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EMG-based Multi-User Hand Gesture
Classification via Unsupervised

Transfer Learning Using Unknown
Calibration Gestures
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Abstract— The poor generalization performance and
heavy training burden of the gesture classification model
contribute as two main barriers that hinder the com-
mercialization of sEMG-based human-machine interaction
(HMI) systems. To overcome these challenges, eight unsu-
pervised transfer learning (TL) algorithms developed on
the basis of convolutional neural networks (CNNs) were
explored and compared on a dataset consisting of 10 ges-
tures from 35 subjects. The highest classification accuracy
obtained by CORrelation Alignment (CORAL) reaches more
than 90%, which is 10% higher than the methods without
using TL. In addition, the proposed model outperforms
4 common traditional classifiers (KNN, LDA, SVM, and
Random Forest) using the minimal calibration data (two
repeated trials for each gesture). The results also demon-
strate the model has a great transfer robustness/flexibility
for cross-gesture and cross-day scenarios, with an accu-
racy of 87.94% achieved using calibration gestures that are
different with model training, and an accuracy of 84.26%
achieved using calibration data collected on a different day,
respectively. As the outcomes confirm, the proposed CNN
TL method provides a practical solution for freeing new
users from the complicated acquisition paradigm in the cal-
ibration process before using sEMG-based HMI systems.

Index Terms— High-density sEMG, hand gesture classifi-
cation, unsupervised transfer learning, deep learning.

I. INTRODUCTION

HUMAN-MACHINE Interaction (HMI) systems recog-
nize user’s intent based on biological signals, and
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translate them into commands of machine behaviors [1].
Surface Electromyography (sEMG), as one of the widely
used biological modalities, has shown great potential in
both clinical research and commercial applications [2]. Com-
pared to other applicable signals (e.g., signals from brain or
spinal cord), sEMG, which can reflect abundant information
of user’s motion intention, is non-invasive and easy to be
obtained through the electrodes placed on skins. Nowadays,
the sEMG-based HMI systems have been widely used in
various fields, such as prosthesis control [3], [4], [5], motor
rehabilitation [6], [7], [8], biomechanics [9], [10], [11] and
ergonomics [12], [13], [14].

For decades, hand gesture recognition has been one of the
most intuitive and commonly used techniques for sEMG-based
HMIs. A large number of studies have established different
models to achieve a precise classification accuracy of gesture
recognition. For example, in [15], researchers used a Support
Vector Machine (SVM) based on Gaussian radial basis func-
tion to classify five gestures and achieved an average accuracy
of 89%. In [2], four different traditional classifiers were tested
to find the best configuration for identifying 17 diverse hand
movements. In recent years, with the development of advanced
artificial intelligence technology, hand gesture recognition with
deep learning has become a research hotspot in the related
fields. Compared with traditional statistical learning algo-
rithms, deep learning has stronger learning ability and better
robustness on large datasets, which has proven its superiority
in many classification tasks. Wei et al. [16] used a multi-stream
divide-and-conquer CNN framework to learn the correlation
between individual muscles and specific gestures. Hu et al.
[17] proposed a hybrid CNN-RNN network structure as well
as a new sEMG image representation for sEMG pattern recog-
nition. Although these relevant studies have achieved higher
classification accuracy than traditional classifiers, most of them
are subject-specific. Specifically, the HMI systems require
labeled data and model calibration procedures for a specific
subject before use. Such a time-consuming process largely
reduces the convenience of practical use. However, although
directly applying models trained from other subjects to a new
user can reduce the inconvenience of calibration, it leads to
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significant errors. Therefore, developing a subject-generalized
model with high recognition accuracy and minimal calibration
time is crucial to advance user experience.

Accordingly, many researchers have introduced transfer
learning (TL) algorithms in their work [18], [19], [20], [21],
[22]. TL can utilize a large number of prior knowledge to
train a universal model for new scenarios with a few data,
which provides the possibility to solve the problems of model
generalization and calibration burden [21]. Vidovic et al. [22]
used a small amount of calibration data to learn a linear trans-
formation to project the original and new data into a common
subspace, and then trained and tested two Bayesian multi-class
classifiers, namely Linear Discriminant Analysis (LDA) and
Quadratic Discriminant Analysis (QDA) in that space. With
the adaptation, their classification accuracy increased from
75% to 92% for 8 gestures classification task. Chen et al.
[21] fine-tuned two networks on target datasets based on a
pre-trained model to reduce the training time and guarantee
the recognition accuracy of more than 90% for 10 gestures
classification task. Ulysse et al. [20] proposed Progressive
Neural Networks (PNN) to train a target network with only one
cycle data for training. Together with a source network trained
on the original datasets, a higher average accuracy of 93.36%
can be achieved compared to that of 86.77% for non-TL
algorithm for 7 gestures classification task. Although these
relevant studies improve the generalization ability of gesture
classification models with minimal calibration data or reduce
model training time, most studies use supervised TL methods,
which still require the labeled data from target users. More-
over, for the deep learning-based studies, researchers usually
feed raw sEMG data into their network instead of hand-crafted
features. Considerable heuristic knowledge contained in these
classic features are ignored, resulting in the requirement of
additional data to train the network.

In this paper, we used classic EMG features with unsu-
pervised TL algorithms embedded in a CNN-based deep
learning model to implement a cross-subject gesture classi-
fication model. Several TL algorithms were compared with
the highest accuracy obtained from Correlation Alignment
for Deep Domain Adaptation (Deep CORAL). The proposed
method can achieve > 10% accuracy improvement over the
baseline without TL technique. Code and data are available
on https://github.com/Knight99812/EMG_DeepTL. The main
contents and contributions are summarized as follows:

1) We validated different TL strategies on a large hybrid
dataset (including one public dataset and two private datasets)
of 10 gestures from 35 subjects. In this dataset, data from
34 subjects were used as training set and source domain,
and data from the remaining 1 subject (considered as target
user) were divided into validation set and target domain.
By transferring knowledge learned from source domain to
target domain, we achieved 3%-10% accuracy improvement
over the baseline. The highest accuracy reaches more than 90%
which is state-of-the-art to our knowledge for unsupervised
gesture classification of cross-subject tasks.

2) We investigated the relationship between the number of
trials per gesture used for transfer and the model performance.

The results indicate our scheme can reduce the calibration
time for new users. Moreover, the possibility of using new
gestures that were completely different from the training set
for model transfer was verified. The results show that new
users do not need to follow a fixed calibration process to obtain
a well-performed classification model.

The remainder of this paper is organized as follows.
Section II describes the information of database and exper-
imental protocol. The signal preprocessing methods, classifi-
cation algorithms and validation protocols are introduced in
Section III. Moreover, the results are presented in Section IV.
Section V discusses and concludes the proposed paper.

II. MATERIALS

In this study, three hand gesture datasets (named V1, V2,
and V3) were used. They all follow a similar data acquisition
paradigm except for the types of hand gestures involved, and
they are collected under the supervision of the same principal
investigator. The V1 is one session (pattern recognition ses-
sion) of an open-sourced dataset containing 34 hand gestures
from 20 subjects collected on two separate days [23]. The
V2 and V3 are two private datasets with 10 and 11 subjects
respectively. However, the V2 and V3 only contain 10 com-
monly used hand gestures which are also involved in V1.
Therefore, we combined the three datasets as one large hybrid
dataset to verify the generalization ability of our proposed
model. Overall, the final dataset consisted of 10 common
gestures (see Fig. 2) from 41 (20+10+11) subjects collected
on 2 separate days. However, 6 subjects mistakenly performed
at least one specific type of gesture during data collection.
To avoid possible bias in TL algorithm due to gesture type,
we used the remaining 35 subjects (22 male, 13 female; aged
21-34 years, all right-handed) for further analysis.

A. Subjects
All the subjects involved were informed of the detailed

research purpose and experimental procedures in advance,
and provided the informed consent. The study was supervised
and approved by the ethics committee of Fudan University
(approval number: BE2035).

B. Data Acquisition
The data acquisition process of the three datasets is briefly

described here. A more detailed description can be found in
the previous study [23].

The 256-channel high-density sEMG (HD-sEMG) array was
applied in our work because of its high spatiotemporal resolu-
tion. Specifically, four 8×8 electrode arrays were mounted on
both extensor and flexor (two arrays for each) of the forearm
to obtain HD-sEMG signals, as shown in Fig. 1. The right leg
drive and reference electrodes were placed on the head of the
ulna and the elbow, respectively. The signals were acquired
by the Quattrocento system (OT Bioelettronica, Torino, Italy),
with a passband filtering of 10-500 Hz, an amplifier gain of
150, a sampling rate of 2048 Hz and a resolution of 16 bits.
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Fig. 1. Electrode placement on the volar and dorsal side of the forearm.

Fig. 2. Involved gestures. The gestures were: 1) Wrist Flexion (WF),
2) Wrist Extension (WE), 3) Wrist Radial (WR), 4) Wrist Ulnar (WU), 5)
Wrist Pronation (WP), 6) Wrist Supination (WS), 7) Hand Close (HC), 8)
Hand Open (HO), 9) Thumb + Index finger pinch (TI), 10) Thumb + Mid-
dle finger pinch (TM).

The 10 hand gestures included in this study are shown in
Fig. 2. They are all common gestures in daily life involving
the combination of various states of finger and wrist joints.
The entire acquisition process was guided by a self-built
Graphic User Interface (GUI), and supervised by at least one
experiment assistant. During the experiment, the subject was
required to perform two repeated trials for each single gesture
before they continued to the next one. Each trial included
three 1-s dynamic tasks (from the resting state to a designated
gesture, and finally back to the initial state) and a 4-s gesture-
and-hold task (from the resting state to the end of the ongoing
gesture). Only dynamic tasks were used in our experiment.
A 2-second inter-trial and a 5-second inter-gesture resting
period were provided to avoid the impact of muscle fatigue.
If the subject performed a wrong gesture or missed one certain
trial, they were asked to inform the experiment assistant. Then,
these tasks were removed from the final dataset. On average,
0.43±0.86 trials for each subject were excluded. Each subject
performed the experiment on two different days, with an
interval from 1 to 22 days. The data from two days were
noted as Day 1 and Day 2, respectively.

III. METHODS

The cross-subject hand gesture classification framework
based on the transfer learning strategy is shown in Fig. 3.
We describe the main step as follows.

A. Data Preprocessing
The acquired HD-sEMG signals were segmented into cor-

responding tasks with a window length of 1 second. For
each task, the first 0.25s reaction time was removed to avoid
introducing interference. 4170 tasks were obtained from the
hybrid dataset after data segmentation. Then they were filtered
with a 10-500 Hz band pass Butterworth filter. A zero-phase
filter processing was used to solve the non-linear phase issues,
bidirectionally with 8-order for each direction. A notch filter
was also used to attenuate power line interference at 50 Hz
and its harmonic components up to 400 Hz.

B. Feature Extraction
40 classic features were selected to extract the EMG

features based on the previous study [24]. For each fea-
ture, a 256-dimensinal feature vector was extracted with
each dimension representing a specific channel (note: Auto-
Regressive Coefficient (AR) feature has 1024 dimensions
because it had 4 values per channel). Then we concatenated
these feature vectors to obtain a constituent matrix with
11008 dimensions (39×256 + 1024) representing a specific
trial of a gesture. Therefore, the size of the feature matrix
should be 60 (10 gestures×6 repetitions) ×11008 for one-day
data of each subject.

C. Outlier Recovery
Despite the high spatiotemporal resolution of HD-sEMG,

it commonly has a proportion of channels with poor signal
quality. The outliers may greatly degenerate classification per-
formance and thus need to be handled before model training.
Since an 8×8 feature map can be re-arranged based on channel
location of each electrode array, we detected the outliers within
each feature if any value in feature map was more than three
standard deviations away from the mean value of the ensemble.
Then, these outliers were smoothed through replacing the
original value by the average of values in their neighboring
channels.

D. Feature Selection
We compared the cross-subject classification performance of

40 classic features to obtain the optimum feature combination
for our gesture recognition task. Since it is impossible to inves-
tigate all combinations, a heuristic search method, Sequential
Forward Selection (SFS), was applied. Specifically, the search-
ing process of SFS started with an initial feature, and then
was gradually extended by adding one feature whose inclusion
resulted in the highest classification accuracy at each forward
step. The stepping finally terminated when the accuracy was
no longer improved. Since SFS was a greedy algorithm which
may fall into a local optimum solution, feature combinations
with different initial features were examined.

E. Classifiers
Several traditional classifiers and a deep classifier were used

in this study to explore the performance of both conventional
machine learning and deep learning methods on our hybrid
dataset. Moreover, multiple transfer learning modules were
embedded in these classifiers to compare their improvement.
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Fig. 3. Block diagram of the proposed cross-subject hand gesture classification framework. The left side was the complete flow chart, including
the preprocessing part and the subsequent validation part. The right side was the detailed explanation of the validation part.

1) Traditional Classifiers: 4 common traditional classifiers,
namely K-Nearest Neighbors (KNN), LDA, SVM, and Ran-
dom Forest (RF), were applied to the gesture classification
task. Once the optimal feature combination was determined,
we extracted the corresponding feature matrix with Z-score
normalization step within each feature. Then, the processed
feature matrix was fed into these classifiers for training.
In addition, the hyperparameters were selected as follows:
1) for KNN, the number of neighbors was set to 8; 2) for SVM,
LibSVM was used to automatically search for the optimal
hyperparameters; 3) for RF, the number of random trees was
set to 300.

2) Deep Classifier: This study used CNN as the underlying
framework, given its great success in sEMG pattern recogni-
tion validated by previous studies [16], [18], [21]. We reshaped
the 256-dimensional vector for each feature selected from
feature selection step into a 16×16 feature map according
to the actual 2-D location of the electrodes in Fig. 1.Then,
different features can be regarded as different channels in
CNN, similar to the RGB channels of pictures in computer
vision. These operations aimed to take the advantages of
spatial information obtained from HD-sEMG, and facilitate
CNN to extract this spatial information. The size of processed
input for the CNN had four dimensions: number of tasks
(6 repetitions ×10 gestures = 60), number of features selected
(based on the results of SFS feature selection step), width and
height ( 16×16 correspond to actual electrode placement).

The structure of our CNN was based on many well-known
architectures developed for image classification. However, the
structures were greatly simplified to avoid overfitting since our
task with a small amount of training samples was not complex.
In detail, the proposed CNN comprised 15 layers including
two convolutional layers (with 16 and 32 filters respectively)
and three fully-connected layers, each followed by a ReLU
layer, two max-pooling layers, two dropout layers, and finally

TABLE I
SUMMARY OF USED HYPERPARAMETERS IN DEEP NEURAL NETWORK

a classification layer (see Fig. 4). Specifically, the ReLU
layer was adopted to avoid vanishing gradient problem. The
max-pooling layer was to reduce the dimensions of features
and refine the information. The dropout layer was to prevent
the overfitting problem. The hyperparameters and other details
are described in Table I.

F. Transfer Learning Methods
Due to the large difference in the distribution of sEMG

signals across individuals, the performance of a well-trained
gesture classification model for a specific group of subjects
may degenerate significantly when applied to a new user.
This huge difference can be derived from many factors, for
example, individual neuromuscular anatomy, signal quality,
position of electrode placement, etc. Therefore, to establish
a gesture classification model with a powerful generalization
ability, TL is an indispensable technique attracting consider-
able research interests.

In this paper, we introduced several completely unsuper-
vised TL approaches, also termed Domain Adaptation (DA),
to learn domain-invariant features by directly reducing the
discrepancy among different distributions. The working mech-
anism of these methods was similar and can be described in
our scenarios as follows: Let X = {x1, x2, . . . xn} be the input
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Fig. 4. The architecture of the deep classifier CNN with TL algorithms.

feature space (e.g., sEMG features) and Y = {y1, y2, . . . yn}

the output space (e.g., gesture categories) of the classification
task. The source domain with n labeled samples repre-
sents sEMG dataset acquired from a large group of subjects
for model training, denoted as S =

{(
x s

1, ys
1
)
, . . . ,

(
x s

n, ys
n
)}

.
Besides, the target domain with m (m≪ n) unlabeled samples
represents sEMG dataset acquired from a new subject for
transfer and model testing, denoted as T =

{
x t

1, . . . , x t
m
}

. The
goal is to estimate a strong predictor from S and T to classify
new gestures from the target user. These DA methods achieve
it by adding an inter-domain difference loss to the loss function
of model. Eight widely used algorithms (DaNN, DDC, RTN,
DAN, JAN, B-JMMD, AssociativeDA, CORAL) based on five
different loss measures were compared in this paper.

1) Maximum Mean Discrepancy (MMD): The MMD is
one of the most commonly used measures to measure the
difference between two probability distributions from their
samples. It is an effective criterion that compares distributions
without initially estimating their density functions [25], which
is defined as

MMD
[
F ,p, q

]
= sup f ∈F

(
Ep

[
f
(
x s)]

−Eq
[

f
(
x t)]) (1)

where p and q are two probability distributions of source and
target domain; F is a class of functions f : X → R defined as
the unit ball in a universal Reproducing Kernel Hilbert Space
(RKHS); f (x) represents the dot product of f and ϕ(x), where
ϕ(x) maps the variable to RKHS through kernel function.

Based on (1) and the kernel trick, we can rewrite the
kernelized empirical estimate of MMD for our work as

MMD [F ,S, T ] =

(
1

n (n−1)

∑n

i ̸= j
k

(
x s

i , x s
j

)
+

1
m (m−1)

∑m

i ̸= j
k

(
x t

i , x t
j

)
−

2
mn

∑n

i=1

∑m

j=1
k

(
x s

i , x t
j

)) 1
2

(2)

where k(·, ·) is a kernel function, e.g., a Gaussian kernel was
used in this work.

By measuring MMD at different stages in the model
architecture, different MMD-based methods were generated.

We selected DaNN [25], DDC [26] and RTN [27] as
representatives to test. Their difference is that DaNN consists
of only two fully-connected layers; DDC deepens the network
and introduces an adaptive layer; and RTN measures MMD
of two layers at the same time and introduces an additional
entropy loss.

2) Multiple Kernel variant MMD (MK-MMD): Intuitively,
MMD is the upper bound of the difference between the expec-
tations of two distributions after being mapped. The way of
mapping, or the choice of kernel function, has a direct impact
on the results of MMD. However, so far we have no theoretical
support for which kernel function should be selected, thus
the MK-MMD was introduced. It was formalized to jointly
maximize the two-sample test power and minimize the failure
of rejecting a false null hypothesis [28]. The characteristic
kernel associated with the feature map is defined as the convex
combination of v Positive Semi-Definite (PSD) kernels {ku}

K≜

{
k =

v∑
u=1

βuku :

v∑
u=1

βu = 1, βu≥0, ∀u

}
(3)

where the constraints on coefficients βu are imposed to guaran-
tee that the derived multiple kernel k is characteristic [28]. The
MK-MMD frees us from manually selecting a special kernel
function and enhances the model performance by leveraging
several different kernels. The deep TL algorithm based on
MK-MMD used in this work is DAN [28].

3) Joint MMD (JMMD): Due to the characteristic of MMD,
most existing methods apply it to measure the discrepancy
between marginal distributions of source and target domains.
However, in classification tasks, conditional distributions are
equally important. By taking both marginal and conditional
distributions into consideration, we can get its measurement
of joint distribution called JMMD, which is defined as

JMMD [F ,S, T ] =

(
1
n2

∑n

i, j=1

∏
l∈L

kl
(

zsl
i , zsl

j

)
+

1
m2

∑m

i, j=1

∏
l∈L

kl
(

ztl
i , ztl

j

)
−

2
mn

∑n,m

i. j=1

∏
l∈L

kl
(

zsl
i , ztl

j

)) 1
2

(4)
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where L stands for the part of the network that needs to
measure the domain discrepancy; zl represents the output of
lth layer.

JMMD applies non-uniform weights on the kernel function
to reflect the influence of other variables in other layers l ̸∈L.
This captures the full interactions between different variables
in the joint distributions, which is crucial for DA [29].
The deep TL algorithm JAN [29] and its improved version
B-JMMD [30] which adds a balancing coefficient to the
JMMD loss are employed to investigate the effect of JMMD
in our scenario.

1) Association Loss (ASSOC): ASSOC loss can be divided
into walker loss and visit loss. Denote the embedding vectors
derived from the labeled source domain data and the unlabeled
target domain data by network as A and B. Then imagine a
walker going from A to B according to the mutual similarities,
and back [31]. The walk is correct once he ended up at
the same class as he started from. The walk loss penalizes
incorrect walks and encourages walks to a uniform probability
distribution of the correct class, which is defined as the cross-
entropyH between the target distribution of correct round-trips
RT and the round-trip probabilities Paba ,

Lwalker = H(RT ,Paba) (5)

with the target distribution

RTi j =

{
1/ni class(Ai ) = class(A j )

0 else
(6)

where ni is the number of samples of class Ai , and the two-
step round-trip probability

Paba
= (PabPba)i j (7)

where Pab is the transition probability from Ai to B j . The
visit loss is a regularizer to make each target sample be visited
with equal probability, which is defined as the cross-entropy
H between the uniform distribution over target samples and
the probability of visiting some target sample start in any
source sample,

Lvisi t = H(V,Pvisi t ) (8)

where

Pvisi t
j =

∑
xi ϵS

Pab
i j , V j =

1
|B|

(9)

2) CORrelation Alignment (CORAL): Besides MMD and its
variants, a different distance metric CORAL, which reduces
the discrepancy between domains by aligning their second-
order statistics [32], was also performed. It is defined as

COHAL =
1

4d2 ∥CS−CT ∥
2
F (10)

where d denotes the dimensions of the input feature vector;
∥·∥

2
F denotes the squared matrix Frobenius norm; CS and CT

are the feature covariance matrices of the source and target
domains, respectively. They can be given by

CS =
1

n−1

(
DT

S DS−
1
n

(
1T DS

)T (
1T DS

))
(11)

CT =
1

m−1

(
DT

T DT −
1
m

(
1T DT

)T (
1T DT

))
(12)

where n and m are the same as defined in previous section;
DS and DT is the input feature matrix; and 1 is a column
vector with all elements equal to 1.

Additionally, when combined with traditional classifiers,
CORAL is a subspace-based TL method that transfers knowl-
edge in the feature aspect [32]. The optimization function is:

min A

∥∥∥AT CS A−CT

∥∥∥2

F
(13)

where A is a second-order feature transformation matrix; CS ,
CT and ∥·∥

2
F are defined the same as in deep version. The

features in source domain were transferred into the same space
as those in target domain through the mapping matrix A.
Then, different machine learning classifiers were trained in
the projected space.

G. Evaluation
Three different validation protocols were used to evaluate

model performance.
1) Protocol 1: to maximize the use of data, “leave-one-

subject-out” cross-validation protocol was implemented. Each
subject was treated as the target user in turn, whose model was
trained by the data acquired from the remaining 34 subjects
as source domain. Then, a portion of unlabeled data from
the target user (e.g., 2 trials for each gesture) were used
to reduce the domain difference between source domain and
target domain if TL was applied. The classification model was
tested on the remaining data (except the trials used for transfer)
from Day 1 or Day 2 of the target user. Thus, two accuracy
values (Day 1 and Day 2) were obtained for each subject, and
their average of two days was set as the evaluation results. This
protocol was mainly to evaluate the generalization ability of
our gesture classification models when applied to new users,
and to compare the performance between different models both
with and without TL.

2) Protocol 2: to simulate real-world scenarios, we also
accessed the cross-day robustness of our model with TL
methods. Specifically, for target user, unlabeled data in Day 1
was employed as the target domain to implement TL, and
only data in Day 2 constituted the testing set whose accuracy
was reported. This protocol was used to demonstrate that our
model with TL also have a cross-day robustness for new users
even in the absence of current-day data, significantly reducing
the calibration time for practical use.

3) Protocol 3 : to further validate the robustness of the
proposed model, we investigated the influence of the types
of gesture in target domain if data in TL step were different
from the training data in source domain or testing data in
target domain. In this protocol, only V1 dataset, which has
24 additional gestures (V1 has 34 gestures, and 10 gestures
were used in Protocol 1 and 2), was used for validation.
In detail, the training set and testing set from 10 gestures
were the same as that in Protocol 1 and 2. The data of 24 new
gestures from the target user in a specific Day were considered
as a random transfer pool. We randomly selected a portion
of data from this pool to carry out the calibration for target
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domain. This protocol can verify that our model with TL has
a strong robustness against the types of gestures for new users
even if they do not necessarily perform the same gestures as
training or testing stage during calibration.

It is worth mentioning that we compared the performance
of several models both with and without TL in all 3 validation
protocols. To get a fairer comparison result, the training set
composition and testing set composition was the same for
TL and non-TL scenarios. The difference between them was
that when using TL, the target domain was employed to map
features to a common subspace by traditional model or to
calculate a domain difference loss by deep model. When TL
was not used, the target domain was simply ignored.

The main evaluation results are organized and presented in
next chapter as follows:

First, we employed SFS to find the optimal feature com-
bination for cross-subject gesture classification task in the
classic sEMG feature set. Second, based on the optimal feature
combination, we compared the classification performance of
different classifiers, including four common traditional clas-
sifiers and a deep CNN-based classifier. Third, we compared
the performance variation of deep classifier embedded with
several TL (DA) methods. The best TL algorithm termed
CORAL was obtained. Moreover, the comparison between
traditional classifiers and deep classifier with CORAL were
also performed. Fourth, different Protocols (1, 2 and 3) were
further performed for deep CORAL to test the robustness of
the proposed method.

All the traditional classifiers were implemented in Matlab
2021b and the deep classifier in Pytorch (version:1.10.0). All
these evaluations were conducted on the hybrid dataset and all
the results were reported as average over at least three random
training/testing runs.

H. Statistical Analysis
Because the results followed tests of normality, the per-

formance differences were tested using multivariate repeated
measures analysis of variance (RANOVA). When degree of
sphericity (ε) was < 0.75, degrees of freedom was adjusted
by Greenhouse-Geisser; and when 0.75 < ε < 1, it was
adjusted by Huynh-Feldt. Post hoc pair-wise comparisons
were conducted using paired t-tests with Bonferroni correction
for multiple comparisons. The differences were considered
significant for p < 0.05 .

IV. RESULTS

A. Comparison of Different Feature Combination
As mentioned above, we employed an intuitive but efficient

approach, SFS, to find the optimal feature combination for
cross-subject gesture classification task in Protocol 1. Since
this was an iterative process, LDA was chosen as the classifier
considering its low time-consuming and relatively high accu-
racy. We started the algorithm with 5 different initial features
and recorded the top 5 features with highest accuracy in each
step. The top 10 feature combinations were shown in Table II.

For all the acquired combinations, the ZC, SSC and SKEW
had the highest selection frequency (almost appear in all top

TABLE II
SUGGESTED FEATURE COMBINATIONS AND THE CORRESPONDING

FEATURE DIMENSIONS AND CLASSIFICATION ACCURACY

10 combinations), indicating their superiority in cross-subject
gesture classification task. The optimal feature combination
was LTKEO + ZC + SSC + SKEW, with a 70.08% classifi-
cation accuracy achieved. Thus, this combination was selected
as the model input for the further analysis.

B. Results of Protocol 1

When TL was not applied, the deep classifier CNN obtained
the highest classification accuracy (79.95%). The traditional
classifiers, KNN, LDA, SVM and RF achieved 68.42%,
69.84%, 79.26% and 77.94% classification accuracy, respec-
tively (see Fig. 6). The results of RANOVA showed that CNN,
SVM and RF achieved higher classification accuracy than
KNN and LDA (p < 0.05 ).

We embedded eight TL algorithms with the best-performing
CNN as the underlying framework. These methods were
distinguished by different domain difference metrics and dif-
ferent transfer stages. However, for a fair comparison, their
network structure and hyperparameter settings were the same
as the baseline version. The results are shown in Table III.
CORAL achieved higher classification accuracy than other TL
algorithms in Protocol 1 and Protocol 3 (p < 0.05 ).

Since the CORAL achieved more than 90% classification
accuracy (90.19%, 94.33% for V1), the rest analysis are mostly
based on this TL algorithm. As shown in Fig. 5 and Fig. 9,
CORAL significantly improved the classification accuracy on
almost all subjects and all gestures. To demonstrate its effect
more intuitively, we selected a representative subject to visual-
ize its training process both with and without CORAL. If the
loss function included a CORAL loss, the feature difference
between source domain and target domain learned by the
network was limited within a small range. However, if only
the classification loss was considered, the network focused
on learning inherent characteristics of the source domain,
resulting in an increasing distance between two domains as
the iteration (see Fig. 10). Moreover, the t-SNE embeddings
of gestures from the testing set were plotted to demonstrate
the separability of the features using CORAL (see Fig. 11).
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TABLE III
PERFORMANCE OF DIFFERENT TRANSFER LEARNING METHODS IN 3 PROTOCOLS

Fig. 5. The classification accuracy of thirty-five subjects on two days with (red line) and without (blue line) CORAL in Protocol 1.

Fig. 6. Performance of five classifiers without CORAL in Protocol 1.

The relationships between the model performance and
(1) the number of subjects in the source domain (in the training
set) or (2) the number of each gesture used for transfer were
investigated, respectively. The results are listed as follows:
(1) whether with or without CORAL, the classification accu-
racy improved significantly with the increase of subjects in
source domain (see Fig. 7); (2) two repeated trials for each

Fig. 7. The relationship between the number of subjects in the source
domain and classification accuracy with and without CORAL.

gesture were enough to achieve a high level of transfer (see
Fig. 8).

We also tried embedding CORAL into traditional classifiers.
As shown in Fig. 12, most traditional classifiers underwent
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Fig. 8. The relationship between the number of trials per gesture in the
target domain and classification accuracy.

negative transfer after combining with CORAL. The KNN,
LDA and SVM degenerated significantly by 3.5%, 24.14%
and 24.28%, respectively. The RF was almost unchanged.
The CNN with CORAL achieved higher classification accu-
racy than other classifiers both with and without CORAL
(p < 0.05 ).

C. Results of Protocol 2
In Protocol 2, we evaluated different classifiers performance

and different TL algorithms when transferring data from a
second-day. When TL was not applied, CNN achieved the
highest classification accuracy (80.86%). The traditional clas-
sifiers, KNN, LDA, SVM and RF achieved 68.37%, 72.71%,
80.70% and 79.38% classification accuracy, respectively. The
results of RANOVA showed that CNN, SVM and RF achieved
higher classification accuracy than KNN and LDA (p <

0.05 ). After combing with CORAL, all the traditional clas-
sifiers have undergone negative transfer, KNN, LDA, SVM
and RF degenerated by 6.45%, 14.6%, 18.08% and 1.18%,
as shown in Fig. 13.

Among the 8 different TL methods, the highest classification
accuracy was achieved by AssociateDA (84.35%), and CNN
with CORAL achieved 84.26% (88.59% for V1). Compared
to the non-TL version, they improved by 3.49% and 3.4%,
respectively. After performing the statistical analysis, we can
find there was no statistical difference between classification
performance with these two methods (p > 0.05 ). Although
some improvement has been achieved, their accuracy has
declined compared with the results of Protocol 1.

D. Results of Protocol 3
In Protocol 3, we randomly selected data of new gestures

from the target user to construct the target domain. When
TL was not applied, CNN achieved the highest classification
accuracy (85.47%). The traditional classifiers, KNN, LDA,
SVM and RF achieved 72.55%, 63.43%, 84.01% and 82.22%
classification accuracy, respectively. The results of RANOVA

TABLE IV
REVIEW OF PREVIOUS RESEARCH AND THIS STUDY

showed that CNN and SVM achieved higher classification
accuracy than other classifiers (p < 0.05 ). After combing
with CORAL, all the traditional classifiers have undergone
negative transfer, KNN, LDA, SVM and RF degenerated by
3.6%, 0.86%, 6.66% and 6.94%, as shown in Fig. 14.

The result presented in Table III demonstrated that CORAL
achieved the highest classification accuracy (87.7%), surpass-
ing the non-TL version by 1.85%, indicating the model is
robust to the selection of gesture categories. By embedding TL
module, the network can effectively acquire relevant informa-
tion from the target domain, thereby expediting model training
and extracting features that are better suited for the target user.

V. DISCUSSION

A. Review of Previous Studies on Cross-Subject Hand
Gesture Classification

The poor generalization performance and heavy training
burden of the gesture classification model are always impor-
tant factors that hinder the application of sEMG-based HMI
systems. To solve this problem, we compared different feature
combination and explored different classifiers embedded with
eight unsupervised transfer learning algorithms to build a
cross-subject gesture classification model. The optimal config-
uration led to a classification accuracy over 90% on a hybrid
dataset including 10 gestures from 35 subjects on two different
days. Validated by three different validation protocols, our
work is able to significantly reduce the training burden for new
users of sEMG-based HMI systems in the calibration process.
To clarify our contributions more specifically, we listed the
results of previous research using the same public dataset (or
partially using it) in Table IV. The superiorities of our study
mainly lied in the following aspects:

1) we employed a heuristic method SFS to find the optimal
feature combination for cross-subject gesture recognition task.
Then the selected features were fed into the network instead
of raw sEMG data to accelerate the model training. 2) we
built a simple network architecture with number of trainable
parameters below 130K. By embedding an unsupervised trans-
fer learning module in the network, an accuracy improvement
of more than 10% could be achieved while only using a small
amount of data from target user for training. 3) we proposed
two new validation protocols to demonstrate the robustness of
our model for cross-day and cross-gesture scenarios.
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Fig. 9. (a). Confusion matrix for ten-gesture classification accuracy without CORAL (b). Confusion matrix for ten-gesture classification accuracy
with CORAL.

Fig. 10. (a). Changes in the loss of the network without CORAL during training (b). Changes in the loss of the network with CORAL during training.

Fig. 11. (a). The t-SNE visualization of network outputs of testing set without CORAL (b). the t-SNE visualization of network outputs of testing set
with CORAL.

B. Effects of Feature Selection
In the feature selection stage, we employed SFS to find

the optimal combination in a feature set of 40 classic features.

The combination of LTKEO + ZC + SSC + SKEW achieved
the highest classification accuracy using LDA classifier. When
selecting a combination of features, the m best selected
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Fig. 12. Performance of five classifiers with and without CORAL in
Protocol 1.

Fig. 13. Performance of five classifiers with and without CORAL in
Protocol 2.

Fig. 14. Performance of five classifiers with and without CORAL in
Protocol 3.

features may not necessarily be the best m features globally.
This is because besides the relevance of features with ground
truth labels, the dependency and redundancy between features
may also largely impact classification performance [24]. With
different initializations, three features ZC, SSC and SKEW
had the highest chance to be selected. One possible reason is

that ZC or SSC counts the number of times where EMG signal
crosses zero or peak, and SKEW presents the distribution of
sEMG. Therefore, these features can well characterize the
signal intensity without measuring signal amplitude which
is the most representation between individuals. On the other
hand, feeding the selected feature combinations into the net-
work instead of the raw sEMG signals can speed up the
convergence of model training. Our model can achieve more
than 90% classification accuracy within a mere 60 itera-
tions, which usually requires hundreds of iterations in other
researches.

C. Effects of Classifiers
In the classifier stage, CNN and RF showed stronger gener-

alization ability over the other classifiers. This may be due to
the fact that they both contain the idea of ensemble learning
which often has high classification performance when dealing
with high dimensional data. For RF, multiple decision trees
are generated, with each one handling a feature subset or a
sample subset. The final decision given by the constituent
trees is hence less sensitive to characteristics of a specific
user. For CNN, the dropout layers prevent the model from
overfitting the training set. Each decision can be seen as a
result of multiple neurons. The impact of differences between
different users is thus attenuated.

D. Effects of Transfer Learning Methods
For the TL algorithms, all methods made an improve-

ment when combined with deep classifier. By adding domain
difference loss to the loss function, CNN tends to learn
domain-invariant features, which contain more gesture infor-
mation than user information. Compared with other TL
algorithms, CORAL achieved higher classification accuracy
in most scenarios. This may be because the second-order
statistical information is better representative of the domain
difference than MMD and its variants for sEMG sig-
nals. By comparing the confusion matrix and the t-SNE
embeddings, we can see the target categories become more
distinguished after transfer. A good performance can be
obtained through transferring only two unlabeled trials per
gesture, proving the reliability and robustness of this method.
In practical use, the subject only needs to perform a simple
calibration step (a couple of gestures with no requirement of
gesture labels), thereby reducing the training burden for new
users of the gesture classification model.

However, CORAL lost its effectiveness when combined
with traditional classifiers. This is because CORAL in this
scenario is applied by directly projecting source features
into an ideal space that aligns the second-order statistics of
distributions with target features. This projection solution has
a prerequisite that source features should satisfy independent
and identically distributed (i.i.d.) assumption, which does not
meet the requirement of our case since we have multiple
subjects in source domain with each one considered as a
distinct distribution. Negative transfer happened on almost all
cases, indicating that the traditional classifier with CORAL is
not a good option for the cross-subject scenario.
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E. Effects of Validation Protocols
During the validation stage, we conducted three different

protocols to further validate the robustness of the model.
In Protocol 1, we used two repeated trials per gesture from
the new user for transfer. Those gestures for transfer were
from the same day as those used for testing. This protocol
was designed to simulate the most common scenarios for
cross-subject hand gesture recognition: a new user needs to
perform several fixed gestures as instructed before model
training. It is not surprising to get the conclusion that this
protocol performed the best since the transfer data contained
the richest and the most accurate information about the target
user.

In Protocol 2, the training set composition was the same as
in Protocol 1, which was data acquired from 34 subjects on
two different days. The data of the target user on Day 1 and
Day 2 were employed for transfer and testing, respectively.
This protocol was designed to simulate a scenario that the
target user uses their own trained model without same-day
recalibration. The classification accuracy in Protocol 2was
5.93% lower than that in Protocol 1since the introduction of
environmental noises and variation of sEMG characteristics
over days.

In Protocol 3, only V1 dataset, which has 17 subjects and
24 additional gestures, was used for validation. Twenty new
gestures were randomly selected for transfer, whose classes
were different from those in the testing set. This protocol
was designed to simulate a scenario that the target user
perform random gestures during calibration process. Despite
the variations in gesture categories, the target domain still
encapsulated the individual-specific information of the target
user, thereby facilitating the model training.

Overall, the CNN with CORAL achieved a great improve-
ment over their non-TL version in all three protocols, with
an accuracy of 90.19%, 84.26% and 87.94%, respectively.
These experimental results prove that our cross-subject gesture
classification model also has great cross-gesture robustness
and good cross-day robustness. Since the data used for
domain transfer only require a very small number of unla-
beled trials of any gesture, new users are free from the
complex acquisition paradigm in the calibration process before
using sEMG-based HMI systems. Moreover, our proposed
method can provide a theoretical foundation and some alter-
native technical components for relevant researchers and
engineers.

Although our study shows that the use of unsupervised
transfer learning to improve the generalization ability of
gesture recognition model is very promising, a couple of limi-
tations exist in our current research. First, although HD-sEMG
can provide muscle information with a high spatial resolution,
it is unsuitable for wearable devices. Future studies need to
investigate the trade-off between classification accuracy and
convenience of the practical use after performing a channel
reduction step. Second, all the experiments in this study were
performed offline. Additional works still need to be explored
for the real scenarios, such as reducing the size of the sliding
window for data segmentation.

VI. CONCLUSION

This work proposes a new model based on an unsuper-
vised transfer learning algorithm CORAL with CNN for
cross-subject gesture classification task, which achieves the
highest classification accuracy of 90.19% using the optimal
feature combination. Three different protocols have been
employed to prove that our model has great cross-gesture
robustness and good cross-day robustness, which achieved
87.94% and 84.26%, respectively. Our work provides a
promising solution to avoid a complex and time-consuming
calibration process before using sEMG-based HMI systems.
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