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UI-MoCap: An Integrated UWB-IMU Circuit
Enables 3D Positioning and Enhances

IMU Data Transmission
Wenjuan Zhong, Lei Zhang, Zhongbo Sun, Mingjie Dong , Senior Member, IEEE,
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Abstract— While inertial measurement unit (IMU)-based
motion capture (MoCap) systems have been gaining pop-
ularity for human movement analysis, they still suffer
from long-term positioning errors due to accumulated
drift and inefficient data transmission via Wi-Fi or Blue-
tooth. To address this problem, this study introduces
an integrated ultrawideband (UWB)-IMU system, named
UI-MoCap, designed for simultaneous 3D positioning as
well as wireless IMU data transmission through UWB
pulses. The UI-MoCap comprises mobile UWB tags and
hardware-synchronized UWB base stations. Each UWB tag,
a compact circular PCB with a 3.4cm diameter, houses a
nine-axis IMU unit and a UWB transceiver for data trans-
mission. The base stations are equipped with a UWB
transceiver and an Ethernet controller, ensuring efficient
reception and management of messages from multiple
tags. Experiments were conducted to evaluate the system’s
validity and reliability of 3D positioning and IMU data trans-
mission. The results demonstrate that UI-MoCap achieves
centimeter-level 3D positioning accuracy and maintains
consistent positioning performance over time. Moreover,
UI-MoCap exhibits high update rates and a minimal packet
loss rate for IMU data transmission, significantly outper-
forming Wi-Fi-based transmission techniques. Future work
will explore the fusion of UWB and IMU technologies to
further enhance positioning performance, with a focus on
human movement analysis and rehabilitation applications.
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I. INTRODUCTION

MOTION capture (MoCap) is designed for continuous
monitoring, tracking, and recording of human body

movements in three-dimensional (3D) space [1], [2]. This
technology plays an important role in diverse domains, notably
in sports training [3], film industry [4], human-robot interac-
tion [5], [6], and rehabilitation training [7], [8]. Optoelectronic
MoCap systems are typically accepted as the gold stan-
dard because they can achieve precise 3D motion tracking
by measuring the infrared line reflected from markers [2],
[9]. However, they come with the trade-offs of complex
setup requirements, labor-intensive post-processing, and high
cost [9]. In contrast, inertial measurement units (IMUs)-based
MoCap systems show greater potential in portability and
economy.

IMUs have been developed to effectively record human limb
segment movements [10], [11]. While wearable IMUs excel
in providing orientation information vital for motion capture,
they inherently fall short in furnishing absolute body position
data. Typically, numeric integration techniques are applied
to the outputs from IMUs to achieve motion positioning.
However, this approach is susceptible to the cumulative drift
effect over time [12]. To cope with this issue, researchers have
proposed certain strategies to minimize drift-related errors. For
instance, Foxlin et al. introduced the zero velocity updates
(ZUPTs) method that minimizes position errors by assuming
zero velocity during non-movement intervals [13]; Yuan et al.
incorporated force sensors to detect locomotion phases and
further determine the spatial position of a reference point on
the human body [14]. Although these methods significantly
enhance the performance of inertial-based motion positioning,
the drift-related errors are not completely eliminated and
continue to accumulate over time.

Ultrawideband (UWB) technology, being a radio-frequency-
based system, can consistently provide accurate and drift-free
positioning data over time [15], [16], [17]. UWB, which
utilizes nanosecond non-sinusoidal narrow pulse signals for
transmitting data, has been widely recognized as an effective
technology within location-aware sensor networks [18], [19].
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Its appeal lies not only in delivering centimeter-level preci-
sion at an affordable cost but also in exhibiting robustness
against multipath effects [19], [20]. However, it is imperative
to note that UWB operates within a high-frequency band,
making it most effective in line-of-sight (LOS) conditions.
In the presence of metal obstacles, its positioning accuracy
is significantly reduced, posing challenges in complex indoor
environments [19]. Hence, relying solely on UWB may hinder
the attainment of high-precision positioning.

To achieve both accuracy and robustness in MoCap sys-
tems, researchers have explored synergistic potential of sensor
fusion algorithms, integrating data from UWB tags and IMU
sensors [21], [22], [23]. Zhong et al. proposed an integrated
IMU-UWB algorithm for reliable and continuous indoor
positioning in X-Y horizontal plane, particularly in non-line-
of-sight (NLOS) conditions [21]. In addition, some studies
have combined IMU-UWB fusion algorithms with human
biomechanical models to implement 3D trajectory tracking
of human lower limbs [22], [23], [24]. For instance, Zihaje-
hzadeh et al. applied a sensor fusion algorithm to a lower-body
biomechanical model, demonstrating its capability to enhance
the accuracy of 3D body location and knee joint angle
tracking [22]. However, in previous works [21], [22], [23],
[24], IMU and UWB were treated as two independent hard-
ware modules, in which IMU data were transmitted through
Wi-Fi or Bluetooth rather than UWB, and UWB functioned
solely for absolute positioning. Such non-integrated hardware
configuration increases the system complexity. Additionally,
the transmission of IMU signals through Wi-Fi or Bluetooth
restricts their effectiveness in indoor environments due to
signal interference [19].

Another crucial aspect often overlooked in integrated
UWB-IMU Mocap system is the capability for multi-tag
support. Existing IMU/UWB fusion systems typically accom-
modate only a limited number of UWB tags due to the
challenges associated with (i) managing the transmission of
a large volume of messages and (ii) implementing scheduling
techniques to avoid collision [25]. For example, in existing
lower-limb MoCap systems relying on IMU/UWB fusion
architecture, it is common practice to support only one or three
UWB tags affixed to human waists or feet as the root position
reference [22], [23], [24]. The absolute positions of human
hip, knee, and ankle joints are determined through forward
kinematic calculations based on root position reference and
joint angles derived from the numeric integration of IMU
outputs [22]. Such approach can introduce accumulative errors
into the estimated joint angles, further worsen positioning
accuracy.

Aiming to address the aforementioned challenges, this study
introduces an integrated UWB-IMU circuit, named UI-MoCap,
that enables multi-tag 3D positioning and wireless IMU data
transmission via UWB. The core of this positioning system
comprises UWB mobile tags, each of which is equipped with
replaceable IMU modules, enabling IMU signals transmission
via UWB nanosecond pulses. These pulses are received by the
second component of the system, which consists of several
hardware-synchronized UWB base stations. The base stations
employ time division multiple access (TDMA) techniques to

effectively manage IMU data from multiple tags. The system
performance was preliminarily evaluated from two aspects:
1) the validity and reliability on 3D positioning accuracy in
both stationary and dynamic scenarios, and 2) capability of
wireless multiple IMU data transmission in comparison to Wi-
Fi. The primary contributions of this article can be outlined as
follows:

1) An integrated UWB-IMU hardware system, named
UI-MoCap, is proposed, which seamlessly integrates
nine-axis IMU modules into multiple UWB mobile tags.
UI-MoCap can precisely collect timestamps to facilitate
accurate tag position computation using the time differ-
ence of arrival (TDoA) method, and effectively manage
IMU data transmission from multiple tags.

2) Evaluation results demonstrate the system’s exceptional
capability in achieving centimeter-level positioning
accuracy, with a positioning error of 1.86cm in static
experiments and 3.20cm in dynamic tests. Furthermore,
with a high update rate of 100Hz, UI-MoCap exhibits
significantly lower packet loss rates for multiple IMU
data transmission compared to Wi-Fi-based techniques.

II. RELATED WORKS

This section will introduce principles underlying four types
of UWB-based positioning methods: two-way ranging (TWR),
TDoA, angle of arrival (AoA), and concurrent technique.
Additionally, we will detail on the advantages and disadvan-
tages of each approach, considering their suitability for both
positioning and message transmission in MoCap applications.

A. TWR
TWR determines the tag’s position by measuring the dis-

tance between each base station and the tag as Fig. 1(a) shows.
In the TWR deployment, multiple messages are transferred
between the tag and base station to locate the tag. Fig. 2(a)
represents the time scheme of TWR, which is proposed by
Neirynck et al. [26], where BS1, BS2 refer to different
base stations. We will use the following notations: B ∈

{b1, b2, · · · , bN } refers to different base stations, t refers to
the tag. S ∈ {t, b1, b2, · · · , bn} refers to all the subjects.
TS,N refers to time measured by S. DS1,S2 refers the distance
between subject S1 and S2. X S = (xS, yS, zS) means the coor-
dinate of S. Suppose we have already known the coordinates
of base stations X B , the measured distance D̂b1,t between base
station b1 and tag t can be calculated as:

D̂b1,t =
c
4

[ (
Tb1,3 − Tb1,2

)
−

(
Tb1,2 − Tb1,1

)
+

(
Tt,2 − Tt,1

)
−

(
Tt,4 − Tt,2

) ]
(1)

where c refer to the speed of light. After attaining all the
distance, we can solve the position X t by:

X t = argmin
X t

N∑
i=1

(
Dbi ,t − D̂bi ,t

)2
(2)

where:

Dbi ,t = ∥X t − Xbi ∥ (3)
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Fig. 1. UWB positioning techniques. (a) Two-way ranging (TWR). (b) Time difference of arrival (TDoA). (c) Angle of arrival (AoA). (d) Concurrent
technique.

Fig. 2. Time scheme of UWB positioning techniques. (a) Two-way
ranging (TWR). (b) Time difference of arrival (TDoA). (c) Angle of arrival
(AoA). (d) Concurrent technique.

One major benefit of the TWR-based system is that it elim-
inates the requirement for synchronizing base stations while
maintaining high location accuracy, which makes it convenient
to deploy. Because of this advantage, TWR-based systems
are widely used in different scenarios, such as underground
mines [27], merchant vessels [28], and personal devices [29].
However, they have certain disadvantages. The bidirectional
communication between tags and base stations increases the
complexity of positioning. These methods also require the
exchange of large number messages, resulting in low update
rates of message transmission.

B. TDoA
TDoA calculates the tag’s position by measuring the dif-

ferences in distance from the tag to all the base stations as
Fig. 1(b) shows. The tag broadcasts only one message to every
base station for location measuring. Fig. 2(b) shows the time
scheme of TDoA. The measured distance difference D̂b2b1,t
can be calculated as:

D̂b2b1,t = D̂b2,t − D̂b1,t = c
(
Tb2,1 − Tb1,1

)
(4)

where, D̂b2,t presents the distance between base station b2
and tag t , D̂b1,t denotes the distance between base station
b1 and tag t . The position of tag can be solved by CHAN
algorithm [30]:

1
2


D̂b2b1,t − Kb2 + Kb1

D̂b3b1,t − Kb3 + Kb1
...

D̂bN b1,t − KbN + Kb1



=


xb1 − xb2 yb1 − yb2 zb1 − zb2 −D̂b2b1,t

xb1 − xb3 yb1 − yb3 zb1 − zb3 −D̂b3b1,t
...

...
...

...

xb1 − xbN yb1 − ybN zb1 − zbN −D̂bN b1,t




xt
yt
zt
Db1,t


(5)

where:

KS = ∥X S∥
2 (6)

The problem can be solved by first assuming that there is
no relationship between xt , yt , zt , and Db1,t , and then, solving
them by least-square or maximum-likelihood approaches.

One significant benefit of using the TDoA-based system
is that it only requires a single message to determine the
location of the tag. This allows for a higher update rate and
better scalability. Consequently, it is frequently utilized in
time-aware scenarios such as unmanned aerial vehicles [31],
[32], automatic guided vehicles [33], and real-time locating
systems [34], [35]. Tiemann et al. [36] proposed ATLAS,
an open-source TDoA-based localization system; This sys-
tem is designed to be highly scalable, supporting more than
1000 nodes and offering different update rates over 2000Hz.

C. AoA
AoA relies on the angles at which base stations receive

the tag’s signal to determine the position. As Fig. 1(c) shows,
AoA-based base stations are normally equipped with multiple
antennas to calculate the angle. Fig. 2(c) shows the time
scheme of AoA.

The AoA could be solved through two methods. The first
method is to calculate the angle by the difference between
each antenna’s signal reception time. Suppose the distance
between two antennas is d . The AoA can be calculated by:

θ̂b1 = sin−1

c
(

Tb1a2
,1 − Tb1a1

,1

)
d

 (7)

The other method is to utilize the phase difference ϕb1 to
solve AoA:

θ̂b1 = sin−1
(

λϕ

2πd

)
(8)

where λ is the wavelength of UWB signal. After attaining the
θ̂b1 for all base stations, we could solve the position of tag by:

X t = argmin
X t

N∑
i=1

(
θbi − θ̂bi

)2
(9)



ZHONG et al.: UI-MoCAP: AN INTEGRATED UWB-IMU CIRCUIT ENABLES 3D POSITIONING 1037

Fig. 3. The proposed UI-MoCap system’s architecture diagram describing UWB mobile tags and base stations. Mobile tags are connected
wirelessly to UWB network. Base stations are connected to a computer through Ethernet.

where,

θbi = cos−1

−→
N bi

−→
bi t∣∣∣−→bi t
∣∣∣

 (10)

−→
N bi refers to the unit normal vector of the antenna array of
base station bi .

−→
bi t is the vector from base station bi point to

tag t .
The advantage of AoA is that only one message needs

to be transmitted to locate the tag, and there is no need to
synchronize the base stations. ULoc, proposed by Zhao et al.
[37], is a 3D-AoA system that supports azimuth and polar
angle measurement simultaneously; The base stations have an
L-shaped antenna array containing eight antennas, allowing
for the output of the 3D location of tags with centimeter-lever
accuracy. However, as an angle-based method, the accuracy
of the position is significantly affected by the range. For
short-range positions, like chess game positioning [38], AoA
provides exceptional accuracy with a median accuracy of
2.4cm. As the positioning range extends, the error proportion-
ally increases. Therefore, for the application of MoCap, the
AoA-based system has limited positioning accuracy.

D. Concurrent Technique
Concurrent systems acquire information by listening to

signals broadcasted from base stations using full passive tags.
Fig. 1(d) shows a kind of concurrent system. Base stations
send messages in sequence to the tag for time difference
measuring. As Fig. 2(d) shows, the concurrent TDoA time
scheme involves tags receiving signals from multiple base
stations without having to transmit any signals themselves.
This greatly increases scalability, as additional passive tags
can be easily added to the system [39], [40], [41], [42], [43],
[44]. There are concurrent systems in conjunction with other
UWB positioning methods, including Concurrent TWR [42],
Concurrent TDoA [40], and Concurrent AoA [41]. Yang et al.
proposed the VULoc [42], a virtual-two way ranging (V-TWR)
based positioning system; It supports an unlimited number of
passive tags and tests for a 7200m2 large area and reports a

10.5cm median error on location. However, being a receive-
only system, the mobile tags do not have the capability to
transmit data.

III. SYSTEM DESIGN AND IMPLEMENTATION

In this section, we will introduce the hardware and firmware
design of our proposed UI-MoCap system. Fig. 3 provides a
presentation of our hardware setup, including the UWB mobile
tags and base stations design. All data received from multiple
tags are processed by the base stations and transmitted to a
computer via a switch. Additionally, we will detail on the
system’s communication scheme and software platform for 3D
positioning and IMU data transmission.

A. UWB Mobile Tag Design
As illustrated in Fig. 3, our UWB wearable tags are primar-

ily composed of three main components: a UWB transceiver,
a microcontroller unit (MCU), and an IMU module. The UWB
transceiver utilizes the DW3210 chip, with a high-precision
oscillator serving as the clock reference. Our choice for
the MCU module is the ESP32, which communicates with
the DW3210 through a 36MHz SPI interface. To facilitate
versatility, we’ve included a four-pin connector on the PCB,
providing 3.3V power support and two configurable commu-
nication wires, allowing for the connection of various sensor
modules to the tag. For the IMU module, we’ve opted for the
JY901S, which contains a three-axis accelerometer, a three-
axis gyroscope, and a three-axis magnetometer. To power the
UWB wearable tag, we’ve integrated a 300mAh Li-ion Battery.

The firmware of our UWB tag is built upon the open-source
real-time operating system Zephyr OS. While Zephyr OS
provides valuable support for IEEE802.15.4 MAC, we have
further customized it to suit our system’s specific requirements.
This customization includes the development of a driver for
the DW3210 chip and modifications to the MAC layer.

There are two primary enhancements we’ve made to the
firmware. Firstly, we’ve implemented an extended guaran-
teed time slot (GTS) mechanism, which has expanded the
maximum tag count per single superframe from 7 to 255.
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Secondly, we’ve introduced our frame specification to regulate
communication between the tags and base stations, which is
detailed in Section III-D. The firmware functionality enables
the reception of the beacon, decoding of the beacon, and
sending data or link requests to base stations.

To ensure the mobility and safety of our wearable tag, it is
constructed on a six-layer circular PCB. The board boasts a
compact 3.4cm diameter and features strategically placed slots
and holes to facilitate easy installation on various devices.

B. UWB Base Station Design
To enable UWB signal reception and precise tag location,

we’ve designed dedicated UWB base stations, as presented
in Fig. 3. These UWB base stations consist of three key
components including a UWB transceiver, a MCU, and an
Ethernet controller.

In line with the UWB tags, we employ the same type
of UWB transceiver chips within the base stations. They
receive an external clock via a Subminiature Version A (SMA)
connector, ensuring precise synchronization with other base
stations. The MCU utilized in the base stations shares the
same hardware configuration and connections as those in the
UWB tags. For Ethernet communication, we’ve incorporated
the W5500 chip to efficiently transmit received IMU data to
a computer.

Ensuring synchronized operation across all base stations,
we’ve integrated a dedicated clock generator module. This
module is responsible for generating and distributing clock
signals to all base stations, ensuring reliable location results.
It features a one-to-ten clock buffer and is meticulously
manufactured on an impedance-controlled four-layer PCB to
maintain the quality of the clock signal.

In terms of firmware, the base stations also rely on the
Zephyr OS foundation, with our customized MAC layer.
Our system comprises a primary base station, serving as the
coordinator, and several sub-base stations that function as
passive UWB receivers.

C. Communication Scheme of the System
As depicted in Fig. 4, our communication scheme is divided

into two distinct phases, the link phase and the work phase.
During the link phase, the computer’s address (IP) and open
port are transmitted to the base stations for subsequent data
transmission. The base station initiates the UWB network,
determines the network ID and coordinator address, and starts
sending out blank beacons. Powered tags within proximity
listen for these beacons, searching for available UWB net-
works. When a tag captures a beacon, it proactively sends a
link request, employing the carrier sense multiple access with
collision avoidance (CSMA/CA) protocol. The base station
would assign a short address to the tag, and then the tag
successfully connects to the UWB network. The base station
transmits tag information to the computer, including the tag’s
address and tag ID. Users can manually set tag configurations
on the computer, encompassing adjustable parameters such as
frame length, sample rate, active tags, and the sequence of tags.
The configuration is then sent to the base stations, completing
the link phase of the communication scheme.

Fig. 4. Communication Scheme of the system. It can be divided into
two different phases. Link phase is designed for system initialization and
tag connection, and work phase is for IMU data transferring. The arrows
present the direction of information flowing.

Fig. 5. Time schedule of the work phase. The work phase consists of
one-by-one frames. Each frame contains multiple time slots for IMU data
transmission.

In the work phase, base stations start to proceed to generate
beacons. To prevent the signal collision between tags, the
beacon will be sent once every frame time length. When
mobile tags receive the beacons, they switch from the receiving
state to the transmitting state and start transmitting IMU data to
the base station. The base station will send the UWB datasets
to the computer through Ethernet.

To manage the IMU data received from multiple tags,
each frame within the work phase comprises a sequence of
three kinds of slots, including beacon, guard, and tag slots,
as depicted in Fig. 5. Firstly, the beacon slot is dedicated to
beacon reception. Typically, the length of the beacon signal
does not exceed 500 microseconds. However, as the number
of scheduled tags increases, the beacon length can exceed
500 microseconds. To account for such situations, we have
introduced a guard slot which not only accommodates sce-
narios where the beacon is larger than 500 microseconds but
also prevents signal collisions by allowing sufficient time for
tags to switch between transmit and receive states. The third
slot arranges the transmitted IMU data from tags according to
the sequence of tags. The maximum number of available tags,
denoted as Nt , is determined by the sample rate fs and slot
length ts , which is calculated as follows:

Nt <
1

fs ts
. (11)
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Fig. 6. (a) A schematic diagram of the experimental scenario to evaluate systems’ 3D positioning validity and reliability. Several UWB base
stations are deployed in the lab environment. A UWB tag is placed at the terminal end of a robotic arm. Reproducible and consistent poses and 3D
trajectories can be achieved by manipulating the robotic arm. (b) Six different trajectories involved in the dynamic positioning experiments.

D. Software Platform for Positioning and IMU Data
Collection

The computer received UWB datasets from base stations
through Ethernet. We have developed an online platform for
decoding IMU data and solving position via Python. Our
software performs several key functions including UWB data
merge, IMU and timestamps extraction and upload, and TDoA
positioning calculation to ensure data accuracy and efficient
processing.

Firstly, multiple UWB datasets are merged into one data
stream. Specifically, UWB data received from multiple base
stations are combined, denoted as D ∈ RN×T , where N
represents the number of base stations and T represents the
number of time samples. Then, the integrated UWB data
stream D is subjected to a hard-voting machine to determine
the majority among N base stations at time t and outputs
a final UWB data stream U ∈ R1×T . Any incorrect or
inconsistent data is filtered out at this stage.

Then, the IMU data and timestamps are decoded from the
UWB data stream U ∈ R1×T . Firstly, the UWB data stream
containing the IMU data and timestamps is converted into a
sequence of floating-point numbers. IMU data encompasses
motion information of acceleration, angular velocity, magnetic
field measurements, and Euler angles. The raw IMU data and
the associated timestamps are further uploaded to a cloud
server, using the User Datagram Protocol (UDP).

Before calculating the position, a calibration step is required
to determine the time deviation of each base station. We uti-
lized the TDoA technique to calculate the tag position. The
extracted timestamps are used for calculating tag positions
through the CHAN algorithm, detailed in Section II-B. Then,
the position performance can be further improved by smooth-
ing with the Kalman filter. The computer also counts the
packages and computes the packet receive rate.

IV. EXPERIMENTS AND DATA ANALYSIS

A. Experimental Protocols and Data Collection
The first experiment protocol aimed to assess the validity

and reliability of 3D positioning in both static and dynamic

scenarios. To ensure the execution of reproducible poses and
trajectories, we employed a commercial robotic arm (GLUON-
6L3, MinTASCA, China), as presented in Fig. 6(a). This
robotic arm boasts multiple degrees of freedom (DOFs),
enabling to perform predefined trajectories within the bounds
of its 3D workspace. To maintain LOS conditions during
movement, a 30 cm-long 3D-printed rod was mounted at the
terminal end of the robotic arm. A UWB tag was placed at
the end of the rod, and seven base stations were positioned
in the lab environment to facilitate accurate 3D positioning.
Simulations were systematically performed to assess the influ-
ence of the number of base stations on positioning accuracy,
as detailed in Section I of the Supplementary Document.

The experiments were carried out in a test-retest scenario,
comprising static positioning and dynamic positioning tasks
conducted over two consecutive days, as two sessions. The
system was initially calibrated, a static process lasting one
second, before the commencement of experiments. The two
session experiments were performed at intervals of more than
24 hours, maintaining the location of the seven UWB base
stations. The 24-hour interval was considered appropriate to
assess the system’s operational reliability.

The static positioning experiment involved five distinct spa-
tial locations. Within each session, the UWB mobile tag was
intentionally stationed at different pre-determined locations
through precise manipulation of the robotic arm’s motion.
This stationary stance enabled the collection of positioning
data over five seconds. For each static location, the poisoning
procedure was repeated five times.

Then, the dynamic positioning analysis involved six diverse
spatial motion trajectories, as illustrated in Fig. 6(b). The
UWB mobile tag performed a round-trip along each pre-
determined trajectory under controlled robotic arm motions.
The robotic arm maintained a consistent velocity magnitude
ranging from 0.1 to 0.3 m/s, depending on the specific
trajectory, while acceleration and deceleration phases were
executed at approximately 10 m/s2 for acceleration. Our
system recorded the tag’s positioning data throughout the
entire dynamic trajectories. The rigorous protocol required
the repetition of this process five times for each trajectory.
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To evaluate the positioning accuracy of the proposed system,
we attached an optical reflection maker to the UWB mobile
tag, and accurately recorded the position of the UWB mobile
tag through the optical MoCap system (Raptor-4S, Motion
Analysis Corporation, USA), which was the gold standard for
evaluation.

The second experimental protocol was designed to evaluate
the packet loss rates of IMU data transmission from multiple
UWB tags. The experiments involved simultaneous IMU data
transmission from 10 designed UWB tags as transmitters to a
base station serving as the receiver.

Firstly, to explore the anti-signal interference ability of the
system, we compared the packet loss rate between UWB
and Wi-Fi both at in-lab and out-lab environments. For com-
parison, we also applied 10 commercial IMUs of the same
type (JY901, Wit-motion, China) via Wi-Fi. The transmitters
and receiver were placed at a distance of 2m, and signal
transmission continued for 30min at a transmission frequency
of 100Hz. The in-lab environment was a typical electrical
engineering lab setting with strong interference effects. More
than 60 devices, including smartphones, laptop, and other
electronic equipment, were simultaneously in operation. The
out-lab environment was a spacious corridor that was devoid
of electronic devices, resulting in significantly lower signal
interference.

Furthermore, we investigated the packet loss rate of IMU
data transmission at different transmission distances. In this
scenario, 10 designed UWB tags simultaneously transmitted
IMU signals. The transmission distances were set at 2m, 7m,
12m, 17m and 22m, with each distance maintaining continuous
data transmission for 30min at an update rate of 100Hz.

B. Data Analysis
The efficacy of the proposed UI-MoCap system is subjected

to a comprehensive assessment, spanning both system validity
and reliability. Additionally, an examination of packet loss is
undertaken, further enriched through a systematic comparison
with Wi-Fi-based alternatives.

The collected location data undergoes initial post-processing
via down-sampling using a mean filter. This filter, defined by
a kernel size of four and a step length of four, reduces the data
frequency from 100 Hz to 25 Hz. This step was applied after
Kalman filtering, ensuring a minimal impact on positioning
accuracy while decreasing the data samples.

1) Positioning Accuracy Measurements: The positioning
validity of the proposed system is assessed through an analysis
of positioning errors. In the context of 3D spatial positioning,
the evaluation entails the computation of absolute errors (AEs)
across distinct domains: AE (x,y) for the (x, y) 2D domain,
AE Z−axis for the vertical Z-axis, and AE3D for the complete
(x, y, z) 3D domain. These metrics are mathematically formu-
lated as follows:

AE (x,y) =
6N

n=1

√(
xn − x̂n

)2
+ (yn − ŷn)

2

N
(12)

AE Z−axis =
6N

n=1

√(
zn − ẑn

)2

N
(13)

AE3D =
6N

n=1

√(
xn − x̂n

)2
+ (yn − ŷn)

2
+ (zn − ẑn)

2

N
(14)

where the coordinates (xn, yn, zn) correspond to the 3D posi-
tion as measured by UI-MoCap at the nth time sample.
(x̂n, ŷn, ẑn) present the 3D position captured by the optical
MoCap system at the same time sample. The variable N
denotes the total counts of time samples involved in the
analysis.

2) Intra-Session and Inter-Session Correlation Coefficients:
The proposed system’s reliability is assessed through an
analysis of the Pearson correlation coefficient (CC), which
evaluates the similarity between measured trajectories across
trials. CC is formulated as follows:

CC =

∑
n (xn − x̄) · (yn − ȳ) · (zn − z̄)√∑

n (xi − x̄)2
·
∑

n (yi − ȳ)2
·
∑

n (zn − z̄)2
(15)

where the coordinates (xn, yn, zn) correspond to the 3D posi-
tion as measured by UI-MoCap at the nth time sample. x̄, ȳ,

and z̄ present the average value of xn, yn, and zn , respectively,
computed across the recorded samples.

For the test-retest reliability, we have proposed intra-session
CC and inter-session CC. The intra-session CC is to evaluate
the similarity between measured dynamic trajectories within
a single session’s trials, while the inter-session CC gauges
the comparability of dynamic trajectories across trials con-
ducted in two distinct sessions. Augmenting this analysis,
the intra-session and inter-session CC are subjected to a
Wilcoxon test, conducted at a 95% confidence level. This
statistical validation supplements the correlation analysis, thus
contributing to a robust evaluation of the system’s reliability
in capturing consistent positioning data.

3) Average Packet Loss Rate: The packet loss rate serves as
a pivotal metric to discern the system’s capability to transmit
IMU signals. The average packet loss rate (APLR) is quantified
through the following calculation:

AP L R =
1
T

·6T
t=1(

1
K

6K
k=1

Nrk

Ntk
) (16)

where Ntk denotes the number of samples transmitted by the
kth IMU transmitter (i.e., UWB tags or IMU), while Nrk corre-
sponds to the number of samples successfully received by the
computer; K presents the total number of IMU transmitters,
and T denotes the total duration of packet transmission.

V. EXPERIMENTAL RESULTS AND DISCUSSION

The effectiveness of the proposed UI-MoCap system is
thoroughly evaluated through a series of experiments. The
outcomes of 3D positioning errors both in static and dynamic
scenarios are vividly depicted in Fig. 7, 8, and 9. Secondly,
an exploration of the system’s reliability is presented in the
findings of Fig. 10. Furthermore, the packet loss rate of IMU
data transmission from multiple tags is shown in Fig. 11.
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Fig. 7. The positioning performance in static experiments. The blue
shading denotes the collection of measured positions at time samples
in trials. The black dot represents the average position among trials
recorded by UI-MoCap, and the red dot corresponds to the average
position recorded by the optical MoCap system (OMC).

A. System Validity
Firstly, we evaluate the positioning accuracy of UI-MoCap

in static scenarios. The UWB mobile tag is securely affixed to
the robotic arm’s extremity and positioned at five distinct loca-
tions. The corresponding positioning outcomes are presented
in Fig. 7. The blue shading denotes the collection of measured
positions at time samples in trials. The black dot represents
the average position among trials recorded by UI-MoCap, and
the red dot corresponds to the average position recorded by
the optical MoCap system.

Secondly, we further evaluate the system’s tracking accuracy
during dynamic operations. Similarly, the UWB mobile tag
remains affixed to the robotic arm’s extremity and undergoes
six distinct dynamic trajectories, as presented in Fig. 6(b). The
positioning performance are illustrated in Fig. 8. The blue
shading captures the collection of tracking points sampled
from all trials. The black line traces the trajectory average from
among these trials, while the red line represents the average
trajectory among trials recorded by the optical MoCap system.

The averaged AE in both static and dynamic positioning is
shown in Fig. 9(a). Additionally, Fig. 9(b) shows the cumu-
lative probability distribution of 3D positioning AE. In the
context of static scenario, the averaged position AE is 1.03cm,
1.41cm, 1.86cm within 2D, Z-axis, and 3D domains, respec-
tively. Furthermore, the system achieves 3D positioning AEs of
{1.34, 3.37, 4.19cm} at {50th, 90th, 95th}, respectively. Within
dynamic scenario, the averaged positioning AE is 1.76cm,
2.13cm, 3.20cm in 2D, Z-axis domain, and 3D domains,
respectively. It achieves 3D positioning AEs of merely {2.20,
5.15, 6.39}cm at {50th, 90th, 95th} percentile, respectively.

B. System Reliability
In order to assess the reliability of our proposed system,

we conducted the test-retest experiments and performed an
analysis encompassing both intra-session and inter-session
correlations. These results are visually depicted in Fig. 10.
The intra-session CC is lager in magnitude compared to inter-
session CC. It is noteworthy that both the intra-session and

inter-session CCs surpass the significant threshold of 0.990,
which is analyzed with the Wilcoxon test (p < 0.0001).
This outcome serves to underscore the remarkably high level
of reliability inherent to our system. The substantial CCs
in both intra-session and inter-session contexts affirm that
our system reliably maintains its performance across various
testing scenarios.

C. APLR of IMU Data Transmission From Multiple Tags
The APLR of UI-MoCap is depicted when employing

10 designed UWB tags for IMU data transmission, and it
is compared with 10 commercial IMUs of the same type,
transmitting IMU data via Wi-Fi, both at in-lab and out-
lab environment. In Fig. 11(a), in both settings, the APLR of
UI-MoCap is significantly lower than that of Wi-Fi. The aver-
age values with standard deviation of packet loss rates for our
system are 0.032 ± 0.034% and 0.041 ± 0.035% at in-lab and
out-lab environments, respectively. However, for Wi-Fi, the
average with standard deviation of packet loss rates is 2.004 ±

7.536% and 0.168 ± 0.937% in at in-lab and out-lab environ-
ments, respectively. Notably, at the in-lab environment, Wi-Fi
experiences a significant increase in APLR, and the standard
deviation exceeds three times the average, indicating unstable
IMU data transmission over time. This instability is attributed
to signal interference. Conversely, The APLR of UI-MoCap
based on UWB technology remains nearly unaffected, under-
scoring UWB’s substantial advantage in maintaining robust
IMU data transmission compared to Wi-Fi.

Fig. 11(b) illustrates the APLR of multiple UWB tags for
different transmission distances. Ten UWB tags are placed
at the distance of 2m, 7m, 12m, 17m, and 22m from the
UWB base station for IMU data transmission, resulting in
APLRs of 0.041%, 0.040%, 0.143%, 88.575% and 96.714%,
respectively. A significant increase in APLR is observed at
distances ranging from 12m to 22m. This increase suggests
that UWB tags positioned larger than this range struggle to
receive beacon frames from the UWB base stations.

D. Results and Discussion
To the best of our knowledge, this work marks the first

instance of fusing multiple IMU data transmission with UWB
positioning technology at the hardware level, resulting in
both high-accuracy 3D positioning and a high update rate
for IMU data transmission. Our findings demonstrate that
the system achieves remarkable 3D positioning accuracy in
LOS scenarios, with a positioning error of 1.86cm in static
experiments and 3.20cm in dynamic tests. The system also
exhibits excellent robustness in test-retest scenarios. Addition-
ally, in the same environmental conditions, our system’s IMU
data transmission exhibits a significantly lower packet loss
rate compared to IMU data transmission via Wi-Fi at 100 Hz
update rate. Hence, our UI-MoCap system can be considered
valid and reliable.

Among the typical deployment methods introduced in
Section. II for UWB positioning systems, the TDoA-based
positioning approach emerges as the most suitable choice,
as it enables reliable IMU data transmission while main-
taining high-precision 3D positioning. While TWR-based
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Fig. 8. The positioning performance in dynamic experiments. (a)-(f) Results of six distinct dynamic trajectories performed by a robotic arm. The
blue shading captures the collection of tracking points sampled from all trials. The black line traces the trajectory average among these trials, while
the red line represents the average trajectory among trials recorded by the optical MoCap system (OMC).

Fig. 9. (a) The averaged absolute error within 2D, Z-axis, and 3D
domains in both static and dynamic positioning experiments. (b) The
cumulative probability distribution of absolute error in 3D domain.

Fig. 10. The intra-session and inter-session correlation coefficients
(CC) for test-retest reliability. The significant threshold is 0.990 at a 95%
confidence level (p < 0.0001).

methods offer exceptional positioning accuracy, they involve
the exchange of numerous messages to determine a tag’s
location, resulting in redundant communication. For instance,
Kempke et al. [45] introduced a TWR-based positioning
system named SurePoint, which necessitated the transmission
of 30 packages to determine a tag’s location when using three
base stations. Such intricate data transmission processes lead

Fig. 11. (a) The average packet loss rate (APLR) of proposed system
and Wi-Fi both at in-lab and out-lab environments. (b) The APLR of
multiple UWB tags for different transmission distances.

to lower update rates, rendering it unsuitable for scenarios
involving moving objects due to latency and IMU signal trans-
mission. For AoA-based positing systems, they could offer
advantages of high update rates and cost-effective deployment.
However, their positioning accuracy is significantly affected
by the positioning range. For example, if an AoA-based
system has 2cm error within 1m positioning range, this error
would be amplified to 20cm when extending the position-
ing distance to 10m. On the other hand, concurrent-based
positioning is a receive-only system incapable of transmitting
IMU data to a computer. TDoA-based methods are prefer-
able due to their high update rates, low latency, modest
power consumption for packet transmission, and superior loca-
tion accuracy when base stations are well-synchronized. For
instance, Tiemann et al. [36] proposed ATLAS, an open-source
TDoA-based localization system capable of supporting over
1000 nodes with various update rates concurrently. Therefore,
the TDoA-based method is the most suitable choice for system
deployment that satisfies both IMU signal transmission and
reliable 3D positioning.
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TABLE I
EXISTING AND THE PROPOSED UWB-BASED POSITIONING SYSTEMS

Table I provides an overview of recent indoor UWB posi-
tioning technologies focusing on LOS scenarios, highlighting
our system’s competitive positioning accuracy. The improve-
ment in positioning accuracy is attributed to three main factors.
Firstly, our system employs a wired synchronization strategy
using a centralized clock generator connected to base stations
via cables, minimizing skew compared to the wireless syn-
chronization used by other studies listed in Table I. Secondly,
our system applied the newer DW3210 UWB transceiver chip,
offering a precision of ± 6cm [47], while UWB systems in
Table I predominantly use the DW1000 chip with ±10 cm
precision [48]. This hardware upgrade contributes to enhanced
precision. Lastly, the integration of a Kalman filter in our
software effectively mitigates UWB noise, further improving
positioning accuracy. The impact of the Kalman filter on
positioning accuracy in stationary and dynamic tests was
demonstrated in the Section. II of Supplementary Document.
Some studies in Table I also applied processing methods
to achieve better position performance, including Kalman
filter [37], extended Kalman filter [40], and median filter [45].
In addition, the optimized MAC layer design in our proposed
UWB wearable tag enhances the overall system’s update
rate and power efficiency by reducing scheduling payload.
Detailed power consumption analysis was provided in the
Supplementary Document.

Our system is targeted toward indoor MoCap applications
in gaming, sports, rehabilitation, human-robot interactions,
etc., where involves unavoidable magnetic disturbance from
electrical equipment. In contrary to IMU-based wearable
MoCap systems that are drift-prone over time, our system
could provide absolute 3D position of multiple wearable tags
while ensuring robust IMU data transmission and recording.
To enhance its capabilities further, our system could be further
developed by integrating extended Kalman filtering, fusing the
UWB positioning and IMU signals, to guarantee a robust and
continuous 3D positioning of full-body motion in both LOS
and NLOS conditions.

Our study still has some limitations. First of all, although
UI-MoCap has the capability for multi-tag positioning,
we have conducted 3D positioning experiments using only
one tag; Although this does not affect our assessment of the
system’s effectiveness, future work should consider including
multi-tag positioning accuracy tests to broaden the scope
of experimentation. Secondly, UI-MoCap has achieved high
3D positioning accuracy and reliable IMU data transmission;
However, there is a need for the development of algorithms
that can effectively integrate UWB positioning and IMU data,

further enhancing positioning accuracy. Thirdly, the hardware
design was suboptimized for power consumption. A better
parts selection in next generation would improve the operation
duration of the system.

VI. CONCLUSION

This research presents a pioneering effort in building up
a UI-MoCap system that seamlessly integrates multiple IMU
data transmission with UWB positioning technology at the
hardware level. The UWB mobile tags, equipped with IMU
modules, transmit IMU data though UWB to base stations. The
hardware-synchronized base stations effectively manage IMU
data transmission from multiple tags. The system’s validity and
reliability have been tested in both static and dynamic scenar-
ios, revealing several key findings: 1) centimeter-level 3D posi-
tioning accuracy, with a positioning error of 1.86cm in static
experiments and 3.20cm in dynamic tests, 2) robust positioning
performance over time, as demonstrated by a test-retest study,
and 3) a high update rate and low packet loss rate for IMU
data transmission, surpassing the efficiency of Wi-Fi-based
transmission techniques. The proposed system holds signifi-
cant potential for enhancing sensor fusion techniques involving
IMU and UWB signals, thereby improving positioning accu-
racy and long-term robustness for MoCap applications.
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