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Abstract— We designed and tested a system for real-time
control of a user interface by extracting surface elec-
tromyographic (sEMG) activity from eight electrodes in a
wristband configuration. sEMG data were streamed into a
machine-learning algorithm that classified hand gestures
in real-time. After an initial model calibration, participants
were presented with one of three types of feedback dur-
ing a human-learning stage: veridical feedback, in which
predicted probabilities from the gesture classification
algorithm were displayed without alteration; modified feed-
back, in which we applied a hidden augmentation of error
to these probabilities; and no feedback. User performance
was then evaluated in a series of minigames, in which
subjects were required to use eight gestures to manipu-
late their game avatar to complete a task. Experimental
results indicated that relative to the baseline, the modified
feedback condition led to significantly improved accuracy.
Class separation also improved, though this trend was not
significant. These findings suggest that real-time feedback
in a gamified user interface with manipulation of feedback
may enable intuitive, rapid, and accurate task acquisition
for sEMG-based gesture recognition applications.

Index Terms— Myoelectric control, gesture recogni-
tion, human–computer interaction, error augmentation,
co-adaptation, surface electromyography (sEMG).
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I. INTRODUCTION

SURFACE electromyography (sEMG) provides a conve-
nient sensor modality for human-computer interaction

(HCI) applications [1]. In the past two decades, research efforts
have sought to translate the electrical activity associated with
muscle contraction into control commands for general use
computing, prosthetic control, and motor rehabilitation [2], [3].
As the demand for more intuitive and responsive interfaces
has grown, the focus on sEMG-based gesture recognition has
intensified.

Traditional approaches to sEMG-based gesture recognition
assumed stationarity of the mapping between muscle activation
and gestures, and did not consider the user’s ability to adapt
their behavior based on feedback about gesture classifica-
tion performance. The emergence of co-adaptive learning
algorithms in the past decade represented a marked shift,
acknowledging both human and machine learning as parts
of an integrated system [4], [5], [6], [7], [8], [9]. One key
finding from these approaches is that when the human receives
continuous feedback about the mapping of muscle activation to
gesture, they can increase classification performance through
behavioral adaptations [10], [11]. These adaptations can result
in increased class separability [12] and increased move-
ment repeatability [13]. However, the relationship between
feature space adaptations and classifier performance is com-
plex. Increased real-time classifier performance has also been
found even in the absence of EMG feature space changes in
relative class distributions [14]. Despite the complex relation-
ship between feature space class distributions and classifier
performance, the influence of human learning on myoelec-
tric gesture classification remains a compelling target of
investigation.

Human learning about myoelectric gesture classification can
be considered as a form of motor skill learning. In the literature
on motor learning, the canonical view is that humans use a
combination of intrinsic feedback (sensory information) and
augmented feedback (information that is not readily accessible
through intrinsic feedback) [15]. Augmented feedback can
be further categorized as providing ‘knowledge of perfor-
mance’ (information about specific movements and muscle
activations), or ‘knowledge of results’ (information about
outcomes) [16], [17]. In the present study, we focus on
myoelectric control, where providing knowledge of results
corresponds to providing output from a classifier, while
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knowledge of performance corresponds to descriptions of
the features extracted from the sEMG. The ability to shape
human behavior in traditional motor skill learning settings
through the use of augmented feedback is well established.
Strategies such as error augmentation [18], [19], [20] and
reward manipulation [21], [22] have been shown to affect the
rate and retention of learning as well as behavioral variability.
Yet, to our knowledge, the use of error-augmented feedback
has not been tested for co-adaptation approaches to sEMG-
based gesture recognition.

In this study, we conducted an experiment to test whether
modified feedback about class posterior probabilities affects
performance in a myoelectric control task. We provided sub-
jects with a form of error-augmented knowledge of results;
by altering class probabilities, we diminished the differences
between classes, making it harder for the target gesture
class to exceed a predefined decision threshold. In particular,
we softened probabilities towards a uniform distribution. This
form of feedback manipulation is closely related to previ-
ous uses of error augmentation, also referred to as error
amplification [23], [24], [25]. As mentioned, this form of
feedback has been shown to hasten learning and improve
the quality of self-evaluation [18], [26] and increase retention
of learned skills [23], [27]. We therefore hypothesized that
error amplification by softening probabilities would increase
subsequent gesture classification performance by enhancing
human skill learning. The knowledge gained from this inves-
tigation has broad potential applications for use in myoelectric
prosthetics, assistive devices, and human-computer interfaces
where users perform only a brief 4-minute calibration, and
human learning may be critical to the success of model
performance.

II. EXPERIMENTAL DESIGN

All protocols were approved by the Northeastern University
Institutional Review Board (IRB number 15-10-22) in confor-
mance with the declaration of Helsinki.

A. Subjects
Forty-four right-handed subjects (21 male / 23 female, mean

age ± 1 standard deviation: 20.9±4.3 years) participated after
providing IRB-approved written informed consent. Subjects
were free of orthopedic or neurological diseases that could
interfere with the task and had normal or corrected-to-normal
vision.

B. Experimental Setup
Subjects viewed a computer display while seated at a table

with their right arm positioned comfortably in an armrest
trough. Surface electromyography (sEMG) (Trigno, Delsys
Inc., sampling frequency: 1926 Hz) was collected from the
muscles of the right forearm. Eight sEMG electrodes were
placed at equidistant positions around the circumference of the
forearm, at a four finger-width distance from the ulnar styloid
(the subject’s left hand was wrapped around the right forearm
at the ulnar styloid to determine the sEMG placement). The

Fig. 1. Electrode Placement. sEMG data is collected using 8 Delsys
Trigno sEMG sensors uniformly spaced around the right forearm.

first electrode was placed mid-line on the dorsal aspect of the
forearm, and the other electrodes were then equally spaced
(see Figure 1).

C. Data Acquisition
1) Subject Group Assignment: Subjects were randomly

assigned to one of three groups and performed a series
of tasks as described below. Subjects who were unable to
complete all tasks were excluded from further analysis. Each
subject group was assigned a different feedback condition:
no feedback (“Control”, N=14), veridical feedback (“Veridi-
cal”, N=14), or modified feedback (“Modified”, N=16) (see
Section II-C.5 for details). Subject group assignments were
randomized before enrollment. In order to control for the
possible confounding effect of biological variation in base-
line performance across groups, we adopted a within-subject
normalization strategy (see Section IV-A).

2) Gesture Timing: Subjects performed a series of tasks
composed of one or more gesture trials to move an avatar dice
(see details of user interface below). Prior to the start of a trial,
the subject’s forearm and wrist rested in a pronated position on
the trough with the wrist neutral. In each trial, subjects were
required to rest or to produce one of eight active gestures
(label and action provided in brackets): index-thumb pinch
[“Pinch”, decrease number on avatar dice], index-thumb key
press [“Thumb”, increase the number on avatar dice], closed
fist [“Fist”, decrease size of avatar dice], full finger extension
[“Open”, increase size of avatar dice], wrist extension [“Up”,
move up], wrist flexion [“Down”, move down], wrist radial
deviation [“Left”, move left], wrist ulnar deviation [“Right”,
move right]. Each trial began with a ‘prompting’ epoch (3 sec)
cued by a yellow bounding box the participant’s display and
a picture of the instructed gesture (Calibration and Instructed
blocks only, see below), a ‘gesture production’ epoch (2 sec)
cued by a green bounding box, and a ‘recovery’ epoch (3 sec)
cued by a red bounding box. The final 500 milliseconds of
the gesture production epoch were used for feature extraction
and classification. Figure 2 shows the timing of an example
gesture trial. This trial timing structure was chosen empirically
to give enough time for subjects to prepare for each upcoming
trial while keeping the total experiment duration short. Gesture
trial timing was kept consistent to ensure that subject reaction
times were not a source of variation in performance.

Each experimental session was divided into four blocks.
Blocks one, two, and four used the trial timing described
above. By contrast, in block three (in which some subjects
received model feedback) the gesture production epoch lasted
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Fig. 2. Gesture Trial Timing. In the yellow ‘prompting’ epoch, the subject
sees an instruction. In the green ‘gesture production’ epoch, the subject
performs the gesture. In the red ‘recovery’ epoch, the subject returns to
the rest position. Features for classification are extracted from the last
500 ms of gesture production to help ensure that steady-state features
are collected.

30 seconds for each gesture. During this time period, continu-
ous feedback was provided by applying a classifier model on
a sliding window of data, with a step size of 13.5 milliseconds
(based on the frequency of data packets delivered by our
sEMG sensors).

3) Block One: Calibration: Subjects from all groups were
instructed to perform five consecutive repetitions of each active
gesture and eight repetitions of a rest gesture in which they
were asked to relax the hand. This consecutive structure was
chosen to help keep the task simple while the participant
initially learned the set of available gestures. A classification
model was trained on this small dataset before continuing to
the next experimental block.

4) Block Two: Instructed Games: Subjects from all groups
engaged in four practice mini-games. In each mini-game,
subjects were instructed to perform a sequence of six gestures
to bring an avatar that was shown on the computer screen from
a starting position to a desired goal state (e.g. see Figure 3).
The trial timing epochs (prompting, gesture production, and
rest) were as shown in Figure 2. In this block, the classifier
model’s predicted probabilities were displayed as post-hoc
feedback to the user, but were not used to modify the avatar
position or state; the avatar always moved one step closer
to the goal after each trial, so that each game lasted exactly
six moves. These games were structured so that the 24 total
gestures (4 games with 6 moves each) were evenly distributed
among the 8 active gestures. After this block, the classification
model was retrained from scratch using the labeled data from
blocks one and two. This training set comprised 8 examples
for each of the 9 classes (8 active gestures and “Rest”).

Fig. 3. Example mini game. The blue player avatar must be moved to
match the gray target avatar. The minimal path includes moving right,
down twice, decreasing the die number (using a pinch gesture), and
reducing size (using a fist gesture).

5) Block Three: Live Feedback: Only subjects in the veridi-
cal feedback and modified feedback groups participated in this
block. Subjects performed only one extended trial for each
gesture while viewing real-time feedback; in these trials, the
gesture production epoch lasted 30 seconds. Subjects were
asked to freely explore their hand posture in order to maximize
the predicted probability of the current gesture class, shown on
a real-time histogram of the trained model’s output. For the
veridical feedback group, predicted class probabilities were
displayed without modification. For the modified feedback
group, probabilities were softened towards a uniform distri-
bution as described in Section III-C. As discussed previously,
the motivation behind this softening procedure was to encour-
age participants to compensate by performing more precise
gestures. Subjects in the modified feedback group were not
informed about this softening procedure.

6) Block Four: Free Games: All subjects were instructed to
perform a series of 12 mini-games. The mini-games had the
same structure as in block two, with each game requiring a
minimum of six moves to bring the avatar from its starting
position to a desired goal state. However, unlike the practice
mini-games of block two, subjects were tasked with bringing
the avatar to its goal state by planning and performing a
gesture sequence of their choice. Critically, the avatar only
changed its state when the classifier assigned one class a
predicted probability above a decision threshold of 0.5. The
experimenter manually recorded each attempted gesture to
serve as labels for subsequent analysis, and the participant’s
hand movements were also recorded on video to cross-check
these labels.

III. SIGNAL MODELING

A. Feature Extraction
As described in Section II-C.2, we extracted raw data for

classification from the final 500 ms of the active gesture
production period of each gesture trial. From each of the
8 sensor channels of raw sEMG, we computed the Root-Mean-
Square (RMS) value and the median frequency of the Fourier
spectrum, resulting in 16-dimensional features. Given a data
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vector x , RMS is defined as:

RMS(x) =

√√√√ 1
N

N∑
i=1

x2
i . (1)

The Median Power Frequency is defined as the frequency
value fMED that divides the Power Spectral Density (PSD) into
two regions with equal power [28]:∫ fMED

0
PSD( f )d f =

∫
∞

fMED

PSD( f )d f =
1
2

∫
∞

0
PSD( f )d f .

(2)

B. Classification Model
Given extracted features, we used a two-stage classification

pipeline to predict among 9 possible gestures: Up, Thumb,
Right, Pinch, Down, Fist, Left, Open, and Rest. The classi-
fication model consisted of an encoder formed from Support
Vector Machine (SVM) models that produced a latent rep-
resentation, and a logistic regression classifier that produced
predicted class probabilities. In the encoder portion of the
model, we trained a one-vs-one (OVO) SVM classifier [29]
for each of the

(9
2

)
= 36 pairs of gestures. Each of these

OVO-SVM models produced a scalar output (representing the
probability of assigning to the first of its two classes); these
36 scalars were stacked into a latent vector and passed to the
logistic regression model.

Given a supervised training dataset, we first fit the one-vs-
one SVM models using linear programming with the CVXPY
Python library [30]. The linear programming objective we used
was based on the semi-supervised SVM formulation of [31],
to allow future semi-supervised extensions. Specifically, the
SVM parameters were trained according to the following
optimization problem:

min
w,b,η

C
l∑

i=1

ηi +
1
2
∥w∥2 (3)

s.t. yi (wxi − b)+ ηi ≥ 1, ηi ≥ 0, i = 1, . . . , l

where w, b were the parameters to be optimized, ηi were slack
variables allowing misclassification of individual points, and
C > 0 is a fixed penalty parameter controlling the margin’s
strictness.

We implemented the logistic regression classifier with the
PyTorch Python library [32] using a single linear layer and
a SoftMax function. After the SVM encoder portion of the
model was trained, it was held fixed while the logistic
regression classifier model was trained by stochastic gradient
descent to minimize the cross-entropy loss. We trained the
classifier model for 1000 epochs with a batch size of 20 and
AdamW [33] optimizer. See Algorithm 1 for a summary of
our classifier training procedure.

Smoothing: As noted, participants in the veridical feed-
back and modified feedback groups were shown real-time
output from the model. Due to the high sampling frequency
of the sEMG sensors used, and the relatively computationally
simple prediction model, the system was capable of making
very fast adjustments to the predicted output, which can result

in unwanted jitter due to slight fluctuations in raw signal or
hand positioning. Therefore, we used an exponential moving
average (EMA) to smooth the model’s predictions in time.
At time-step t , the model produces a raw probability vector
P(t), which is then mixed with the previous probability vector
using a momentum parameter λ to produce a smoothed vector
P(t)

SMOOTH:

P(t)
SMOOTH = λP(t−1)

SMOOTH + (1− λ)P(t). (4)

For values of λ close to 1, this causes the probability vector
to update more slowly and smoothly. We used a value of
0.9, which alleviated the issue of jitter in the model output,
while still allowing model outputs to change quickly between
different gestures.

Algorithm 1 Classifier Training Procedure
Input: Features X , Labels Y
Output: OVO SVM parameters w, b, Classifier

parameters θ

1 Initialize w, b, θ randomly;
2 Train w, b on (X, Y ) ; // See Eq. 3
3 S← OVO-SVM(X) ; // SVM scores
4 Train Classifier on (S, Y ) ;
5 return w, b, θ ;

C. Modified Feedback
As mentioned above, subjects in the modified feedback

group were shown modified real-time output from the trained
classifier during block three of the experiment. Specifically,
the vector of smoothed predicted probabilities from the model
was modified according to the following formula:

PMODIFIED =
[PSMOOTH]

m∑
c∈C
[PSMOOTH]

m , (5)

where the modification exponent m was set to 0.75, and C
represents the 9 classes used. The value of m was chosen
subjectively to make a noticeable effect while not being too
extreme; since subjects must still be able to exceed a decision
threshold of 0.5 for a gesture to be correct.

Note that this feedback can be viewed as a form of error
augmentation. When asked to perform a certain target gesture,
we can consider the error to be the distance (e.g. cross-
entropy distance or L2 norm) between the model’s predicted
probability vector and an idealized probability vector in which
all mass is concentrated on the target class. Subjects in
both feedback groups were instructed to explore gestures and
maximize the predicted probability of the target class; thus
they were instructed to minimize this error. However, subjects
in the modified feedback group viewed a flattened probability
vector; this flattening causes the vector to appear to have
greater error. See Figure 5 for an example.

D. User Interface and Software Design
Figure 4 shows the user interface (UI) displayed to partici-

pants. All components of the UI were implemented using PyQt
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Fig. 4. The participant User Interface. Top left: instructed gesture.
Bottom left: predicted gesture probabilities. Right: Task window including
subject’s avatar and target. Outer edge: gesture epoch indicator.

Python package [34]. Data collection and real-time processing
were performed using the LabGraph Python package [35].
On the top left, the UI displayed an instructed gesture via
image and text during blocks one and two (see Section II-C.3
and II-C.4). On the bottom left, the UI showed post-hoc
predicted probabilities for each gesture as a radial plot. The
length of each line was scaled according to the value; the
outer circle represented a value of 1, and the inner circle
represented a value of 0.5 (i.e. the model’s decision threshold).
The opacity of gesture images around the radial plot was
also scaled according to the value. The outer edge of the UI
was colored yellow, green, or red to indicate gesture timing
epoch as described in Section II-C.2. On the right of the UI
was the task window in which the mini-games were played
during blocks two and four (see Section II-C.4 and II-C.6).
As described previously, participants used one of 8 active
gestures to move their avatar (the blue die). The goal of each
mini-game in blocks two and four was to use these gestures
to match the blue die to the gray target die.

a) Error Augmentation in Live Feedback: During block three
(see Section II-C.5), participants who received real-time feed-
back were presented with a different display, as shown in
Figure 5. Here, the probability of each class was displayed
using a bar plot that was updated in real-time. The participant’s
goal during this block of the experiment was to explore hand
positions in order to maximize the predicted probability of the
current gesture class. For participants in the modified feedback
group, model outputs were flattened towards a uniform distri-
bution using Equation 5.

E. Classifier Metrics
As mentioned in Section II-C.6, the experimenter recorded

each intended gesture made by the participant, so that model
accuracy could be evaluated after-the-fact. Accuracy was
defined as the fraction of correctly classified items. In addition
to the 8 active gestures and the “rest” class, the decision
threshold of 0.5 that was used resulted in another possible
outcome for gesture trials when no gesture rose above the
decision threshold, which we refer to as “NoClass.” Gesture
trials in which the subject was not prepared to make a gesture
during the “gesture production” epoch were recorded as having
a true label of “Rest.”

Fig. 5. Top: Real-time probability feedback window. The horizontal line
at 0.5 shows the decision threshold. Bottom: Example of probability val-
ues without modification (“Veridical”) and with modification (“Modified”)
as described in Sec. III-C for several hypothetical values of m. m = 0.75
used for real experiments. Arrows highlight an example case where
modification causes the gesture to become sub-threshold; participant
may compensate by improving gesture quality.

F. Feature-Space Class Structure
To evaluate how feedback affects human learning, we ana-

lyzed the feature-space distribution of trials from different
gestures performed in block four of the experiment. This
feature-space representation does not depend on the model,
since these features are obtained using simple, deterministic
transformations of the raw data (RMS and median frequency
after Fourier transform). The differences in feature-space class
structure across treatment groups can therefore give informa-
tion about human learning.

Previous research has introduced a variety of feature space
metrics for similar tasks, such as separability index and
repeatability index [12], [14]. Such metrics are based on
the Mahalanobis distance and require computing a class
covariance matrix. Since our experiment is focused on short
calibration times and we operated in a regime of limited
data, we do not have enough samples to compute reasonable
estimates of class covariance matrices, even with shrinkage
techniques. We therefore used feature-space metrics based on
pairwise comparisons between samples.

a) Kernel Similarities: We base our analysis of feature-
space structure on a Radial Basis Function (RBF) kernel
similarity measure. The RBF kernel computes a similarity
measure that corresponds to an implicit infinite-dimensional
vector space. For two feature vectors x, x ′ belonging to a
dataset X and a length scale parameter γ ∈ R, the RBF kernel
similarity is computed as:

RB F(x, x ′, γ ) = exp
(
−γ ∥x − x ′∥2

)
. (6)

The length scale γ is an important hyperparameter that
determines the rate at which similarities decay as two points
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are moved farther apart. We follow the so-called “median
heuristic” [36], in which γ is set based on the median length
scale of a dataset X :

γMED = 1/med(∥x − x ′∥2, ∀ (x, x ′) ∈ {X × X}). (7)

We set γMED individually for each subject, based on all of their
pooled gesture trials.

Note that this approach is effectively a non-linear rescaling
of pairwise Euclidean distances, and also handles the poten-
tial issue of outlier points having extremely large Euclidean
distances.

b) Class Similarity Matrices: We use this notion of kernel
similarity to construct a class similarity matrix for each
subject. For classes C1, . . . , CC , we build a square, symmetric
matrix D ∈ R(C×C ) such that the entry at position (i, j)
describes the average RBF kernel similarity between items in
classes Ci and C j :

Di j =
1

|Ci ||C j |

∑
x∈Ci

∑
x ′∈C j

RB F(x, x ′, γMED). (8)

After computing the entries in a similarity matrix, we normal-
ize the entries to the range [0, 1] so that these matrices may
be easily compared across subjects and groups.

Classes that are closer together in feature space will have
a higher average similarity and therefore a larger entry in
this similarity matrix. A subject whose gestures are easily
classifiable may tend to have precise gestures that are also
well-separated from each other. This would result in having
a high average similarity between trials in the same gesture
class (diagonal entries of the class similarity matrix) and
a low average similarity between trials of different classes
(off-diagonal entries). See Section IV-D for class similarity
matrices from each experimental group, and see Figure 6 for
didactic examples of similarity matrix D.

c) Scalar Class Separation Measure: In order to look for
trends in the feature-space distribution over time and to
identify global trends across groups, we also summarize
these normalized class similarity matrices using a scalar class
separation measure, dSEP, which we define as the average
within-class similarity divided by the average between-class
similarity. Given a normalized similarity matrix D as described
above,

dSEP =

(
1
N

N∑
i=1

Di i

)
/

 2
N (N − 1)

N∑
i=2

i−1∑
j=1

Di j

 . (9)

As indicated above, larger within-class similarities indicate
that trials from the same gesture are precise and repeated with
high-fidelity, while smaller between-class similarities indicate
that trials from different gestures are easily distinguished.
Thus, a dataset with a larger value of dSEP may contain gestures
that will be more easily classified.

In Figure 6, we show examples of class similarity matrix
D and scalar similarity measure dSEP. To produce an example
that can be easily visualized, we select a subject from the
“Modified” condition that showed a large improvement in
feature-space separation. For this subject, we select three ges-
tures (“Left”, “Down”, and “Right”) and three features (RMS

Fig. 6. Didactic example for class similarity matrices D and scalar
class separation measure dSEP. For a chosen subject from the Modified
condition, we analyze 3 of the original 16 features (RMS value from
electrodes 1, 4, and 7) and a subset of gestures (“Left”, “Down”, and
“Right”). Top row: features from calibration and instructed blocks. Bottom
row: features from free games. Left: Scatter plot of 3-dimensional
features, and scalar class separation value. Right: The corresponding
class separation matrix.

value from electrodes 1, 4, and 7). In the top row, we show
metrics for this subject’s data during the “Calibration” and
“Instructed” blocks, and in the bottom row, we show metrics
from the “Free” block; recall that the subject experiences live
feedback training after the “Instructed” block. We observe
that the features of each class become more distinct after
the user performs live feedback training; this is captured as
an increase in the similarities on the diagonal of D and a
decrease in similarities off-diagonal. These changes in D are
also summarized in dSEP, which increases from 2.8 to 3.55.

G. Within-Subject Normalization
The focus of this work is to measure the effect of the

proposed veridical and modified feedback strategies on subject
performance. We note that overall subject performance may be
influenced by a relatively large number of factors of variation,
such as factors affecting dexterity and motor precision, subject
motor learning speed, and subject-intrinsic factors affecting
raw sEMG signal-to-noise ratio. Thus, a prohibitively large
sample size may be required to account for this variation
without normalization. We therefore adopt a within-subject
normalization strategy, obtaining baseline statistics for each
subject using only data measured before our interventions.

For each subject, we measure baseline accuracy by training
a model from scratch using that subject’s block one data (cali-
bration, Section II-C.3), and testing this model’s classification
accuracy on the subject’s block two data (instructed games,
Section II-C.4).

We obtain baselines for class similarity matrices in the
same manner. Within each subject, we collect all gesture
trials from the first two experimental blocks, and compute
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a normalized class similarity matrix. This is subtracted from
the matrix computed using data from block four (free games,
Section II-C.6) to visualize the difference in similarity for each
class. Note that due to the short experimental design, we have
relatively few samples per class with which to construct each
matrix, and therefore this representation may be somewhat
noisy.

We transform the normalized similarity matrix describing
blocks one and two into the scalar class separation measure
dSEP, and likewise transform the similarity matrix describing
block four. This results in a baseline-subtracted class separa-
tion measure.

Overall, we measure changes from baseline as follows:

1Acc = AccFREE − AccBASELINE (10)
1D = DFREE − DBASELINE

1dSEP = dSEP, FREE − dSEP, BASELINE

H. Statistical Analysis
We performed several statistical analyses to determine the

effect of feedback on classification accuracy and feature
space class separation. Differences between feedback groups
at baseline (AccBASELINE, dSEP, BASELINE) were analyzed using
one-way ANOVAs. Likewise, the effect of the feedback group
on change scores (1Acc, 1D) was analyzed with one-way
ANOVAs (α = 0.05). Alpha level was set at 0.05. Significant
findings were further analyzed using post-hoc paired compar-
isons with Bonferroni correction for multiple comparisons.
One-sided one-sample t-tests with Bonferroni correction for
multiple comparisons (α = 0.0167) were used on change
scores to test whether each feedback group significantly
increased accuracy and distance.

IV. RESULTS

All participants were able to successfully complete the
experiment, with no reported adverse events.

A. Group Baselines
In order to check whether random group assignment was

a potential confounding factor in our comparisons between
groups, we analyzed baseline metrics for each experimental
group. One-way ANOVA indicated no significant differences
in baseline accuracy (F(2, 43) = 1.15, P = 0.326) or
class separation (F(2, 43) = 0.99, P = 0.380) between
experimental groups. Figure 7 shows a group-level summary
of the baseline accuracy and class separation measure. Though
no significant differences were found, mean baseline accuracy
and class separation scores were greatest in the Control group
and smallest in the Modified group.

B. Effects of Feedback
Individual one-sided one-sample t-tests were used to test for

significant improvement in Free block performance from base-
line (Bonferroni corrected for 3 comparisons, α = 0.0167).
For accuracy, only the Modified group showed significant
improvement (t (13) = 2.566, P = .012). No group showed

Fig. 7. Baseline Performance. Left: Accuracy. Right: Scalar class
separation measure dSEP. Boxplots show the median and quartiles;
dotted lines show the mean. Note the relative difference in subject
baseline task performance, visible as a gap in baseline accuracy. This
discrepancy (due to random group assignment and low subject number)
indicates the need for within-subject normalization, as described in
Section III-G. See Section IV-A for statistical analysis.

a significant improvement in class separation. One-way
ANOVAs indicated no significant between-group differences
in 1Acc (F(2, 43) = 0.413, P = 0.665) or 1dSEP

(F(2, 43) = 2.022, P = 0.145).
Figure 8 shows the average change from baseline per-

formance in each experimental group, as measured in the
accuracy of gesture classification (left panel) and feature-space
class separation measure (right panel). These data demonstrate
that, on average, the increase in performance over the course
of the experiment was greatest for subjects in the modified
feedback group. Note that the variation between subjects is
relatively high, resulting in overlapping estimates of mean
performance. We observe that both groups that received real-
time feedback exhibited larger variation; in particular, the
interquartile range for these two groups (0.18 and 0.19 units
for Veridical and Modified, respectively) is nearly twice the
range of the control group (0.10 units). This may indicate that
some subjects are better at learning from this form of visual
feedback than others, or that some subjects were adversely
affected by feedback while others were positively affected.

C. Class Confusion
Figure 9 shows the group average confusion matrices of

gesture trials during block four (free games) for each group.
Rows represent the classification of the attempted gesture,
normalized to 1. There are notable similarities across the
groups, indicating several gestures that are intrinsically dif-
ficult and gesture pairs that are inherently close. In particular,
the “thumb”, “pinch”, and “fist” gestures all have a large
fraction (about 25%) of gestures that fall below the decision
threshold. Similarly, there was an overall trend that these three
gestures tended to be confused, resulting in non-zero entries
for the off-diagonal entries (fist, thumb), (fist, pinch), (thumb,
pinch), etc. The similarity between groups is an indication
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Fig. 8. Overall Changes from Baseline Performance. Left: Change
in accuracy. Right: Change in scalar class separation measure dSEP.
Boxplots show median and quartiles; dotted lines show mean. For each
subject, we perform baseline subtraction as described in Section III-G.
Change in accuracy for the modified group was significantly greater than
zero using; see Section IV-B for statistical analysis.

that feedback did not grossly disrupt subject behavior for
certain gesture classes or cause substantially different effects
for different classes.

D. Class Feature Space Similarity
Figure 10 shows the average normalized class similarity

matrix of each group. By examining the diagonal entries,
we can understand the repeatability of gestures (i.e. the
similarity between items of the same class); by examining
the off-diagonal entries, we can understand the separabil-
ity of gestures (i.e. the similarity across different classes).
As described previously, a “desirable” pattern for easy down-
stream classification (in which the subject produced consistent
and well-separated gestures) would consist of larger entries on
the diagonal and smaller entries off-diagonal.

Each group demonstrated a consistent pattern in which the
diagonal entries were brighter than the off-diagonal entries,
indicating that the gestures were generally repeatable and
well-separated. There was also a consistent pattern of bright
off-diagonal cells, indicating high similarity between three
specific gestures: “pinch”, “fist”, and “thumb”. These patterns
match well with the patterns visible in the class confusion
matrices shown in Figure 9. This correspondence between our
similarity metrics and confusion matrices may indicate that
our chosen similarity metric is well-suited to this setting and
aligns well with model performance.

We did not observe any gross changes in the structure of
class similarity between groups; note that such a change could
have occurred if feedback affected gestures differently, and this
effect may not have been visible by only inspecting the scalar
dSEP metric.

V. DISCUSSION AND FUTURE WORK

This study tested the potential of modified continuous
feedback of model performance in a gamified user interface

for rapid user training on a sEMG-based gesture recognition
system for controlling actions on a computer display.

We hypothesized that we could use manipulation of feed-
back about the gesture class probabilities in a short (4-minute)
online learning session to shape user behavior in a manner
that would increase the separation between muscle activation
patterns of different gestures and increase the accuracy of
model performance on future attempts. Overall, our results
demonstrate that a short user training session using modified
feedback has the potential to increase post-calibration perfor-
mance (accuracy and class separation relative) when compared
to veridical feedback and a no-feedback control.

A. User Calibration
Despite the emergence of research into methods for co-

adaptive learning for sEMG-based gesture recognition, there
have been few investigations specifically testing the effect of
user training as a means of rapid calibration. Numerous studies
have shown that extended user training on an sEMG-based
controller results in significant gains in performance [12], [13],
[37]. The majority of these studies have found that increased
model performance was accompanied by changes in muscle
activation patterns that are theoretically favorable to better
classification (such as improvements in class separability, vari-
ability, or repeatability). However, feature space characteristics
of class distributions are not necessarily predictive of classifier
performance, and this relationship is likely strongly dependent
on the classifier used and the relationship between training
and test data. For example, a recent investigation showed
that the relationship between performance and feature-space
metrics can be complex; these authors found that the real-
time performance of an LDA classifier was only weakly
correlated with class separability, but was not correlated
with variability or repeatability [14]. Krasoulis et. al. first
demonstrated that short-term adaptation through biofeedback
user training could positively impact prosthetic finger control
using sEMG-based decoding [10]. Our results demonstrate that
subjects who received modified live feedback experienced a
significant increase in classification accuracy. We also found
that both veridical and modified feedback provided a trend
of improvement in our feature space metric dSEP, though this
effect was not statistically significant.

B. Influence of Feedback Manipulation on User Behavior
In our experiments, the Modified feedback group showed

the largest change in classification accuracy and class separa-
bility. Flattening of the class probabilities as was done here
can be considered a form of error augmentation, since subjects
were led to believe that the separation between classes was
smaller than it actually was. This approach is most closely
related to techniques involving feedback with “error ampli-
fication,” which has been studied extensively. Feedback of
performance outcomes that are worse than actual performance
(i.e. error amplification) has been found to expedite motor
adaptations to novel task constraints compared to accurate
feedback [38], [39]. Amplification of task errors has also
shown promise as an approach to facilitate motor recovery in
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Fig. 9. Confusion Matrices averaged across subjects and normalized within each row. No within-subject correction is applied. Class confusion
structure is largely similar across groups. Left: Control subject. Middle: Veridical feedback. Right: Modified Feedback.

Fig. 10. Normalized Class Similarity Matrices. Top row: Raw similarities from block four (free games, see section II-C.6). Class similarity matrix D is
computed for each subject, normalized to [0,1], and then averaged across subjects in a group. Large values on the diagonal indicate tight clusters
for each class. Small values off-diagonal indicate well-separated clusters. Bottom row: Change in similarity matrix from baseline 1D, as described
in Equation 10. Positive values indicate pairs that became closer in feature space, compared to baseline; subjects whose structure improved would
show positive values on the diagonal and negative values off-diagonal. See Section III-F for further details. Left: Control group. Middle: Veridical
feedback. Right: Modified feedback. Upper triangular parts are omitted due to symmetry.

patients with neurological disorders [25], [40]. Faster or more
complete learning with error amplification has been attributed
to more brain processes associated with greater attention to
execution of the motor task [41], [42], [43] and reduction of
sensorimotor noise [20]. We speculate that improvement in
classification accuracy with Modified feedback in this study
may be a product of similar mechanisms.

C. Selected Gestures
We selected gestures that mimicked the manipulation of

commonplace items such as remote controls and cell phones.

No subject commented that the gestures were unfamiliar or
difficult to perform. Directional gestures using wrist move-
ments (“Up”, “Down”, “Left”, “Right”) were generally more
separable and yielded higher classification accuracy compared
to gestures using grasping movements (“Pinch”, “Thumb”,
“Open”, “Fist”). The extrinsic hand muscle groups used by
each of these grasping gestures are similar, which may explain
why subjects had a difficult time performing them accurately
while also creating separation in muscle activation patterns.
Thus the feature-space similarity that we observed for these
grasping gestures is somewhat expected.
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D. Limitations
There were several limitations of the current work that

may have affected the results and interpretations. Only a
single classification model was used. Several machine learning
methods, including artificial neural networks, linear discrimi-
nant analysis, support vector machines (SVM), and Gaussian
mixture models have been previously used for sEMG-based
control. The choice to use a model based on SVM and logistic
regression was due to its simplicity and the popularity of
SVM for this application. It is possible that the choice of
classifier model affects both calibration accuracy and the way
that users explore the mapping of muscle activation to gestures.
Nevertheless, the user training scheme employed here likely
has general benefits for use and understanding of human co-
adaptive behavior.

There are a number of possible changes in the signal pro-
cessing pipeline that may yield improvements in overall model
performance. The active window for feature extraction may be
tuned, and additional features such as time-frequency domain
or higher-dimensional feature vectors may be extracted. The
selected features (RMS, and median frequency) were chosen
based on their common use for sEMG-based gesture classi-
fication and initial pilot testing. Future work should evaluate
how sEMG feature selection affects user training.

E. Designing Improved Feedback
Only a single type of feedback manipulation was tested.

We used a feedback manipulation that flattened probabilities
across classes, making it more difficult to achieve a correct
classification. This approach was selected as it was expected
that participants would respond by increasing the separation
between muscle activation patterns for different gestures.
While we observed a non-significant trend of improvement
in class separation, the manipulation was not directly opti-
mized for this purpose. Future research should explore the
optimization of feedback manipulation for shaping user behav-
ior during co-adaptive sEMG-gesture recognition. Adaptive
feedback manipulation based on user and model performance
characteristics to target specific class confusions is an attrac-
tive future direction. Further improvement may come from
iterating between rounds of visual feedback to induce human
learning, and rounds of model re-training using the subject’s
most recent data. The approach we used was a form of
modified knowledge of results; future work could explore
using modified knowledge of performance by giving the user
feedback about feature space characteristics such as distance
between the current feature vector and a representative item
from the target class, or aggregate feature metrics describing
properties like separability and repeatability.
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