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Abstract— Research in the field of human activity recog-
nition is very interesting due to its potential for various
applications such as in the field of medical rehabilita-
tion. The need to advance its development has become
increasingly necessary to enable efficient detection and
response to a wide range of movements. Current recogni-
tion methods rely on calculating changes in joint distance
to classify activity patterns. Therefore, a different approach
is required to identify the direction of movement to dis-
tinguish activities exhibiting similar joint distance changes
but differing motion directions, such as sitting and stand-
ing. The research conducted in this study focused on
determining the direction of movement using an innovative
joint angle shift approach. By analyzing the joint angle
shift value between specific joints and reference points
in the sequence of activity frames, the research enabled
the detection of variations in activity direction. The joint
angle shift method was combined with a Deep Convolu-
tional Neural Network (DCNN) model to classify 3D datasets
encompassing spatial-temporal information from RGB-D
video image data. Model performance was evaluated using
the confusion matrix. The results show that the model
successfully classified nine activities in the Florence 3D
Actions dataset, including sitting and standing, obtaining
an accuracy of (96.72 ± 0.83)%. In addition, to evaluate
its robustness, this model was tested on the UTKinect
Action3D dataset, obtaining an accuracy of 97.44%, proving
that state-of-the-art performance has been achieved.
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I. INTRODUCTION

RESEARCH focused on understanding human movement
is an exciting and dynamic area of research. The quest

for knowledge in this area remains essential, particularly in
addressing abnormalities in bodily activities. This is achieved
by recognizing human activities involving observing changes
in joint distance or angle during movement. A key aspect
of this research lies in using computer vision techniques,
structural modelling, encompassing feature extraction, motion
segmentation, action extraction, and motion tracking. These
techniques enabled pattern recognition through the analysis
of visual observations. As a result, vision-based recognition
has proven valuable in a wide range of applications, such
as human-computer interaction, user interface design, robotic
learning, and supervision [1].

The research on the classification of human activities needs
to consider several important factors, including performance,
system vulnerability, recognition ability, and accuracy rate [2].
However, to achieve accurate classification, it is essential to
understand the difference between activity and action, as stated
by Chaquet et al. [3]. One approach used to detect basic and
transition activities was carried out by Li et al. [4]. It entailed
the use of video streams and continuous sensors alongside the
adoption of three segmentation methods and a random forest
classifier. Preliminary research [5], [6] focused on using sen-
sors such as accelerometers and gyroscopes on smartphones
to track the daily activities of a user. These also involved
using algorithms such as support vector machines, deep neural
networks, 1D CNN, and LSTM. Incorporating additional depth
information from RGB-D video input, some investigations
tackled activity classification by dividing the data into seg-
ments with spatial data and temporal context [8], [9], [10]. For
instance, Hasan et al. [12] introduced a novel framework that
continuously focuses on complex human activities’ appearance
and context models. A notable approach employed by Khe-
lalef et al. [14] involved tracking and extracting the human
body from video stream frames. They utilized the human

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-1243-3025
https://orcid.org/0000-0002-7438-7880
https://orcid.org/0000-0002-6221-7382


RAHAYU et al.: COMBINATION MODEL OF SHIFTING JOINT ANGLE CHANGES WITH 3D-DCNN 1079

TABLE I
PREVIOUS RESEARCH PROBLEMS RELATED TO OUR CONTRIBUTION

silhouette as a basis and created a Binary Space Time Map
(BSTM), which was further processed using a CNN. CNNs
have shown their effectiveness in numerous studies related to
activity classification [15], [16], [23]. Leveraging features such
as Partially Labeled Data, Rectified Linear Units (ReLU), Con-
volutional Neural Networks, and Dropout, CNNs have proven
to be valuable tools in addressing various computer vision
challenges. CNNs mimic the structure of neurons in the human
brain, responding to stimuli from specific parts of the visual
field, thus encompassing the entire visual area [30]. Table I
explains previous research that inspired the contributions to
this research, including joint distance-based research [37].

The research methodology leverages the Kinect camera
sensor to generate RGB-D videos. The spatiotemporal data
obtained from these videos, consisting of frames, were pro-
cessed to extract angle change information for each activity.
The data were trained using the Deep CNN model to classify
the activities. Finally, the results were compared with different
datasets to evaluate the effectiveness of the approach adopted.

This present research made the following contributions:

1) A novel approach was proposed to group similar activ-
ity patterns based on the calculated joint distances in
each RGB-D video image frame sequence. This method
formed the foundation for effectively identifying and
categorizing activities based on their similarities.

2) A joint angle shift method was introduced to address
the challenge of distinguishing activities with similar
joint motion ranges but different directions, such as
sitting and standing. Using a reference point, this method
accurately detects the direction of movement, enabling
precise differentiation between such activities.

3) A comprehensive model that combines the joint angle
shift method with a DCNN was developed. This integra-
tion showed the effectiveness of the model in accurately
recognizing activities in 3D video images.

Furthermore, the robustness of the proposed model was
validated by applying it to other publicly available datasets.
This rigorous testing ensured that the model could effectively

classify and generalize different data types across various
scenarios.

This research followed a well-structured and coherent writ-
ing order. The first section encompassed the introductory
aspect, involving the setting and research objectives. The
second section delved into related works, providing a com-
prehensive review of existing literature in the field. The
third section presents the proposed methodology, detailing the
approach adopted to tackle the research problem. Furthermore,
the fourth section discussed the experiments conducted to
validate and evaluate the methodology. Results and discussion
followed this in the fifth section. Finally, the sixth section
served as the conclusion, summarizing the key findings and
suggesting potential areas for future research and improve-
ment. This coherent structure allowed readers to follow the
research process seamlessly and gain a comprehensive under-
standing of its contributions.

II. RELATED WORKS

This present research introduced a human activity recogni-
tion method that relied on changes in joint distance within
sequences of video frames. However, this might lead to
identical distance changes for certain activities, such as sitting
and standing, which should be recognized as distinct actions.
This limitation was overcome by proposing a novel approach
incorporating changes in joint angle to detect the direction
of varying activities. Joint angles were effectively used to
differentiate between various activities, thereby enhancing the
accuracy and precision of the recognition process.

Human activity recognition was conducted using RGB-D
videos to extract information on human skeletons. The pro-
posed approach combined image processing techniques with
deep learning and was referred to as a three-dimensional
deep convolutional neural network (3D- DCNN). Meanwhile,
to provide a comprehensive overview of related work, several
research were referenced. Li et al. [24] used dynamic represen-
tation and matching of skeletal feature sequences from RGB-D
images alongside K-Means centroids for pose feature repre-
sentation and the dynamic shape time warping (shapeDTW)
algorithm to measure the distance between motion feature
segments. Snoun et al. [9] proposed three feature extraction
techniques, namely dynamic skeleton, skeletal superposition,
and body articulation. These techniques were analyzed and
categorized using a transfer learning - based classification
system, which involves fine-tuning three well-known pre-
trained CNN. Gaglio et al. [25] used a combination of Support
Vector Machines (SVMs), K-means clustering, and Hidden
Markov models (HMMs) to predict some relevant joints in
the human body. This enabled the detection and classification
of postures involved in various activities, modelling each as
a spatiotemporal evolution. Li et al. [18] designed the Edge
and Node Graph Convolutional Neural Network (EN-GCN)
as a two-stream network for human activity recognition.
This approach incorporated joint-temporal edges [26] and
used the coordinates of joints as feature vectors obtained
from a depth map sequence. Wang et al. [20] proposed a
novel modality of skeletal edge movement, leveraging rotation
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angle and movement distance. The varying angles of skele-
tal edges and the movement of corresponding body joints
characterize certain activities. Additionally, Liu et al. [21]
used feature fusion within Spatial-Temporal- Long Short-Term
Memory (ST-LSTM) units to effectively integrate multi-modal
features for each joint. This method incorporated spatiotem-
poral context from previous frames and neighbouring joints.
Phyo et al. [22] used 3D- DCNN to track the motions of
skeletal joints and analyze various types of human actions
and interactions in diverse environments, including day and
night. Palermo et al. [11] comprehensively explored all stages
involved in human activity recognition, including data acqui-
sition, model training, comparison, and implementation of
intelligent walkers.

Every human movement can be detected through the move-
ment of the joints. Each activity video in the dataset features
15 joints exhibited by one of the 10 actors, with 3D data infor-
mation and coordinates (x, y, z). The objective was to identify
similar activity patterns by comparing the range of motion
exhibited by these joints. However, a challenge emerged when
distinguishing activities that had similar changes. For instance,
in sit down activities, the actor would start from a standing
position, while in stand up activities, they are bound to start
from a sitting position. As a result, changes in the calculated
distance for both activities appear similar. This challenge was
overcome by calculating the angular displacement between
each joint and reference point. By establishing a reference
point, the angular change at each joint could be observed,
thereby providing valuable information about the direction
of movement. This method was then integrated with the
DCNN model, enabling the development of a human activ-
ity classification framework using the provided dataset. The
DCNN model, with its added convolution layers, allows for
a more detailed network design, improving the analysis and
representation of the data. Table II outlines studies that discuss
spatiotemporal space to solve problems regarding joint and
skeletal features in recognizing human activities.

III. PROPOSED METHOD

A series of work stages shown in Fig. 1 were conducted
in this research. The first stage involved grouping patterns
using the joint distance calculation method. We tested the
effect of changing joint distances on activity recognition, so we
obtained nine activity patterns from the first dataset (Florence
3D Actions dataset). The problem is that the pattern A series of
work stages shown in Fig. 1 were conducted in this research.
The first stage involved grouping patterns using the joint
distance calculation method. A joint angle shift method was
successfully used to distinguish patterns between sit down and
stand up activities.

Subsequently, the model’s performance was evaluated by
combining the joint angle shift method with the DCNN model
using the initial dataset. This integrated approach significantly
enhanced activity recognition effectiveness. The performance
model was then verified by testing it on the UTKinect
Action3D dataset. The dataset served as an external validation
to ensure the reliability and effectiveness of the proposed
method despite the variations in the number of activities

TABLE II
SPATIOTEMPORAL BASED STUDIES TO SOLVE PROBLEMS ON JOINT

AND SKELETAL FEATURES

Fig. 1. Stages of research in recognizing activities.

and joints in the second one. Experiments to compare the
two datasets were conducted by setting uniform parameters.
Considering the characteristics of UTKinect, nine activities
with one actor are determined.

A. Reference Point

When a person moves a body part, the observer must refer
to a fixed reference point to ascertain a change in motion.
This reference point allows observers to determine whether
there is any change in motion. In circumstances where the
reverse was to be the case, the relative motion of body
parts might be mistaken for no motion at all. However, this
research established a specific point as the center of reference
that served as a consistent and fixed point from which the
direction of movement of body parts through the joints could
be observed. The incorporation of this reference point made it
easier to effectively track and analyze the movement of various
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Fig. 2. Reference point O between 3 joint points: spin (3), left hip (10)
and right hip (13).

body parts and gain valuable insights into their direction of
motion.

Fig. 2 shows that the reference point O was established
by calculating the center of gravity between three key joints,
namely the spine, left, and right hips. This method aided in
determining the precise location of the reference point O ,
which represents the body’s overall balance point or center of
mass. By utilizing this reference point, accurate observations
and analyses of motion patterns in the human body could be
ascertained.

Using (1), the coordinates of reference points O(x0, y0, z0))
were calculated, where spin S(xS, yS, zS), left L(xL, yL, zL),
and right hips R(xR, yR, zR).

O(xo, yo, zo)

=
1
3
[(xS + xL + xR), (yS + yL + yR), (zS + zL + zR)] (1)

B. Angle Shifting Method

Changes in the angle of motion at a joint are measured
between two points. These include the joint point that under-
goes movement corresponding to the activity and the reference
point. The direction of motion in the sequence of activities
could be determined by comparing the angle between the
joint and the reference points. Fig. 3 shows the change in the
angle between the reference point (O) and the right elbow
joint point (J ). In order to simplify the understanding of
angle calculations in a 2D space, Fig. 4 showed a clearer
visualization. It showed the changes observed in the sit down
activity from a standing position. As the joint position changes,
̸ θ decreases (θ1 ≥ θ2 ≥ θ3) during the sit down activity.
However, the angle increases during the stand up activity from
a sitting position.

The angle ( ̸ θ ) between the reference point O(x1, y1, z1)

and point J (x2, y2, z2), is calculated using (2) as stated:

̸ θ = cos−1
(

O · J
|O| |J |

)
(2)

Fig. 3. The change in angle between two points: the reference point O
and right elbow point J in 3D space.

Fig. 4. Illustration of changes in angles θ1 (a), θ2 (b), and θ3
(c) between points O and left knee J in 2D space during sit down activity.

where,

O · J = x1 · x2 + y1 · y2 + z1 · z2 (3)

|O| =
√

x2
1 + y2

1 + z2
1 (4)

|J | =
√

x2
2 + y2

2 + z2
2 (5)

C. Combination of Joint Angle Shift With the DCNN
Model

In this paper, Fig. 5 shows the combination of the joint
angle shift method with the proposed DCNN model. The
input data consisted of RGB-D video images, which were
processed using the joint angle shift method. To obtain the
15 joint points, we created a code to read data in columns
4 to 48 of the dataset so that the coordinate positions (x, y, z)
of the 15 joints were identified. We process 15 data points to
become a series of frames obtained from the initial stage, then
classify them using our proposed DCNN model. Finally, the
model’s performance was evaluated based on this classification
process. In order to process the RGB-D video image, which
contained three channels with distinct pixel values, individual
filters for each of them were employed. These filters were
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Fig. 5. Flow diagram of activity recognition based on a combination of
shifting changes in joint motion angles with the DCNN model.

applied simultaneously to each channel and combined with a
typical bias, generating 2D matrix convolution features.

The DCNN model was padded to the image boundaries by
adding zeros. This padding controls the size of the convolution
matrix and is determined by a hyperparameter. Using the same
padding, the dimensions of the convolution matrix align with
those of the original image. The activation function used was
Rectified Linear Units (ReLU), which maps negative values
to 0 while maintaining the positive ones. The ReLU function,
defined by using (6), was used in this model.

f (x) =

{
0, if x < 0
x, if x ≥ 0

(6)

The ReLU function is denoted as f (x) = max(0, x),
where x is the input to the function. When the input value,
x , is greater than or equal to zero, the function returns x .
On the other hand, assuming x is negative, the function returns
zero. The ReLU function essentially keeps positive values
unchanged and sets negative ones to zero.

In the DCNN model, a pooling layer was incorporated to
reduce the dimensions of the convolution matrix. This served
the purpose of conserving computational resources during
convolutional processing. The pooling layer also played a
crucial role in extracting significant and dominant features
from the images, regardless of their position or rotation.
Furthermore, this DCNN model used Max Pooling. As the
filter moves across the image regions, the maximum pixel
value within each is extracted, contributing to the pooling
process. To optimize the performance of the model, the Adam
Optimizer was used. This optimizer combined the benefits of
momentum and Root Means Square Propagation (RMSProp).
The optimizer ensured a smoother learning process by incor-
porating momentum, while RMSProp effectively adjusted its
rate. The weight (W ) and bias (b) updation formulas for the
optimizer are denoted by using (7) and (8), respectively.

Wt = Wt−1 −
η ∗ vdw
√

Sdb + ϵ
(7)

bt = bt−1 −
η ∗ vdb
√

Sdb + ϵ
(8)

Fig. 6. Position of 15 joints (1:head, 2:neck, 3: spine, 4:left shoulder,
5:left elbow, 6:left wrist; 7:right shoulder, 8:right elbow, 9:right wrist,
10:left hip, 11:left knee, 12:left ankle, 13:right hip, 14:right knee, 15:right
ankle).

where η is learning rate and ϵ is a small constant. The
categorical cross-entropy loss function was employed in this
model to effectively categorize a wide range of classes. The
loss calculation formula for cross-entropy is given by (9).

Hp(q) = −
1
n

N∑
i=1

y1.log(p(yi ))+ (1− yi ).log(1− p(yi ))

(9)

where y is the actual target probability (0 or 1), p is the
predicted probability, and the sum is calculated for all classes.
However, assuming there are n training examples, then the
total loss H is computed as the average of the individual losses
across all examples.

IV. EXPERIMENTS

We used Python 3.8.1, 1.6 GHz Intel Core i5, 2133 MHz
LPDDR3, 8 GB RAM, with a macOS Mojave version
10.14.5 for validation.

A. Dataset
1) Florence 3D Actions: This research applied the Florence

3D Actions Dataset [19], [27], which included video data from
215 recordings. These videos were recorded in 2012 at the
University of Florence using a Kinect camera with an RGB
resolution of 640×480. The dataset included performances by
ten actors, who engaged in nine distinct activities: wave, drink
from a bottle, answer phone, clap, tight lace, sit down, stand
up, read watch, and bow. Each actor repeated these activities
two to four times, generating a video sequence containing
seven to 34 frames per activity.

Furthermore, each frame in this data set consists of
48 columns containing relevant information, such as video
number, actor identity, activity label, and (x, y, z) skeletal
joint location data providing coordinates for 15 joints shown
in Fig. 6. These joint points create a continuous sequence of
4016 frames, capturing the dynamic movements associated
with various activities. The dataset was organized into three
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main files, namely README.txt (2 kB), providing a general
description, a file containing coordinates features.txt (937kB),
and a world coordinates.txt file (4.3 MB). These files were
complemented into 215 videos in AVI format, with a total
dataset size of 324.1 MB. The dataset gained recognition
through its first publication at the 3rd International Workshop
on Human Activity Understanding from 3D data (HAU3D’13),
in conjunction with CVPR 2013, Portland, Oregon, June 24,
2013.

2) UTKinect Action3D Dataset: The dataset was first pub-
lished in the CVPRW 2012 paper View Invariant Human
Action Recognition Using Histograms of 3D Joints [32].
It featured videos captured with a single stationary Kinect
using the Windows SDK Beta Version. The camera records
the frame’s RGB, depth, and joint locations with a frame rate
of 30 f/s. Meanwhile, ten actors were asked to perform the
following ten activities: walk, sit down, stand up, pick up,
carry, throw, push, pull, wave and clap hands, each repeated
twice. The dataset was organized into four main files, namely,
RGB image (.jpg) with a resolution of 480× 640 (1.79 GB),
depth images (.xml) with 320 × 240 resolution saved using
OpenCV (367 MB), skeletal joint location data (.txt) providing
coordinates for joints 1 to 20 (hip center, spine, shoulder, head,
L/R shoulder, L/R elbow, L/R wrist, L/R hand, L/R hip, L/R
knee, L/R ankle, and L/R foot) relative to the sensor array in
meters (3.3 MB), and action sequence labels (4 kB).

B. Grouping Similarities in Activity Patterns Based on
Joint Distance

In the first stage of this study, the main objective was to
examine the similarity of patterns by using distance calcula-
tions between changes in joint motion. Previous studies [28] in
2D and 3D deep learning have addressed unresolved similari-
ties by comparing existing strategies and suggesting potential
directions for future research. In terms of pattern similar-
ity, research [29] focused on training models to reconstruct
individual body parts rather than the entire body to identify
specific hand or leg movements.

Algorithm 1 Grouping of Activity Patterns
Input: Dataset ← VideoImage RGB-D(215)
Output: class(9) ← Dataset(id, activity, joint(x,y,z))

while ( f rame(nv) ̸= eof ()) do
for v = 1, . . . , 215 do

for j = 1, . . . , 15 do
r j,i ← EuclideanDist ( f ramei − f ramei−1)

end for
Vv, j ← AverageDist (rv, j )

end for
for a = 1, . . . , 9 do

Ra, j ← AverageDist (Va, j )

end for
end while
return (v, j)

The flow diagram in Fig. 7 outlines the sequential steps
involved in producing pattern grouping using algorithm 1.

Fig. 7. Flow diagram activities classification based on the distance
changes in joint movement according to the sequence of frames.

These steps include the calculation of the distance between
consecutive frames (i and i − 1) in each video comprising n
frames, employing the Euclidean distance formula described
in (10). Furthermore, (11) calculates the average distance
between 15 joints. The change in the range of motion for
each joint is considered, and it is important to note that nv

represents the number of frames in each video, while ma
denotes the number of videos for each activity. Each joint’s
change in range of motion R was calculated using (12) for all
actors in nine activity.

Pattern classification was performed by calculating the
difference in Euclidean distance for each connection across
different activities.

r j,i =

√
(x j,i − x j,i−1)2 + (y j,i − y j,i−1)2 + (z j,i − z j,i−1)2

(10)

Vv, j =

nv∑
i=1

r j,i

nv

(11)

Ra, j =

ma∑
v=1

Vv, j

ma
(12)

Patterns showed similarity in activities with either zero or
the same distance all over the dataset. Conversely, similar ones
have relatively minor differences, such as sit down and stand
up activities, answer phone patterns, drink from a bottle, and
read watch activities. Activities like wave, clap, tight lace, and
bow have significant differences, and are classified as distinct
patterns.

C. Recognize Sit Down and Stand Up Activities Based
on The Shift in Joint Distance

Based on the results of conducted joint distance change
experiments, it was observed that certain groups of activities,
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Fig. 8. Flow diagram for the recognition of sit down and stand up
activities is based on changes in the shift angle of the joints.

such as standing and sitting, exhibit similar patterns despite
their inherent differences. This similarity arises because both
activities involve the same changes in joint distances, although
their movement directions differ. A new method was proposed
to overcome this challenge, which involves calculating the
changes in joint angles, as depicted in the block diagram
shown in Fig. 8. This approach aimed to differentiate activity
groups that share identical distance changes but vary in their
directions.

The steps for calculating the changes in joint angles for
recognizing patterns of sit down and stand up activities,
according to Algorithm 2 are as follows, input an RGB-D
video dataset, determine the reference point in each frame,
calculate the angle between each joint and the reference point,
and use the resulting angular change values to show the motion
direction of the activity, enabling the distinction between sit
down and stand up.

Algorithm 2 : Recognize sit down and stand up Activities
Input: Dataset ← VideoImage RGB-D(215)
Output: class(2) ← Dataset(id, activity, joint(x,y,z))

while ( f rame(nv) ̸= eof ()) do
for v = 1, . . . , 215 do

for j = 1, . . . , 15 do
define O(xo, yo, zo)

calculate θ

Vv, j ← AverageAngle(θ j )

end for
end for
for a = 1, . . . , 2 do

Ra, j ← AverageAngle(Vv, j)
end for

end while

Fig. 9. Flow diagram of the DCNN model architecture.

D. Implementation of A Combination of Joint Angle Shift
With the DCNN Model

The proposed model aimed to recognize activities by analyz-
ing the change in angle between two joints during movement.
The model combines the angle shift stages for each frame
with a DCNN architecture, which is a CNN model with
deep convolutional layers. A deep learning model architecture
was implemented, and the dataset was prepared to achieve
high accuracy during training. Applying the DCNN model
to a dataset of 215 videos included considering the observed
changes in the angular motion of the joints. The architecture,
shown in Table III and Fig. 9, was designed for a dataset
structured as joint coordinates in a matrix with 4016 frames.
This matrix comprised 48 columns, including a video identity,
an actor identity, an activity label, and 45 columns for coor-
dinates (x,y,z) of 15 joints, serving as the model input. The
convolutional layer was configured with parameters (none, 16,
15, 32), accommodating a flexible batch size of 16 frames,
15 joints, and a depth or number of channels set at 32.
The first convolutional layer used three kernels, three input
channels, and 32 output channels in this setup. The selection
of a kernel size of three aimed to reduce the number of
parameters, leading to computation efficiency. Additionally,
the small kernel size enhanced the capability of the model
to capture more complex images in the analyzed window.

The number of parameters, denoted as Param, was cal-
culated using (13) and (14) for the convolutional and dense
layers. In these formulas, K ernel represents its size, I nput
and Output corresponding to the number of inputs and
outputs.

Param = (K ernel × I nput + 1)× Output (13)
Param = (I nput + 1)× Output (14)

Algorithm 3 outlined the systematic process for building the
model, including constructing an angle shift matrix between
each joint and a reference point for every 3D video input.
Two validation methods, namely random split-validation and
cross-validation were applied. In random split-validation, data
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TABLE III
ARCHITECTURE OF IMPLEMENTED DCNN MODEL

is randomly divided between training and testing sets, with
initial ratios of 50:50, 60:40, 70:30, 80:20, and 90:10. For
cross-validation, the data was divided into folds of five and
ten. Subsequently, the data is inputted into the DCNN model to
evaluate the performance, presenting accuracy and loss values
graphically and using the confusion matrix for comprehensive
classification result assessment.

V. RESULTS AND DISCUSSION

Experiments aimed to address the limitations in human
activity recognition, specifically those arising from similarities,
by implementing combinational modeling. This approach was
selected to ensure the reliability of the research. To over-
come the challenges associated with using wearable sensors,
which often cause discomfort to users, a dataset comprising a
sequence of RGB-D video frames was selected, which is in
line with the research by Snoun et al. [9], Khelalef et al. [14],
Li et al. [18], Phyo et al. [22], as shown in the accuracy results
on Table IV. Furthermore, the choice of this dataset addressed
user discomfort associated with wearable sensors, as reported
by [22]. Using 3D joint position from the dataset provides
crucial contextual information regarding the movement pat-
terns associated with various activities, which aligns with the
research conducted by Liu et al. [17], and Seidenari et al. [19].

In the initial experiment, the effectiveness of the joint dis-
tance calculation method in grouping similar activity patterns
was successfully proven, as shown in Fig.10. The experiments
focused on 15 joints corresponding to nine distinct activities.
This approach differs from Park et al. [12], who trained a
model to reconstruct individual body parts rather than the
entire framework to identify specific hand or foot movements.
The experiment results showed that activities such as drink
from a bottle, read watch, and answer phone formed groups
with similar patterns. To improve activity differentiation, the
importance of recognizing objects associated with activities,
such as bottles, watches, and phones, was proposed, an idea
supported by Wang et al. [20]. Additionally, the observations
showed similarities in the patterns of sit down and stand up,
attributed to comparable changes in joint movement distance
observed in these activities.

A second experiment was conducted to validate further the
similarities between the nine activities, including calculating
the average difference in joint changes for each pair. The
resulting difference value indicates the degree of inequality
between activities, with a smaller difference suggesting a more

Algorithm 3 : Combination Model of Joint Angle Shift With
DCNN
Input: Dataset ← VideoImage RGB-D(215)
Output: class(9) ← Dataset(id, activity, joints(x,y,x))

f rame(activi t y, joint)← read(ArrayO f Dataset)
JOINT ANGLE SHIFT
for f rame. joint = 1, . . . , 15 do

Ref Point = (L Hip + RHip + Spin)/3
List Data← Joint AngleChanges(θ)

for Activi t yClass = 1, . . . , 9 do
data← array(List Data(WindowSize = 16))

label ← array(List Data( f rame.activi t y))

end for
end for
VALIDATION
SPLIT VALIDATION Process:
for Spli t RandomV al(train : 0.5..0.9, test : 0.5 . . . 0.1)

do
X.T rain, y.T rain, X.T est, y.T est ← (data, label)

end for
CROSS VALIDATION Process:
Number.Folds(5; 10)← (data, label)
MODEL: DCNN(X.TRAIN, Y.TRAIN, X.TEST, Y.TEST )

MODEL(ACCURACY, LOSS) ← sequential
CONV2D(NONE,16,15,32)
CONV2D(NONE,16,15, 32)
DROPOUT(RATE← 0.1)
CONV2D(NONE,16,15,32)
FLATTEN(NONE, 7680)
DENSE(NONE, 256), ACTIVATION← RELU
DENSE(NONE, 256), ACTIVATION← RELU
DENSE(NONE, 64), ACTIVATION← RELU
DENSE(NONE, 64), ACTIVATION← RELU
DENSE(NONE, 9), ACTIVATION← SOFTMAX

Fig. 10. Pattern of 9 activities based on the calculation of the distance
changes in 15 joints (1:head, 2:neck, 3:spin, 4:left shoulder, 5:left elbow,
6:left wrist, 7:right shoulder, 8:right elbow, 9:right wrist, 10:left hip, 11:left
knee, 12:left ankle, 13:right hip, 14:right knee, 15:right ankle ).

significant similarity. Values closer to zero in Table V show
a greater possibility of shared or identical patterns between
two activities. From examining the table, activities 2 (drink
from a bottle), 3 (answer phone), and 8 (read watch) show
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TABLE IV
COMPARISON OF OUR RESULTS WITH STATE-OF-THE-ART METHODS

TABLE V
THE SIMILARITY VALUE BETWEEN ACTIVITIES IS BASED ON

CALCULATING THE DIFFERENCE IN THE AVERAGE VALUE

OF CHANGES IN MOTION AT 15 JOINTS

slight differences, showing that these activities are similar and
in line with the results of previous experiments. Similarly,
the negligible difference of 10 between activities 6 (sit down)
and 7 (stand up) confirms the similarity of patterns between
the two activities. These activities include different directions
of movement, and irrespective of the similarity, the patterns
should be classified as distinct activities. The results of this
second experiment clearly show that the remaining four activ-
ities, namely wave, clap, tight lace, and bow, show different
patterns, indicating these are different activities.

The joint angle shift method was employed in the following
experiment to differentiate between stand up and sit down
activities. The application of this method showed that Fig. 11
displayed unique patterns for the stand up and sit down activi-
ties. The advantage of this approach is its ability to observe the
direction of movement, as the magnitude of the angle shift in
the joint centered at the reference point changes sequentially
by the movement direction. In contrast, the joint distance
calculation method solely focuses on distance measurement
without considering movement direction.

Fig. 11. Sit down and stand up activity patterns are in accordance with
the sequence of frames based on changes in the angle of motion on
head and neck joints.

Fig. 12. Training and validation of accuracy and loss on the Florence
3D Actions dataset.

The third experiment implemented a combined approach
using the angular shift method and the DCNN model to
identify activities and evaluate model accuracy. The use of
features in CNN processing has also been proven effec-
tive in addressing various challenges of vision, as reported
by Nguyen et al. [15], Jobanputra et al. [16], and
Godard et al. [23]. The design results of the DCNN model
trained with 50 epochs on a dataset comprising nine activities
showed an accuracy level and a loss of 96.72% and 0.0685,
as shown in Fig. 12. In comparison, Khelalef et al. [14]
also extracted human bodies from video stream frames. They
processed it using CNN, obtaining an accuracy of 92.50%.

The fourth experiment investigated the impact of input size,
the number of epochs, and data splitting. Tests were conducted
on four actors (1st, 2nd, 3rd, and 4th), with the results
recorded, as shown in Table VI, comprising an 80:20 split
for training and testing. The input size (232,16,15) denotes
232 windows, each with a length of 16 frames and 15 joints.
This experiment showed that input size does not directly affect
accuracy, while more training steps (epochs) will increase
accuracy.

Model validation was performed in the fifth experiment
using two methods, namely random split and cross-validation.
In Table VII, the results of random split validation show that
optimal accuracy and validation accuracy were reached at
96.72% and 95.08%, respectively, on an 80% training and 20%
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TABLE VI
INCREASE IN ACCURACY (%) DUE TO EPOCH CHANGES IN THE FOUR

ACTORS OF THE FLORENCE DATASET

TABLE VII
ACCURACY AND LOSS USING RANDOM SPLIT VALIDATION

Fig. 13. Florence 3D Actions dataset: confusion matrix of nine activity
classifications. 1:answer phone, 2:bow, 3:clap, 4:drink from a bottle,
5:read watch, 5:sit down, 7:stand up, 8:tight lace, 9:wave.

testing split. However, in a 90:10 split, the validation accuracy
decreased due to the smaller amount of validation data, making
it more susceptible to accuracy reduction. Applying the cross-
validation technique showed that increasing the number of
folds could enhance accuracy, with results indicating 92.13%
and 94.01% accuracies at folds five and ten, respectively.

The confusion matrix shown in Fig. 13 provides insight into
correct and incorrect activity predictions. The performance of
the classification model was assessed using evaluation metrics
such as accuracy, precision, recall, and F1-score. Based on the
obtained multiclass confusion matrix, calculations were made
for the true positive (TP), false positive (FP), true negative
(TN), and false negative (FN) values. The evaluation metric,
calculated using (15) – (18), and assuming answer phone as
a positive activity, yielded the following results: accuracy,
precision, recall, and F1- score of 99.45%, 95.83%, 1, and
0.9787, respectively. The results provided valuable insights
into the model performance.

accuracy(%) =
T P + T N

T P + T N + F P + F N
× 100% (15)

precision(%) =
T P

T P + F P
× 100% (16)

recall =
T P

T P + F N
(17)

F1− score =
2× (precision × recall)

precision + recall
(18)

Fig. 14. UTKinect Action3D dataset: confusion matrix of ten activity
classifications. 1:carry, 2:clapHands, 3:pickUp, 4:pull, 5:push, 6:sit-
Down, 7:standUp, 8:throw, 9:walk, 10:waveHand.

Fig. 15. Accuracy comparison between Florence 3D Actions dataset
and UTKinect Action3D, with 1 actor, 9 activities, 50 epochs.

This experiment tested the proposed model on a different
dataset, and a fourth actor was evaluated during the second
movement iteration. The results of applying the proposed
model to the UTKinect Action3D dataset as the second dataset
achieved an accuracy of 97.44% and a loss of 0.0602, having a
higher accuracy difference of 0.44% compared to that designed
by Phyo et al. [22], which used similar dataset and achieved
an accuracy of 97%.

Using the second dataset, the confusion matrix in Fig. 14
shows the classification results for ten activities, thereby vali-
dating the effectiveness of the state-of-the-art method proposed
in this research. Assuming carry is a positive activity, the
results are as follows: accuracy, precision, recall, and F1-
score of 100%, 100%, 1, and 1, respectively. Experiments
were conducted using uniform parameter settings, including
one actor, nine activities, and 50 epochs, to compare the two
datasets. The compared results are shown in Fig. 15, Fig. 16,
and Fig. 17, including Table VIII.

Finally, we calculated the confidence interval (C I ) using the
experiments’ results. We experimented with n=20 times for
an average accuracy (mean) of 96.72%. Using (19) for the
standard deviation (SD) of 0.01893, and a 95% confidence
level that yielded a critical value (Z ) of 1.96, we obtained an
accuracy with C I of (96.72 ± 0.83)%.

C I (%) = mean ± (Z ×
SD
√

n
)× 100% (19)

Experimental results validate that precise recognition of
activities has profound implications across diverse domains
such as health, social interactions, intelligent robots, entertain-
ment, and smart homes. Accurate observation of movement
information enhances patient care and aids in monitoring
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Fig. 16. Florence 3D Actions dataset: confusion matrix of nine activity -
one actor . 1:answer phone, 2:bow, 3:clap, 4:drink from a bottle, 5:read
watch, 5:sit down, 7:stand up, 8:tight lace, 9:wave.

Fig. 17. UTKinect Action3D dataset: confusion matrix of nine activity
- one actor. 1:carry, 2:clapHands, 3:pickUp, 4:pull, 5:push, 6:sitDown,
7:standUp, 8:throw, 9:waveHands.

TABLE VIII
PERFORMANCE COMPARISON BETWEEN FLORENCE 3D ACTIONS

DATASET AND UTKINECT ACTION3D DATASET (1 ACTOR,
9 ACTIVITIES, 50 EPOCHS)

the elderly, anticipating the required assistance. Additionally,
it contributed to the effective development of robot move-
ment accuracy by analyzing human movements and system
responses. The accurate recognition of human movements is
critical for the successful functioning of these applications.

VI. CONCLUSION

In conclusion, the joint distance-based method could not
distinguish activities at the same distance but with different
movement directions. A solution was proposed to overcome
these limitations, including the joint movement angle shift
method. This approach was proven effective in differentiating
between stand up and sit down activity patterns. The angular
shift in the joints was observed by paying specific attention to

the reference point obtained from the center of gravity between
the spine, left, and right hip. In the Florence 3D Action
dataset, the confusion matrix analysis yielded an accuracy,
precision, recall, and F1-score of 99.45%, 95.83%, 1, and
0.9787, respectively, assuming answer phone activity was
considered positive. By applying the confidence interval to the
entire dataset, an accuracy of (96.72 ± 0.83)% was obtained.
During the robustness test on the UTKinect- Action3D dataset,
the proposed model showed an accuracy of 97.44% with a loss
of 0.0602.

Recognizing movement activities posed a persistent chal-
lenge across diverse fields. For example, in medical rehabilita-
tion, accurately identifying movement difficulties was essential
for responding appropriately and offering potential solutions
to patient problems. Another formidable challenge was recog-
nizing activities with unique characteristics, specifically those
associated with elderly individuals. The movements of older
people, distinct in terms of both time and patterns, presented
a challenge for accurate recognition. Effectively addressing
this challenge through research aimed at providing appropriate
assistance or treatment responses became a focal point in the
past.
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