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Abstract— Postural instability is associated with disease
status and fall risk in Persons with Multiple Sclerosis
(PwMS). However, assessments of postural instability,
known as postural sway, leverage force platforms or wear-
able accelerometers, and are most often conducted in
laboratory environments and are thus not broadly acces-
sible. Remote measures of postural sway captured during
daily life may provide a more accessible alterative, but
their ability to capture disease status and fall risk has not
yet been established. We explored the utility of remote
measures of postural sway in a sample of 33 PwMS. Remote
measures of sway differed significantly from lab-based
measures, but still demonstrated moderately strong asso-
ciations with patient-reported measures of balance and
mobility impairment. Machine learning models for predict-
ing fall risk trained on lab data provided an Area Under
Curve (AUC) of 0.79, while remote data only achieved an
AUC of 0.51. Remote model performance improved to an
AUC of 0.74 after a new, subject-specific k-means clustering
approach was applied for identifying the remote data most
appropriate for modelling. This cluster-based approach for
analyzing remote data also strengthened associations with
patient-reported measures, increasing their strength above
those observed in the lab. This work introduces a new
framework for analyzing data from remote patient monitor-
ing technologies and demonstrates the promise of remote
postural sway assessment for assessing fall risk and char-
acterizing balance impairment in PwMS.

Index Terms— Postural sway, wearables, digital biomark-
ers, clinical validation, remote monitoring.
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I. INTRODUCTION

MULTIPLE sclerosis (MS) is an immune-mediated dis-
order leading to demyelination of central nervous

system axons that affects an estimated 2.8 million people
worldwide [1]. In MS, nerve signals are altered or delayed
potentially leading to sensory impairment, motor impairment,
fatigue, and postural instability [2]. As a result, an estimated
50-80% of persons with multiple sclerosis (PwMS) have
balance and gait dysfunction and over 50% experience a
fall in any given 3-month period [3], [4]. This incidence
of falls is similar to 80-year-old adults, however, symptoms
of MS typically manifest around age 30, potentially lead-
ing to worsening quality of life and increased health care
use [5], [6].

Postural instability and balance impairment are typically
assessed with subjective patient-reported measures (PRM)
[7], non-instrumented balance assessments performed by
clinicians [8], [9] and/or balance assessments using force
platforms [10], [11]. Force platforms are the gold standard for
postural sway analysis, which considers objective movement
features captured during a period of standing for characterizing
balance impairment [10]. Studies utilizing force platforms
have been able to distinguish people with impairments from
non-impaired individuals [10] and classify the fall risk of
older adults [12] and PwMS [13]. However, force platforms
are expensive and limit accessibility to specialized clinics or
research laboratories. To address these challenges, studies have
shown that postural sway can be assessed using data from
just a sacral or chest accelerometer [10], [14], [15], [16].
Sensor-derived postural sway measures have been used to
classify fall risk in PwMS [14], distinguish between disease
states [10], [13], [16], [17], [18] and to augment current
assessment techniques [19], thereby achieving similar clinical
utility to the force platform.

These promising balance assessments, however, are all
performed in clinical or laboratory settings, which limits
their accessibility. Recent studies of chest accelerometer-based
postural sway have found stronger relationships to PRMs from
remotely collected measures compared to in-clinic assess-
ments [16], [20]. These differing relationships to PRMs may
be explained by differences between remote and in-clinic
measures. Studies comparing remote and in-clinic gait have
found that the remote parameters are significantly different
and have higher variability compared to those from an in-
clinic assessment [21], [22]. As a result, separate models are
needed to examine in-clinic and remote gait, but it is not yet
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Fig. 1. Data processing overview. Free-living data collected from thigh and chest accelerometer and then classified using a deep learning classifier.
Features of postural sway were computed for each standing bout as feature values vary throughout the day and clustering techniques were used to
find similar data. BiLSTM: Bidirectional Long-Short-Term Memory network; FD: Frequency Dispersion.

clear if these same discrepancies in data exist for postural
sway.

Another challenging aspect of remote monitoring is the
inherent increase in variability, compared to laboratory
measures. This additional variability creates challenges for
interpretability and requires additional care to be taken during
analysis such that simple averaging of parameters across
days or weeks may not be appropriate. One approach is
to ask participants to perform repeated prescribed activities
throughout the monitoring period to provide consistent
context for analysis. For example, this approach has been
applied to 30-second chair stand tests [23] and ten-meter walk
tests [24], where participants were asked to complete multiple
trials remotely. Another approach is to use Global Positioning
System (GPS) data to capture measurements in consistent
physical locations, again providing context for analysis [25].
While these approaches help control variability, they also
reduce the data available for analysis, potentially losing
important information in favor of simplified analyses. There
may instead be a benefit to pursuing new methods that allow
us to select which data to analyze in a fully unsupervised
manner, but these approaches have not yet been developed.

With these knowledge gaps in mind, we aim to introduce
postural sway as a remote digital biomarker in PwMS by
1) examining how assessment context impacts postural sway
measurements, 2) establishing the clinical relevance of remote
postural sway measurements, and 3) advancing a new method
for selecting subsets of remote postural sway measurements
to consider for analysis.

II. METHODS

To address our goal of evaluating remote postural sway as a
biomarker for balance impairment, we considered free-living
data from a sample of PwMS (left, Fig. 1). A fully automated
data processing pipeline enables detection of standing periods

via deep learning-based activity classification (middle, Fig. 1),
computation of postural sway parameters that characterize
balance performance, and determination of which data are
suitable for analysis via unsupervised clustering (right, Fig. 1).
Remote postural sway parameters are compared to lab-based
measures and PRMs of balance and mobility impairment, and
their suitability for classifying fall risk is assessed.

A. Participants and Protocol
To address these objectives, we utilize a dataset of 33 Per-

sons with Relapsing-Remitting MS (16:17 fallers:non-fallers;
10:23 Male:Female; mean ± standard deviation age 50 ±

13 years old), recruited from the Multiple Sclerosis Center
at University of Vermont Medical Center. Exclusion criteria
were no major health conditions other than MS, no acute
exacerbations within the previous three months, ambulatory
without the use of assistive devices. PwMS who self-reported
to have fallen within the previous six months were char-
acterized as fallers based on the criterion “consider a fall
as an event where you unintentionally came to rest on the
ground or a lower level.” [26]. Our analysis required a
subset of the larger publicly available dataset that has been
described in detail in our previous work [22]. Participants
were asked to complete several PRMs, several instrumented
activities of daily living, including standing, sitting, walking
and lying, and a neurologist-administered Expanded Disability
Status Scale (EDSS) assessment [27] during a laboratory visit.
Participants were then asked to complete a 48-hour daily
life monitoring period immediately following the laboratory
visit. The PRMs utilized in this analysis were Activities-
Specific Balance Confidence (ABC) [7], Multiple Sclerosis
Walking Scale (MSWS) [28], and the long form Modified
Fatigue Impact Scale (MFIS) [29]. Participant demographics
and PRMs were previously reported [22]. There was not a
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significant difference between age of the fallers and non-
fallers. To briefly contextualize the groups, fallers had a mean
EDSS and ABC of 3.3 and 75, respectively, while non-fallers
had means of 2.2 and 91.4, respectively. The in-laboratory
assessment used in this analysis was a 2-minute standing
balance assessment where participants were instructed to stand
with their feet shoulder-width apart, research staff were in
position spot in-case of falls. This type of standing task was
analyzed to capture participants’ typical balance performance.
The lab and remote assessment periods were instrumented
with BioStamp nPoint®(Medidata) sensors (62 Hz ± 16G)
located on the chest and thigh. Sensors were applied by trained
research staff. The chest sensor was secured to the sternum,
just below the sternoclavicular joint and the thigh sensor was
on the anterior aspect of the right thigh, ∼25% from the patella
to the anterior superior iliac spine. Sensors were located on the
chest and thigh to enable accurate detection of daily activities
as discussed next.

B. Automated Data Processing
1) Remote Activity Identification: Data recorded from both

the laboratory and remote sessions were first reoriented to
align the cranial-caudal axis with gravity based on the first ten
seconds of the lab standing trial. Following calibration, remote
data were classified using a previously described classification
framework that identifies bouts of walking, standing, sitting,
and lying [20], [30]. Briefly, this model uses a Bidirectional
Long-Short-Term Memory Network (BiLSTM) to perform
classifications on raw acceleration data from a chest and
thigh sensor. This model was trained on a mix of persons
with MS, Parkinson’s, and healthy adults and provides a 97%
accuracy on a held-out test set. This model was used to identify
all remote standing bouts that were 30 seconds or longer.
30 seconds was chosen as the minimum because this is the
length of the typical in-lab balance assessment [10], [16].
The first minute of the laboratory standing balance assessment
was used for in-lab analysis. Data were processed using the
individualized distributions [16] approach where a 30-second
window is slid 5 samples over the trial to create a distribution
of each sway parameter.

2) Postural Sway Parameter Extraction: Following the iden-
tification of standing periods in both lab and remote data,
the acceleration data were down-sampled to 31.25 Hz and
a 4th order, zero-phase Butterworth low-pass filter with a
cutoff frequency of 3.5 Hz was applied before computing
the magnitude of the acceleration in the horizontal plane.
Fifteen features were computed for each 30-second lab epoch
and/or valid remote standing period. These features included
thirteen features from Mancini et al [10]: Jerk, Distance
(Dist), Root-Mean-Square (RMS), Path, Range, Mean Velocity
(MV), Mean Frequency (MF), Area, Power (Pwr), median
power frequency (F50), 95% power frequency (F95), Cen-
troidal Frequency (CF), and Frequency Dispersion (FD).
We also considered two features that capture signal com-
plexity: Approximate Entropy (ApEn) [31], and Lyapunov
Exponent (LyExp) [17], [32].

3) Data Clustering Methodology: Unsupervised clustering
(k-means, [33], [34]) was used to discover underlying structure

in the remote data that may arise from participants perform-
ing other activities while standing such as washing dishes,
standing in line, etc. Clustering was applied on the par-
ticipant level, meaning four clusters were identified from
each participant. Clustering was performed with ‘seuclidiean’
distance for 100 replicates. Similar methods have been used
to cluster symptoms in PwMS to increase predictability of
physical activity [35]. The optimal number of clusters for each
participant was chosen using MATLAB’s evalclusters function
with DaviesBouldin [36] criterion and Euclidean distance for
1 to 5 clusters yielding a mean of 4 clusters across participants.
The z-scores of the reduced feature set were then used to
identify four clusters for each participant. The clusters were
labeled based on the sorted centroid of the FD feature, because
it is strongly related to impairment. Cluster 1 had the highest
centroid of FD, and cluster 4 had the lowest. This relationship
to FD was identified herein on the unclustered analysis.

C. Statistical Analysis
Ranksum difference tests were used to identify differences

between lab and remote postural sway features. Effect sizes
were characterized with Cohen’s D. Median and inter-quartile
range (IQR) are also reported for each feature. Spearman cor-
relations were used to identify significant associations between
the postural sway features and PRMs. The multiple obser-
vations of features per participant were aggregated using the
5th percentile (P5), 25th percentile (P25), median (Med), 75th

percentile (P75), 95th percentile (P95), and standard deviation
(STD). The results of the strongest significant aggregation
were reported. Using the results of the correlations to PRMs
and previously published [16] cross-correlations between the
features, we then selected a reduced feature-set for remote
analysis containing features that demonstrate correlations to
PRMs and that are not highly correlated to each other. When
choosing between highly related features, the feature with
the strongest remote PRM correlation was chosen. Details of
feature correlations are provided in the results. The reduced
remote feature set contained RMS, Range, Area, CF, FD, and
LyExp.

To examine association with clinical significance, we com-
puted Spearman correlations to both ABC and EDSS for the
sway features from each cluster and compared the remote
data features to lab data features with a rank-sum test. Only
correlations ABC and EDSS were computed on the clustered
data to reduce the number of comparisons required across
groups. Due to the reduced amount of data per participant,
correlations were performed using the raw feature values
instead of summary statistics. Additionally, we computed
the Spearman correlation of the lab features with clustered
features for the median and 95th percentile of each feature.
For comparison, these same methods have been applied to the
non-clustered data.

D. Fall Risk Classification
Six-month fall history was used to inform classification

models for discriminating fallers from non-fallers. Logistic
regression (LR) and support vector machine (SVM) models
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TABLE I
DIFFERENCE BETWEEN REMOTE AND LAB POSTURAL SWAY

MEASUREMENTS

were trained, optimized, and tested separately on the lab
features, all remote features, and remote features from each
cluster. Leave-One-Subject-Out cross-validation (LOSOCV)
was performed to ensure data from participants was not in
both the test and training set. Performance was assessed
using area under the receiver operating characteristic curve
(AUC), accuracy (acc), sensitivity (sens), specificity (spec),
and F1 score. Model performance was computed using both
the outputs from each individual input and by aggregating the
median decision score from each observation of an individual
participant, resulting in one prediction per participant. Model
hyperparameters were tuned. Lasso regularization was used
with OptimizeLearnRate to train the LR models and the SVM
model was found to perform best with a linear kernel and
a SMO solver. A permutation analysis was conducted to
compare the model AUC against random chance, using 100 run
average of classification results compared to 1000 replicates
of permuted labels.

III. RESULTS

All fifteen sway features computed were significantly dif-
ferent between the lab and all remote data (Table I). Very high
effect sizes were also observed for Pwr, Path, and RMS. When
correlating the remote data to PRMs (Table II), we found the
strongest relationships across all PRMs with FD (frequency
dispersion). The PRMs ABC and MFIS demonstrated the most
significant correlations to remote sway, however, the strongest
relationship observed, r = −0.62, was the 75th percentile of
FD with MSWS.

Measures of in-lab postural sway were found to provide
strong fall risk classification results. Using a LR classifier,
we observed an AUC of 0.74 when classifying fall risk based
on single observations, which increased to 0.79 when we used
the median of each participant’s decision scores as a summary
predictor (p < 0.001 and p = 0.003, respectively). The weights
of the model, which we use as a proxy for a feature’s
importance, are depicted in Fig 2. To establish a baseline for
remote data performance, we fit models using all the collected

TABLE II
ASSOCIATION WITH PATIENT-REPORTED MEASURES

Fig. 2. Feature importance of logistic regression model for in-lab fall
risk classification.

data (i.e., without clustering). The best performing model was
a logistic regression, with an AUC of 0.52 before aggregation
and 0.44 after, suggesting that the model is unable to perform
any better than guessing, likely due to noisy data (p =

0.034 and p = 0.417, respectively). More model performance
details can be found in Table IV.

Clustering methods were applied to investigate whether
selecting subsets of data would enhance performance. An aver-
age of four clusters was found to be optimal across participants
(see Fig. 3 for optimal clusters by participant). Each cluster
was found to have unique relationships to PRMs. As seen in
Table III, the strongest correlation to ABC was observed with
FD from cluster 2, however, the strongest correlation to EDSS
was observed with RMS from cluster 3. Overall, features from
clusters 1-3 all established meaningful correlations to PRMs
while cluster 4 does not.

When compared to lab data, all features were different
between the clusters and lab data except ApEn for clus-
ter 1 and ApEn, CF, and FD for cluster 2. Only clusters
2 and 3 had significant correlations between lab-derived and
clustered remote features. The lab-derived RMS feature had
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Fig. 3. Optimal number of clusters for each participant for k-means
clustering.

Fig. 4. Z-score differences for each feature between that derived from
all remote data and that derived from clustered remote data or lab data.

a correlation of 0.36 and 0.43 with the median RMS of
clusters 2 and 3, respectively. The lab-derived CF feature
was also significantly anticorrelated with the CF of cluster 2
(r = −0.46). Interestingly, while not strongly correlated, the
features Range and FD showed negative correlations between
the lab data and all remote data, and between the lab data and
clusters 1-3. All other features, including those from all home
data, were not significantly correlated to lab-derived features.

Fig. 4 demonstrates the z-score differences between the
clusters and all of the home data. Here we found that Range
and FD were both higher and CF was lower in clusters 1 and
2 compared to all home data.

When averaging the amount of time spent in each cluster
across all participants, fallers spent 12.05% of the time in
cluster 1, 25.94% in cluster 2, 42.83% in cluster 3, and 19.18%
in cluster 4. Non-fallers spent 7.69% in cluster 1, 24.35%
in cluster 2, 38.56% in cluster 3, and 29.43% in cluster 4.
Differences in time spent in clusters 1 and 4 between fallers
and non-fallers approached significance, (p = 0.055 p = 0.050,
respectively), but this was not the case for clusters 2 and 3.

Training models to classify fall risk from the differ-
ent clusters of data revealed vastly difference performance
between clusters. Considering the aggregation of 48 hours
of data, clusters 1-4 achieved AUCs of 0.57, 0.71, 0.53,
and 0.32 respectively, as shown in Table IV. SVM models
were found to perform best for clusters 1-3, while a logistic
regression model provided the best performance for cluster 4.

TABLE III
ASSOCIATION WITH PATIENT-REPORTED MEASURES BY CLUSTER

Overall, cluster 2 exhibited the strongest fall classification per-
formance. Cluster 1 had a strong unaggregated performance,
AUC 0.73, with the highest observed accuracy, sensitivity,
and F1 score, however cluster 1 had a strong class imbalance
toward fallers, which is corrected for by aggregation resulting
in the AUC of 0.57. Details regarding class balance, model
performance measures, and significance tests for model results
are in Table IV.

IV. DISCUSSION

The purpose of this work was to introduce postural sway as
a remote digital biomarker. In doing so, we compared postural
sway features from free-living data to those computed from
a lab standing assessment, computed correlations to PRMs,
and trained fall classification models to establish clinical
significance. In these analyses, we explored the impact of
selecting subsets of data by clustering compared to considering
all free-living data.

When comparing lab and remotely collected postural sway,
all features were found to be significantly different with larger
IQRs observed in remote data in many cases. Interestingly,
many of the features with high effect sizes were related to sway
path and power (e.g., Path, RMS, Pwr), suggesting that perhaps
sway patterns are more variable at home. These findings
suggest that modeling approaches need to be trained using
data from the targeted use environment. Similar observations
were made in remotely collected gait in PwMS [22].

Our investigation of clinical significance finds several sig-
nificant correlations between PRMs and EDSS with remote
sway features. The FD feature provided the strongest corre-
lations with EDSS, ABC, and MSWS, while Area provided
the strongest correlation with MFIS. In our previous studies,
we have found few significant relationships between standard
eyes-open standing and PRMs in the lab [16]. The strongest in-
lab correlation we observed was r = −0.37 between Dist and
MFIS. In this analysis, we not only find a stronger relationship
between MFIS and Area (r = 0.45), we also find a correlation
of r = −0.62 between FD and MSWS when considering
remotely collected sway. Based on these findings, remote



972 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 32, 2024

TABLE IV
FALL RISK CLASSIFICATION PERFORMANCE BY CLUSTER

sway parameters are clinically relevant because they show
relationships with patient-reported measures of impairment.

Using the remote and lab measures to train fall classification
models, however, we find that considering all the remote data
is highly variable and noisy when trying to classify fall risk,
highlighting the need for some level of preprocessing such
as clustering. The in-lab features were able to achieve an
AUC of 0.79 in an eyes-open balance assessment compared to
0.52 with remote features. Investigating the feature importance
of the lab model reveals the most important features from
this set in the lab are RMS, Path, MV, Area, and Pwr. These
findings are different from those previously found in MS that
suggest the three domains to explain balance variance are
sway amplitude and velocity and sway frequency and jerk
in the anterior-posterior (AP) and medial-lateral (ML) direc-
tions [18]. These features may not arise as important in this
analysis because we do not separate into AP and ML features.

When clustering methods were applied to the remote data,
we found differing relationships with each cluster. Based
on rank-sum tests, cluster 2 provided the fewest significant
differences when compared to the lab standing, followed by
cluster 1. All features were significantly different for clusters
3 and 4. When correlating these home and clustered features
with the lab-derived features, we find most features are not
correlated, meaning lab performance is not indicative of real-
world standing. Additionally, the features Range, FD, and
CF had negative correlations between lab and remote data,
suggesting that those who have less sway in the lab assessment
have larger sway ranges at home. This may reflect an increase
in confidence and movement in those who are less impaired.
We also found the overall highest correlations when using data
from cluster 2 between ABC and FD (r = 0.64).

Interestingly, however, the strongest correlation to EDSS
was found between RMS in cluster 3 (r = 0.61). This suggests
that the clusters may capture different relationships within the
data.

Perhaps the most interesting finding is that when the
data from the clusters were used to train fall risk models,
cluster 2 was able to achieve performance near that of the
lab assessment. These clustering results show promise that
accurate assessments can still be made with remote data

when appropriate data are selected for analysis. Compared
to other fall risk assessments in PwMS, the clustered results
still fall slightly behind lab-based approaches, as demonstrated
herein, however, we found stronger performance compared to
other remote assessments using gait [22]. A balance-based
fall risk measure may be more broadly useful for PwMS
with difficulty ambulating. Herein, the clustering was simply
used as a method to select different sets of unique data. The
improved performance and correlations observed when doing
so motivates using similar unsupervised methods to remove
unwanted data or select data of interest in future remote anal-
yses. For example, a similar approach may have been able to
explain the differences between fall classification performance
of PwMS from gait from the lab and home [22], [37].

There are some limitations to this study. First, our analysis
was based on a relatively small sample of 33 PwMS. There is
a lack of demographic and regional diversity in this sample.
Additionally, our methods do not distinguish between AP
and ML direction features, which may impact the resulting
conclusions and their agreement with prior work. Finally,
our inclusion criteria limited the applicability of this work
to participants with lower levels of mobility impairment, and
further research on how this technique works with people
with more significant impairment is needed. We expect a
sample of more severely impaired individuals would result
in stronger signals, however, that remains untested with our
current dataset.

Despite these limitations, we were still able to provide
strong results and motivations for the remote assessment of
postural sway. Future studies need to be done to determine if
these same clustering methods can be applied to improve deep
learning classification of fall risk. Studies should also be done
to determine if similar clustering methods provide meaningful
findings in other activities measured remotely, such as gait.

V. CONCLUSION

Herein we examined the use of postural sway as a remote
digital biomarker. We demonstrated that sway measures col-
lected in the lab are significantly different from those collected
remotely and that remote data demonstrated stronger correla-
tions with PRMs. However, lab sway features were able to
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accurately assess fall risk while unclustered remote measures
were unable to do so. To address this, we applied a clustering
method to identify similar data at home and found differing
relationships to PRMs and fall risk within each cluster. The
best performing cluster was able to achieve similar perfor-
mance to lab collected sway and provided stronger correlations
than both the lab and all home data. Our results motivate the
inclusion of postural sway as an analysis method in future
remote studies.
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