG versus
HC, the accuracy was 49.56%, 56.46%, and 67.92%, respectively. D,
to differentiate all of the patients in IG versus HC, the accuracy was
67.94%, 72.66%, and 79.49%, respectively. FC, functional connectivity;
EC, effetive connectivity; FGECRL, functional-guided effective connec-
tivity method based on reinforcement learning; EG, effective group; IG,
ineffective group; HC, healthy controls.

we first performed the Friedman test on four groups, and
the Friedman test indicates a significant difference between
the three methods (6.29 x 1073, 3.23 x 1072, 6.97 x 1073,
5.48 x 10_3). Furthermore, we performed the T test on the
results of FGECRL and other methods, which are described
in Figure 4 and Figure 5, we can find the FGECRL has a
significant difference (better performance) compared to most
other methods.

D. Effective Network Construction for Subject Groups

Our method was applied to construct the FGEC (functional-
guided effective connectivity) network for each group of
participants, including the EG before and after treatment,
IG before and after treatment, and HCs. The ROIs of the
human brainnetome atlas used in this study were grouped
based on the connectional architecture, including anatomical
and FC information (Supplementary Tablel) [21].

Several grouped connectivity patterns were consistent with
the connectional architecture of the brainnetome atlas. For
example, the EG at baseline showed information output in the
motor network (ROI 53-68, precentral gyrus and paracentral
lobule), somatosensory network (ROI 155-162, postcentral
gyrus), and visual network (ROI 189-198, medioventral occip-
ital cortex). For these brain regions, no significant difference
was found between the IG and HCs after effective treatment
(Figure 6A to C). In contrast, less activated information flow
was observed at baseline in the primary auditory cortex (ROI:
69 72) in the EG and IG than in the HC group. After treatment,
the strength of the EC in the EG was similar to that of the
HCs; the strength of the EC in the IG decreased (Figure 6D).

Inspired by previous studies [13], the differences in
the lateral occipital cortex (ROI: 199-208) and thalamus

(ROI: 231-246) were also investigated. However, no statis-
tically significant differences were found between the groups
(Figure 6F and F).

We constructed the FGEC network for EG before treatment,
EG after treatmetn, IG before treatment, IG after treatment,
and healthy controls. Figure 7 illustrates the pattern of FGEC
networks of the five groups. The column represents informa-
tion from one brain region to another; the row represents
information from other brain regions. Hot colors indicate
more information output; cold colors indicate less information
communication. The matrix value represents the connectivity
strength between the brain regions. The directional infor-
mation flow was demonstrated because the matrix was not
symmetrical.

As shown in Figure 7, the FGEC network pattern in patients
with tinnitus was different from that in HC. In general, the
alterations of the pattern in the connectional architecture in the
EG at baseline was different from the other groups, featured
by highlighted color in the columns that represent information
output (Figure 7A). Results facilitate us to identify the subjects
with better prognosis of treatment After effective treatment, the
FGEC network features for the EG (Figure 7B) were similar to
those of the HC (Figure 7E). However, the IG group’s FGEC
network pattern was not significantly altered before or after
treatment (Figure 7 C and D).

V. DISCUSSION

This study proposed a new method for identifying EC
based on reinforcement learning. The FGECRL method could
effectively delineates the features of the brain networks of
different groups, better than the EC or FC alone. Thus, the
patterns of information flow orchestration in patients with
tinnitus before and after treatment were described more precise
than ever before, providing new evidence for understanding the
neural mechanisms of distinct treatment outcomes.

This study included five groups of participants (EG before
and after treatment, IG before and after treatment, and HC).
Changes in the fMRI signals before and after treatment were
extremely subtle, possibly below the noise level, making
it challenging to detect subtle differences when using the
FC or EC methods alone. In addition, significant biological
and neural differences of the participants added substan-
tial variations in FC and EC signals between individuals.
Also, in certain situations, precision is required to distinguish
between different groups or detect minor changes. However,
a single method, such as EC or FC alone, may not effectively
handle these differences and fail to differentiate between the
groups accurately. Combining different analytical methods or
adopting more advanced techniques to enhance precision and
sensitivity may be one of the solutions to better distinguish
between groups in order to understand the effect of pre- and
post-treatment fMRI signal changes in patients with tinnitus.

The key innovation of the proposed method lies in the set-
ting of FC as a foundational step in exploring EC. Combining
FC and EC can fully exploit the advantages of both analytical
methods. As a functional integration method, FC measures
the degree of whole-brain synchrony of the time series of
blood oxygen level-dependent signals between distinct brain
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The learned FGEC network for each group. A, effective group before treatment. B, effective group after treatment. C, ineffective group

before treatment. D, ineffective group after treatment. E, healthy control group. FGEC, functional-guided effective connectivity.

regions, establishing the structural foundation for informa-
tion transfer between distinct brain regions [24]. Research
shows that FC and EC are associated [25], with stronger
FC possibly implying stronger EC. However, there is lack
of point-to-point correspondence; the presence of FC does
not necessarily imply the existence of EC, and vice versa.
Furthermore, EC is more discriminative than FC because it
discerns the direction of information flow between different
brain regions. Therefore, the study focused primarily on EC
and utilized FC information to assist EC learning, enabling the
algorithm to delineate the direction of information flow in the
brain more finely and ultimately distinguish the differences
in connectivity between different groups. The guidance of
functional information increased the precision of the study
results.

The proposed method has the potential of generalization.
Functional MRI is an effective tool that can provide key
data information not only for the research on mechanism
of mental disorders [26], but also for the treatment effect
prediction or evaluation [27], [28]. However, classical analytic
methods cannot provide information about the direction of
connectivity [24], which may lead to missing or ignoring
critical information. Effective connectivity provided additional

information that can characterize the direction of information
flow within functional connectivity architecture. Our proposed
FGECRL method is a candidate tool to characterize the archi-
tecture of neural network, thus providing key information for
the analysis of brain networks for different kinds of subjects.

Results were further validated when compared with previous
findings. Consistent with previous results [13], altered infor-
mation flow was detected in the motor network, somatosensory
network, and medioventral occipital cortex of patients with
tinnitus at baseline. As a phantom sensation, tinnitus is
characterized by abnormal motor cortex excitability [29].
Neural changes in auditory sensation can induce changes
in the motor network via cross-modal plasticity [30]. Even
comorbid conditions of tinnitus, such as anxiety or affective
disorders, may correlate with motor cortex excitability, and
it has been proven that effective therapeutic interventions are
correlated with decreased activity of the motor network [31].
Similarly, the somatosensory network may also be activated
by possible tinnitus etiologies [32]. According to our results,
the enhanced activity of the motor network, somatosensory
network, and medioventral occipital cortex decreased to the
normal range, similar to that in HCs. These findings may
represent crucial changes for the effective treatment of tinnitus
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and provide clues for extending the findings of previous
studies [33].

EC of the primary auditory cortex was complicated in
both groups. Successfully treated patients with tinnitus show
increased regional brain volume and neural activity [34].
As a core brain region in the gain model [35], [36], reduced
information flow in the auditory cortex may represent a lack
of central neural gain in patients with tinnitus. After treatment,
rehabilitation of EC to the normal range was observed in
the EG but not in the IG. These results support the theory
of increased central neural gain in the auditory system [37].
Without a balance of Bayesian inferences among the brain
regions related to the perception of tinnitus, the sound of
silence would be far from reaching [38], [39]. Consequently,
the EC of the primary auditory cortex may be a suitable model
for effective sound therapy.

The functional connectivity of thalamus and occipital cor-
tex were reported as the features of tinnitus [13]. However,
there was no statistical significance regarding the EC of the
thalamus or lateral occipital cortex in this study, possibly
because the more precise FGECRL method was used for
identifying the brain EC. For the thalamus, the enhanced
connectivity in the EG after effective treatment may represent
recovered gating function, according to the gating theory of
tinnitus [40]. However, several studies have failed to identify
structural or functional changes in the thalamus before and
after treatment [41]. Regional activity and oscillations may
be more sensitive than FC with other brain regions [42]. For
possible neuromodulatory targets for treatment, further studies
should focus on regional activity rather than the connectivity
of the thalamus when analyzing the neural mechanism of
effective treatment.

Another explanation is possible for the insignificant changes
in EC of the thalamus. Our method only demonstrated either
the output or input of information for a brain region. It is the
limitation of the FGECRL method. This method was not able
to report bidirectional information flow. However, a study has
indicated both increased and decreased FC of the thalamus
in different brain regions following effective treatment [43].
It may because of the average effect that the results were
not statistically significant among the groups. The limitation
should be noted when interpreting the results.

VI. CONCLUSION

This study proposed a new FGECRL method to delineate
EC precisely among tinnitus patients with distinct treatment
outcomes. The pattern of the FGEC network can be regarded
as direct evidence of the effectiveness of sound therapy in
patients with tinnitus. Effective treatment was characterized
by a similar pattern of FGEC networks between patients
with tinnitus after treatment and HCs. Deactivated information
output in the motor network, somatosensory network, and
medioventral occipital cortex may be biological indicators
of effective treatment. The maintenance of decreased EC in
the primary auditory cortex may represent a failure of sound
therapy, further supporting the causal inference theory for the
perception of tinnitus.
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