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Electroencephalography (SEEG)-Based
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Abstract— Brain-computer interfaces (BCIs) can enable
direct communication with assistive devices by record-
ing and decoding signals from the brain. To achieve
high performance, many electrodes will be used, such
as the recently developed invasive BCIs with channel
numbers up to hundreds or even thousands. For those
high-throughput BCIs, channel selection is important to
reduce signal redundancy and invasiveness while main-
taining decoding performance. However, such endeavour
is rarely reported for invasive BCIs, especially those using
deep learning methods. Two deep learning-based meth-
ods, referred to as Gumbel and STG, were proposed
in this paper. They were evaluated using the Stereo-
electroencephalography (SEEG) signals, and compared
with three other methods, including manual selection,
mutual information-based method (MI), and all channels
(all channels without selection). The task is to classify
the SEEG signals into five movements using channels
selected by each method. When 10 channels were selected,
the mean classification accuracies using Gumbel, STG
(referred to as STG-10), manual selection, and MI selec-
tion were 65%, 60%, 60%, and 47%, respectively, whilst
the accuracy was 59% using all channels (no selection).
In addition, an investigation of the selected channels
showed that Gumbel and STG have successfully identified
the pre-central and post-central areas, which are closely
related to motor control. Both Gumbel and STG success-
fully selected the informative channels in SEEG recordings
while maintaining decoding accuracy. This study enables
future high-throughput BCIs using deep learning methods,
to identify useful channels and reduce computing and wire-
less transmission pressure.
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I. INTRODUCTION

BRAIN-COMPUTER interfaces (BCIs) are technologies
that decode brain signals to intentions and hold the

promising potential to restore lost functionality. Recording
interfaces usually contain many electrodes that in turn give
rise to multiple channels. For example, there could be between
19 and 25 electrodes in a standard scalp EEG, and in
high-density EEG this number can rise to 256 [1], [2], [3].
The channel number can be even higher for invasive BCIs.
For example, recent developments in invasive BCI have
witnessed a trend of high-density and high-throughput record-
ing devices that can simultaneously record thousands of
channels [4], [5], [6]. This high channel count design may
enhance BCI performance, but it also brings challenges
associated with high data dimensionality and the sheer quan-
tity of data to be processed and communicated [7]. For
example, high-density electrodes may introduce redundancy
between neighbouring electrodes, and the processing of big
data requires sophisticated signal processing steps and leads
to more time delay. For invasive BCIs, the implantation of
BCI with high throughput would require a more invasive and
complex surgical operation, which brings higher safety issues.
In addition, for wireless invasive BCIs which perform signal
pre-processing using chips inside the brain, the heat gener-
ated by heavy computing might bring damage to the brain
tissue [8]. Therefore, channel selection can be used to select
the most informative channels to achieve a balance between
decoding accuracy and the number of implanted channels.

On the other hand, signals not related to the decoding
target (noise) might be picked up if the location of the
electrode is suboptimal. For example, the emerging Stereo-
electroencephalography (SEEG) based BCIs use approxi-
mately hundreds of depth electrodes to capture large-scale
intracranial neural activity from various cortical and sub-
cortical areas [9], [10]. It has been demonstrated that these
areas contain very different signals when performing a motor
task [11]. Therefore, channel selection is helpful to extract
useful information.
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A. Channel Selection Methods
Methods to select channels can be categorized into four

strategies: filtering, wrapping, embedded, and human-based
techniques. These methods have been extensively studied in
non-invasive BCI (see [12]). In filtering methods, channels are
selected based on an independent evaluation criterion, such as
a distance measure, an information measure, a dependency
measure, or a consistency measure. For example, He et al.
presented a statistical channel selection method for classifying
motor imagery using a sequential fast-forward search strategy
to find the optimal combination of channels [13]. In the case
of wrapping techniques, a classification algorithm is used to
evaluate the candidate channel subsets, which are generated
by a search algorithm. For example, a wrapper approach
with a random search strategy for subset channel selection
has been adopted in a study of motor imagery classification
tasks [14]. However, this method needs to retrain the decoder
every time a subset of channels is chosen, and consequently,
they are generally more computationally expensive than fil-
tering techniques. In the embedded techniques, the channels
are selected simultaneously with the decoding process. For
example, channel selection was achieved using a recursive
feature elimination (RFE) method during the training of an
SVM model in a motor imagery classification task [15].
Embedded methods based on deep learning have also been
studied. For example, a squeeze-and-excitation block was
incorporated into a convolution neural network (CNN) model
to perform automatic channel selection in a motor imagery
recognition task [16]. In another EEG-based BCI study, chan-
nel selection was achieved using a deep learning method by
re-parametrizing the discrete channel sampling problem using
the Gumbel-softmax trick [17].

Compared to the aforementioned studies about channel
selection in non-invasive signals, channel selection in invasive
BCI has attracted much less attention, especially using the
deep learning method. Although such studies are rare, it is
more important for the invasive BCI to achieve a balance
between decoding accuracy and invasiveness by choosing
subset effective channels. In an SEEG BCI research, Li et al.
used the correlation between the power of each frequency band
and the task state to select channels [18]. As a wrapper method,
the forward optimal feature selection (fOFS) method was used
in a hand gesture classification task using SEEG signals [19].
Genetic-based methods have also been explored [20].

The aforementioned conventional methods are often subop-
timal in that only a subset of channel combinations can be
explored by the heuristic searching strategies. It also faces
difficulties in the high throughput context because of the
over-fitting problem when the channel count is high [21].
To solve these problems, in this paper, two end-to-end deep
learning-based channel selection methods will be evaluated
using the SEEG data recorded during participants performing
arm or hand movements. The task is to identify a channel
subset that can be used to classify the signals into five classes
with decoding accuracy comparable to that using all channels.
This paper focused on the deep learning-based method because
deep learning has attracted increasing attention in BCIs, and
it has been proven to be comparable, most time superior to
the traditional methods [10], [22], [23], [24], [25]. Compared
to the conventional methods, integrating the channel selection

function into the deep learning framework is advantageous in
several aspects. First, the global optimum solution (the best
channel combination) can be obtained using the gradient
descent strategy to search over the entire space. Second,
channel selection can be achieved simultaneously with the
decoding task at hand during the end-to-end training process,
and therefore, no need to retrain the decoder multiple times.
Third, the proposed methods are modules that can be used in
a plug-and-play fashion. This is highly desirable because they
can be used in any other deep-learning architectures, including
some of the most advanced networks, such as the Transformer
model [26].

The novelty of this manuscript is three-folded:

• To our best knowledge, it is the first time that the deep
learning-based channel selection method has been studied
on the SEEG data.

• To our best knowledge, it is the first time the STG method
has been studied on BCIs.

• Compared to the previous non-invasive BCI channel
selection studies, this manuscript studied the selected
electrodes in different brain regions. This analysis helps to
gain new insight into the movement representation inside
the brain.

B. Deep Learning Method
Under the deep learning framework, one strategy for channel

selection is to learn one-hot weights, in which the ones rep-
resented the chosen channels and the zeros are the unselected
ones. However, this causes an inability to perform backprop-
agation due to the categorical latent variables (corresponding
to the channel weights). A common strategy to tackle this
problem is to reparametrize the discrete distribution with
continuous relaxation. This paper will evaluate two exam-
ple relaxation methods. The first one referred to as the
Gumbel selection, is to use a gradient estimator to replace
the non-differentiable sample from a categorical distribution
with a differentiable sample from a novel Gumbel-Softmax
distribution [27]. This method has been shown to be efficient
to build a concrete autoencoder, an end-to-end differentiable
method for global feature selection [28], and it has been
reported in a recent scalp EEG study [17]. The second method,
referred to as the STG selection, uses a Gaussian-based contin-
uous relaxation of the Bernoulli variables, which represent the
stochastic gating (hence STG) of each discrete variable [29].
This paper will implement these two methods as deep learning
networks (referred to as the selection subnets). The selection
subnet (Gumbel or STG) will be stacked on top of a decoding
subnet, which can be either a classification or regression
subnet. Then, the stacked networks will be jointly trained to
extract the informative channels and classify the SEEG signals
simultaneously.

II. EXPERIMENT SETUP

To evaluate the proposed methods, the SEEG signals which
were acquired during participants performing five different
hand or forearm movements will be used. The task in this
experiment was to classify SEEG signals into five different
movement classes using subset channels. The detailed exper-
iment paradigm and decoding algorithm will be presented in
the following sections.
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TABLE I
CLINICAL PROFILES OF PARTICIPANTS IN THE STUDY

A. Participants and Data Recording
There were 12 human participants (referred to as 1,

2. . . ,12) recruited in this study. The participants were patients
with intractable epilepsy and were implanted with SEEG
electrodes for pre-surgical assessment of seizure focus. All
participants were enrolled with written consent. The clinical
profile of all participants is shown in Table I. All implan-
tation parameters were determined solely by clinical needs.
SEEG signals were acquired using a clinical recording system
(EEG-1200C, Nihon Kohden, Irvine, CA) and sampled at
1000 or 2000 Hz. Each electrode shaft was 0.8 mm in diam-
eter with 8–16 contacts (Huake Hengsheng Medical Corp.,
Beijing, CN).

This study was reviewed and approved by the Ethical
Committee of the University of Bath (Ethical approval ref-
erence №: EP 20/21 050) and the Ethics Committee of
Huashan Hospital (Shanghai, China) (Ethical approval refer-
ence №: KY2019518).

B. Experimental Protocol
The experimental paradigm is shown in Fig. 1. The par-

ticipants were reclined on a hospital bed during the whole
experiment. One trial lasts for 10 s (4 s rest, 1 s cue, and
5 s task). To begin the trial, the participants kept still for
4 seconds (resting stage). Then, a visual cue (a cross) was
shown on an LCD screen for 1 s (cue stage). When the cue
stage ended, the cross disappeared and a picture of one of
five tasks was presented (grasp, scissor gesture, elbow flexion,
wrist supination, thumb flexion). The participant performed the
specified task repeatedly for 5 s, using the hand contralateral
to the hemisphere with the majority of the implanted SEEG
electrodes. The five tasks were randomly presented for a total
of 20 times per task. In the end, there are a total of 100 trials
per participant (16.67 mins total).

C. Electrode Localization
The 12 participants had a total of 1554 contacts (rounded

mean ± std: 129 ± 32 per participant) implanted. The
electrode locations, in a standard brain model (Montreal
Neurological Institute (MNI)), were obtained using an open-
source toolbox, iEEGview [30]. The anatomical label of each

Fig. 1. The experiment paradigm. (A) A trial consisted of three stages:
rest, cue, and task. In each trial, participants will keep still during the
4-second resting stage. Then, a cue (a white cross on the screen)
will appear for 1 second. After the cue disappears, a picture of one
of five movements will appear, and the participants will perform the
corresponding task repeatedly for 5 seconds. (B) Five movement tasks
were used in this experiment: grasp, scissor gesture, elbow flexion, wrist
supination, and thumb flexion.

contact was identified using Freesurfer’s cortical parcellation
and subcortical segmentation [31].

III. METHODS

In this section, the data preprocessing step and the
calculation of temporal-spectral representation will be briefly
introduced. Then, detailed information about two proposed
methods (Gumbel and STG selection) will be presented. Both
implementations of these two methods used a stacked archi-
tecture, consisting of a selection subnet and a classification
subnet. Whilst the classification subnet was the same, the
implementation of the selection subnet was different. There-
fore, the stacking architecture will be presented first, and then
the selection subnet, specific to each method, will be further
introduced respectively.

A. Signal Pre-Processing & Temporal-Spectral
Representation

First, the SEEG data was down-sampled to 1000 Hz. The
SEEG signals were then band-pass filtered from 0.5 Hz
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Fig. 2. Plot of the stacked channel selection and classification subnets. For input of X , in the shape of N × T (N, T denoted channel number and
temporal sampling points, respectively.), the selection subnet will learn one-hot-like weights. The channel will be selected by multiplying the input
data with the one-hot-like vector. The resulting selected channel will be fed into a classification net to classify the SEEG signals. The part framed in
the green area was implemented differently using the proposed Gumbel and STG methods, while other components were kept the same.

to 400 Hz using a 4th order Butterworth filter, and a notch
filter was used to eliminate 50 Hz line noise. Next, channels
with extensive line noise were identified and excluded in
the following calculation using the same method from our
previous work [10].

The temporal spectral representation of the SEEG sig-
nals was obtained using the MNE toolbox [32]. Then,
event-related desynchronization (ERD) and event-related syn-
chronization (ERS) were calculated in frequency bands
0.5-30 Hz and 60-150 Hz, respectively, as described in our
previous work [10].

B. Channel Selection Methods
The two proposed methods follow a similar architecture,

in which a selection subnet is stacked on top of a classifi-
cation subnet. In this stacked architecture, the first channel
selection subnet performs channel selection, and the clas-
sification subnet will classify the selected data into five
movements. An illustration of this stacked architecture is
presented in Fig. 2.

In this stacking arrangement, the complete network can be
represented by:

y = C(S(X)) (1)

in which S and C denote the selection subnet and the classifi-
cation subnet, respectively. Raw input signals were represented
by X which were in the shape of N × T (N, T denoted
channel number and temporal sampling points, respectively).
For the two selection methods, both try to learn one-hot-like
weights representing the importance of each channel to the
decoding task. However, these two methods differ in how
the one-hot weights were learned. For the Gumbel method,
the channel number to be selected needs to be supplied
to the model as a priori, while, for the STG selection method,
the channel number will be determined by a weight sparsity
hyperparameter. Detailed information on these two methods
will be presented below.

1) Gumbel Selection: The Gumbel method was first intro-
duced in the EEG decoding task in a previous work [17], with
detailed information on the algorithm and implementation,
and the general idea will be given in this manuscript. In the
Gumbel selection, multiple neurons were employed, in which
each neuron select one channel. Therefore, the channel number
to be selected must be provided as a priori (hyperparameter).
For example, when M channels need to be selected, M neu-
rons will be used. For each neuron, the channel selection
task can be viewed as a categorical sampling problem and
this sampling process can be approximated with Gumbel-
argmax trick. Next, to make the process differentiable, the
argmax operation is replaced with softmax, hence the Gumbel-
softmax trick. During the approximation, an extra temperature
parameter β controls the extent to which Gumbel-Softmax
approximates categorical distribution. As β approaches 0,
samples from the Gumbel-Softmax distribution become one-
hot and the Gumbel-Softmax distribution becomes identical to
the categorical distribution. Therefore, channels corresponding
to the ‘1’s are the selected channels.

To select M channels from a total of N inputs, a prob-
ability weight can be written as 2D matrix: W =

[w1, w2 . . . , wM ], in which for each neuron m the vector
wm = wm

1 , wm
2 , .., wm

N represents the probabilities to select
N channels i = 1, 2, . . . N .

The channel selection task can be viewed as a categorical
sampling problem, in which channels are the categories (being
selected or not). The Gumbel-Max trick provides a simple
way to draw a sample ŵm

n (selection neuron m select the n-th
channel) from a categorical distribution via:

ŵm
n = one_hot (argmax

n

(
gm

n + log
(
αm

n
))

) (2)

where gm
1 , gm

2 , . . . gm
N are independent and identically dis-

tributed (i.i.d) samples drawn from Gumbel(0, 1) [33], and α is
the learnable parameter. Next, to make the process differen-
tiable, the argmax operation is replaced with softmax, and ŵ
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can be rewritten as:

wm
n =

exp((log(αm
n ) + gm

n )/β)∑N
n=1 exp((log(αm

n ) + gm
n )/β)

(3)

The temperature parameter β controls the extent to which
Gumbel-Softmax approximates categorical distribution. As β

approaches 0, samples from the Gumbel-Softmax distribu-
tion become one-hot and the Gumbel-Softmax distribution
becomes identical to the categorical distribution.

Then, given the original input X in the shape of (N × T),
each neuron computes its output channel as zm = wm X ,
and the final out of the selection layer would be Z =

[z1, z2, . . . zM ] in the shape of (M × T).
As β approaches 0, the Gumbel-Softmax distribution

becomes identical to the categorical distribution, and the
probability of each channel, denoted as matrix P , can be
obtained by normalizing the weights in the below equation:

pm
n =

αm
n∑N

n=1 αm
n

(4)

in which pm
n represents the probability of channel n selected

by neuron m.
In addition, the channel entropy is calculated to monitor the

convergence of the selection process, which can be computed
as below equation:

Hn = −
1

logN

N∑
j=1

αm
n log(αm

n ) (5)

2) STG Selection Method: The STG method was first
proposed by Yamada et al. [29], which is based on the prob-
abilistic relaxation of discrete Bernoulli variables. While
detailed information can be obtained in the original paper,
the adaptation in channel selection using SEEG signals will
be given below.

For raw SEEG data with N channels, the Bernoulli gates
are applied to each of the N channels to activate or inactivate
the input feature. These Bernoulli gates are represented by
a random vector s = [s1, s2 . . . sd . . . sN ] whose entries are
independent and satisfy P(si = 1) = πi for i ∈ [1, N ]. For a
dataset compromising data X and corresponding label y, the
channel selection can be implemented as X ⊙ s, where the ⊙

is the point-wise product. Then, the corresponding risk (loss)
can be written as:

L(θ, s) = EX,yEs[L( fθ (X ⊙ s), y) + λ∥s∥0] (6)

in which the θ and s represent the model parameter and
the gating variables, and fθ denotes the whole neural network
that predicts label y. λ is the hyperparameter that controls
the portion of the channel to be selected. With Eq.6, the task
is to search for parameter θ and s to minimize loss L such
that ∥s∥0 is small compare to N . However, the optimization
of the loss function containing discrete Bernoulli variables is
unstable. To address this problem, the Bernoulli variables s
were replaced by a Gaussian-based relaxation. The relaxation
was referred to as the stochastic gate (STG), and defined as
si = max(0, min(1, µi + ϵi )) for i ∈ [1, N ], where ϵd was
drawn from N (0, σ 2) and σ was fixed during the training.
This approximation can be viewed as a clipped, mean-shifted,
Gaussian random variable.

At this point, the whole net can be optimized through
gradient backpropagation. After the model is fully trained,
the stochastic gating variable will be set as si = max(0,
min(1, µi )) to remove the stochasticity.

This procedure introduces a hyperparameter, λ, that controls
approximately how many channels will be selected: more
channels will be selected with lower λ, and vice versa. There-
fore, the best λ will be searched in this paper in section III-D.1.

In summary, for both the selection subnet and classifica-
tion subnet, the subject-dependent training was performed,
i.e. each subject will train their own selection subnet and
classification subnet. During the training, the proposed two
channel-selection methods learned a weight vector compro-
mising of 0s and 1s, in which the 1s correspond to the
selected channels while the 0s correspond to the useless
channels. The number of 1s in the weight vector could be
different, and therefore, a different number of channels could
be identified for different subjects. Next, the identified channel
corresponding to the 1s will be extracted through the multiply
operation and sent into the subsequent classification network
to predict the class label, while the channels corresponding to
the 0s will be discarded.

3) Mutual Information Channel Selection Method: The MI
channel selection method was first proposed in [34]. While the
full explanation of the method is provided in the original work,
we provide a detailed summary in this manuscript. In this
method, starting from an empty selected channel set, the MI
between each channel and the class labels is calculated and the
channel with the highest MI is added to the selected channels.
Then, MI will be computed again between class labels and the
combination of the selected channel set and each remaining
channel, while the channel with the highest MI will be added
to the selected channels. This process is repeated until the
desired number of channels is selected. To extract features
during the computation of the MI, we extract spectral features
in 0.5-4 Hz, 4-8 Hz, 8-13 Hz, 13-30 Hz, 60-75 Hz, 75-95 Hz,
105-125 Hz, and 125-150 Hz, as in our previous study [35].
Note that these extracted features were only used to select
channels, while movement classification was performed using
raw SEEG signals of the selection channels.

4) Manual Channel Selection Method: Aside from automatic
channel selection, manual selection was also performed to
make a comparison. In detail, for manual selection, the
temporal-spectral representation was calculated first. Then,
channels showing high ERS or ERD by visual inspection dur-
ing the task stage were chosen. The calculation of ERS/ERD
and the procedure to sort the channels according to the
electrode reactivity was described in our previous work [35].

C. The Classification Subnet
The classification subnet in the stacked architecture will

classify the selected SEEG signals into five tasks. In this
paper, the deep ConvNet model proposed in an EEG study will
be used as the classification subnet [36]. However, it should
be noted that this subnet does not necessarily have to be
a classification network, and it could be any deep learning
network, including classification and regression.

D. Training Process
The training process was performed separately for dif-

ferent subjects. This is because the SEEG data varies
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among subjects. These variations come from two aspects. First
is the implantation location. The subjects are epileptic patients
who have SEEG implanted in the possible seizure onset
zone (SOZ) during the seizure monitoring. Since the SOZs
are not the same, the recorded signals reflect very different
biological and physical processes. Second, the number of
implanted electrodes was also different.

To train the network for each subject, we used a strategy
similar to the five-fold cross-validation process. In detail, for
each fold, 20% of the entire data was used as a testing dataset,
while the remaining 80% of the entire data was used as training
and validation. For this 80% remaining data, 80% was the
training set while 20% was the validation set. The validation
dataset was used for hyperparameter tuning and early stopping.
Therefore, the final training, evaluation, and testing dataset
contained 64% (80% x 80%), 16% (80% x 20%), and 20%
of the entire dataset for each fold. The split was performed
within each task. During the evaluation, the mean decoding
accuracies averaged across all participants and all folds were
reported. For both proposed methods, the model parameters
were initialized randomly and trained through gradient descent
using the Adam optimizer [37]. Since there are only 100 trials
for each participant, to obtain sufficient data to train the
deep learning network, a sliding-window strategy was used
to augment the SEEG data [36]. The window and sliding
step were set to 500 ms and 100 ms respectively, which
proved to be able to achieve satisfactory results in our previous
classification experiment (without channel selection). The 3D
windowed data, in the shape of B ×N× T (B, N, T denoted
batch size, channel number and temporal sampling points, and
T = 500), will be used as input by all methods during the
training. In the end, the mean accuracy obtained by averaging
these five folds was reported in the manuscript.

For both methods, the selection and classification subnets
will be trained simultaneously. The training can be stopped
when two conditions are met: the channel weights (proba-
bilities) approximate one-hot (low entropy) and classification
accuracy does not increase for certain epochs (early stopping).
The first and second conditions indicated the completion of
training for the selection subnet (phase one) and classification
subnet (phase two), respectively. Particularly, further training
experiments demonstrated that the channel weights always
achieve one-hot in the first few training epochs and stay stable
during the subsequent training of the classification subnet
for both methods. Therefore, the whole network was trained
simultaneously and stopped when the classification accuracy
plateaued for certain epochs (early stopping).

In addition, for the Gumbel method, the threshold τ and
the temperature β, should be adjusted to facilitate the training
process. In general, both β and τ should be set with large
values at the beginning of the training, so that the selection
subnet can exploit all possible channel combinations with
no penalty imposed. As the training continues, β should be
decreased to approximate one-hot discrete sampling. As each
column of P approaches one-hot, the corresponding entropy
will decrease. At the same time, τ should be decreased
during training to punish the duplicated selection made by
different selection neurons. In this paper, the temperature β

and threshold τ were scheduled to exponentially decay from
10 and 2 to 0.1 and 0.1, respectively, similar to the schedule
used in [17].

1) Hyperparameter Search: There is a hyperparameter in
each method to control how many channels will be selected.
For Gumbel selection, the channel number to be selected (M)
was set as a prior. The effect of selected channel numbers
on the decoding accuracy was studied using M from [2, 4, 6,
8, 10, 12]. The value corresponding to the highest decoding
accuracy was used for subsequent analysis.

For STG selection, the hyperparameter λ determines
approximately how many channels will be selected. A lower
value will loosen the restriction of selected channels and result
in more channels being selected, which means even channels
that contribute little to the decoding will be selected. To find
the best value, λ was searched from [0.01, 0.1, 0.2, 0.4,
0.6, 0.8] by evaluating the average decoding accuracy of all
participants. The value corresponding to the highest decoding
accuracy will be used.

E. Comparison Between Selection Methods
After the best hyperparameters were obtained, the decoding

accuracy of selection methods will be compared. However,
the STG method will select any channel that is useful for the
classification task and the selected number was not the same
for different participants. This is different from the Gumbel
selection, in which the selected channel count was the same
for all participants. To make a fair comparison between these
two methods, the same channel count as used in the Gumbel
method was picked from the STG selection result, which
corresponds to the highest weight in µ. For example, if
10 channels were used for Gumbel selection, 10 channels will
be picked corresponding to the 10 highest values in µ.

In total, six channel selection strategies will be used and
compared in this section:

1) The STG selection without channel number restriction
(referred to as STG)

2) 10 channels selected by the Gumbel selection
3) 10 top channels (highest weight) selected by STG selec-

tion (referred to as STG-10)
4) 10 Mutual Information (MI) selected channels
5) 10 channels selected manually
6) all available channels (no selection was performed)

All statistical analyses were performed with the Wilcoxon
rank-sum test from SciPy [38].

IV. RESULTS

A. Decoding Result
1) Hyperparameter Selection: The highest decoding accu-

racy obtained with STG selection corresponds to λ of 0.2.
The average decoding accuracy declined when using more or
fewer channels by decreasing or increasing λ, respectively.
Therefore, the λ was set as 0.2 in the subsequent content.

The decoding accuracy using Gumbel selection with various
channel counts is presented in Fig. 4. From the plot, the
decoding accuracy plateaued around 10 channels. Therefore,
10 channels will be used in the subsequent content.

2) Decoding Result: The decoding result of 12 participants,
with and without the selection network, is presented in Fig. 5.
The decoding accuracies (mean ± standard deviation) were
67 ± 4.2%, 65 ± 3.5%, 60 ± 3.1%, 60 ± 4.5%, 59 ± 3.6%,
and 47 ± 1.9% when using STG, Gumbel, STG-10, man-
ual selection, all channels, and MI method, respectively.
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Fig. 3. Decoding results of 12 participants using STG method with
various λ values. The box plot showed the highest decoding accuracy
was obtained with λ of 0.2. The upper and lower end of the box
represent the 25th and 75th percentile, while the middle orange line
denotes the median value.

Fig. 4. Decoding results with various channel counts using the Gumbel
selection method. The middle orange line denotes the median value.

There is no significant difference between decoding accuracies
using Gumbel and STG, though they both significantly outper-
formed STG with 10 channels, manual selection, all channels,
and MI selection (p < .001, Wilcoxon rank-sum test). The
significantly better performances of the two deep learning-
based methods, compared to the MI method, indicate they
have learned to identify the informative channels. In addition,
it should be noted that there are two outliers, in the dashed
rectangle, using the manual and MI methods. This demon-
strated that the proposed automated selection methods can
alleviate possible human error and are more robust than the
manual method.

The highest mean decoding accuracy came from STG
selection (67 ± 4.2%). Using STG selection, a total of
282 channels were selected from 12 participants, while there
are 120 channels selected by Gumbel selection. However,
when only using the top 10 channels selected by STG selection
(STG-10), Gumbel outperformed STG-10 (65 ± 3.5% and
60 ± 3.1%, respectively, p < .005). Therefore, Gumbel
selection outperformed STG in obtaining comparable accuracy

Fig. 5. Decoding accuracies of 12 participants using various selection
methods. Six experiments were reported, including STG (decoding
using all channels selected by STG selection), Gumbel (decoding using
10 channels selected by Gumbel-Softmax selection), STG-10 (decoding
using top 10 channels selected by the STG methods), manual (decoding
using 10 manually selected channels), all (decoding using all channels)
and MI (decoding using 10 channels selected using MI method). Orange
and green dashed lines represent the median and mean, respectively.
The dashed rectangle indicated the two outliers using the manual
selection method.

Fig. 6. Channels count selected by Gumbel and STG selection.
Channels selected by different methods were indicated by different
colours, while the middle orange bar represented channels selected by
both methods.

using a few channels. In the next section, the relationship
between the channels selected by the two methods will be
explored.

B. Selected Channels
The relationship between the channels selected by Gumbel

and STG is compared and presented in Fig. 6.
The plot indicated that most channels selected by Gumbel

selection have also been selected by STG. The considerable
overlap between channels selected by the two methods indi-
cates both can be used to select the informative channels.
Because both selected very similar channels, the following
analysis of the selected channels will focus on the Gumbel
method. It is worth noting that more channels were selected
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Fig. 7. The training process from participant 10. The entropy declined
quickly in the first few epochs and stayed stable during the rest training.

by the STG method, which implies that the higher decoding
accuracy obtained by STG selection might result from using
more channels. On the other hand, the improvement obtained
by STG over Gumbel is not significant (Wilcoxon rank-sum
test, p = 0.8223). Next, the training process of the Gumbel
method will be evaluated.

C. Training Process of Gumbel Selection
The proposed methods facilitate the selection process by

approximating the categorical variables using certain relax-
ation. This section will examine the training process to verify
the channel weights’ stable convergence. An example train-
ing process of the stacked network from participant 10 is
presented in Fig. 7. The entropy declined quickly within
the first few epochs. Importantly, the monotonously declined
entropy stayed stable during the rest training epochs. This plot
indicated that the integration of the selection subnet didn’t
interrupt the training of the classification subnet and these two
subnets can be trained simultaneously.

In addition, the training process of the selection net for
participant 10 is presented in Fig. 8. It showed that the
probability began to exhibit one-hot distribution from around
the 10th epoch. This is in line with Fig. 7, which demonstrated
that the entropy decreased rapidly at the beginning of the
training. The weight was then adjusted, which means the net
was exploring other channel combinations. The monotonously
decreased entropy from Fig. 7 demonstrated that the selec-
tion subnet was stable during the training. Other participants
exhibited similar training processes.

D. Channel Selected By Gumbel Selection
In this section, the selected channels will be analyzed.

Since the channels selected by the two proposed methods
were considerable overlap and the Gumbel method can achieve
comparable accuracy using few channels, channels selected by
the Gumbel method will be used.

1) Anatomical Location of The Selected Channels: To evalu-
ate the channel selection network, the selected channel and
unselected channels, aggregated from all participants, were
projected into an MNI standard brain model, denoted as green
and black dots, respectively. The pre and post-central cortex
were also indicated as shaded areas using the Desikan-Killiany
Atlas, as presented in Fig. 9.

Fig. 8. Changes in channel weights as the training progressed. At the
beginning of the training, all channels have about the same weights
and weight entropy is high (around 1.0). As the training progressed, the
selection network adjusted channel weights and the entropy decreased.
When the training is finished, the selection network has learned an
approximate one-hot weight and the entropy approached 0.1.

It demonstrated that the selected channels were mostly
localized in the pre and post-central areas. This spatial
distribution of the selected channels is in line with the
conventional understanding of the neural representation of
movement, which involves the primary motor and sensory
cortex primarily [39], [40]. In addition, it is worth noting that
channels in other areas, such as the posterior cingulate, and
superior parietal, are also selected.

To better understand the decoding contribution of certain
regions, channels were grouped according to the anatomic
region they are located. Then, the number of the selected
channels was plotted on top of the unselected channel count
for each region, as presented in Fig. 10. From the plot,
it is obvious that pre- and post-central cortex are most
likely to be selected, and the ratios ((selected_count) ÷

(unselected_count)) from these two regions are significantly
higher than other regions. (To determine the significance of
higher rations selected from these two regions, the interquartile
range method was used. In detail, ratios that are outside of
range [Q1 − 1.5 × I Q R, Q3 + 1.5 × I Q R] are considered
outliers (significantly higher), where Q1, Q3 and IQR repre-
sented the first quartile, third quartile, and interquartile range.)

However, not every channel from the pre and post-central
cortex was selected. This might be because the number of
channels to be selected was limited to 10 for each participant.
On the other hand, other regions that are not considered to
be directly involved in motor control were also selected with
a lower ratio. This might be caused by two possible reasons:
1) Other regions might also contain useful information, but
contribute less to the decoding; 2) the random initialization
and the stochastic nature of the deep learning training process
imply that the channels, selected in every selection process,
could be different [41].
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Fig. 9. The spatial location of selected (green dots) and unselected channels (grey dots) in the MNI standard brain model. This plot was generated
using electrodes pooled from all participants. The pre and post-central cortex were also highlighted as colourful areas. Subplot a and b were plotted
from the top and front view, respectively.

Fig. 10. The number of selected and unselected channels is grouped
by regions. A total of 18 regions were included, and the anatomic
names were presented beside the bar plot. The selection ratios of
regions 9 and 11 are significantly higher than other regions.

On the other hand, channels selected by the manual method
were more concentrated in the motor areas. This was actually
in accordance with previous studies demonstrating that signals
in motor areas exhibited strong ERS/ERD [42].

To evaluate the training stability and eliminate the possi-
bility that high decoding accuracy was obtained by random
network initialization, the training process (selection and clas-
sification) was repeated 40 times on participant 10. Then, the
number of times each channel was selected in 40 experiments
was plotted, as in Fig. 11. Other participants exhibited similar
results.

It is obvious that these 11 channels framed in red rectan-
gles were most frequently selected. However, other channels
were also selected with lower occurrences. This implied
that different channels might be selected in different train-
ing experiments. To better understand the selected channels,
the anatomical labels of these 13 channels were obtained

Fig. 11. The number of times each channel was selected in 40 exper-
iments for participant 10. The most likely selected 13 channels were
framed in a red rectangle.

TABLE II
THE ANATOMIC LABELS OF THE MOST FREQUENTLY

SELECTED CHANNELS

using the Desikan-Killiany Atlas and presented in Table II.
It showed that selected channels were located in the cortex
and white matter of precentral and postcentral regions. This
result was in line with previous studies demonstrating that
both precentral and postcentral were involved in the movement
control [43], [44]. The identification of the white matter of
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Fig. 12. The temporal-spectral representation of the deep-learning-
selected (framed by the green dashed line) and the manual-selected
channel (channel 167) from an example participant 10. Other partici-
pants have similar results.

precentral and postcentral confirmed a recent SEEG study
showing that white matter was activated and contained useful
information for movement control [45]. A channel located in
unsegmented white matter (145) was also frequently selected,
which might result from the volume conduction [46], [47].
In addition, two channels from the posterior cingulate
(143, 144) were also frequently selected, as shown in Fig.11
during the repetition experiment. It is in line with the under-
standing that PCC was proved to show a complex and dynamic
pattern that partially reflects activity in other brain networks
during the reaction to a changing environment [48].

In summary, three conclusions can be drawn from the
selection result: 1) randomness existed in the selection result;
2) the informative channels were selected at a much higher
frequency; 3) the locations of the frequently selected channels
confirmed previous understanding of motor control.

2) Gumbel Selection V.S. Manual Selection: In this
manuscript, we showed that there is no significant difference
between decoding accuracies obtained by the Gumbel and the
manual selection methods. However, we also demonstrated
that possible human error could dramatically impact the man-
ual selection performance, as indicated by the two outliers
in Fig. 5, while the Gumbel selection method exhibited very
stable decoding accuracy in the 40-time-repeating experiment.
In this sense, the deep learning-based method is superior to
the manual selection method.

Next, to gain more understanding of the channels selected
by the deep learning method, the channels selected by these
two methods were compared. For the manual selection method,
similar to a previous SEEG decoding study [18], channels were
selected according to their response to the task in the spectral
domain. More specifically, channels that exhibited magni-
tude or power responsive in certain frequency bands were
selected.

Therefore, the temporal-spectral representation of the rep-
resentative three channels of participant 10 (149, 151, 152),
which are most often selected by both Gumbel and STG selec-
tion, were calculated, indicated as the subplots framed within
the green dashed line in Fig. 12. The same representation of
a typical manually selected channel (not selected by either
method) from the same participant is presented in the lower
right subplot.

In this plot, channel 167 is a typical channel showing
strong spectral response (ERS/ERD), and is very likely to be
chosen during the manual selection. The other three channels
(149, 151, 152) which were consistently selected in many
repetitions, as indicated in Fig. 11, exhibited, unexpectedly,
much lower ERS/ERD response compared to the manually-
selected channel. In summary, while manual selection would
choose channels with a strong spectral response, the chan-
nels frequently selected by the proposed deep learning-based
methods exhibited much weaker ERS/ERD. Similar selection
results and spectral responses were found from all other
participants.

V. DISCUSSION

In this paper, two deep learning-based channel selection
methods (Gumbel and STG) were presented and compared
with other methods, including manual selection and MI-based
selection. The experiment result indicated that some channels
were consistently selected by both methods, and the decoding
accuracy using these channels was comparable to that of
using manually selected channels or using all channels. In this
section, the implications of the selected channels will be dis-
cussed. Then, the differences between the proposed methods
will be compared.

A. Anatomical Location of Selected Channels
In this work, the most likely selected channels were found

to be located in the pre-central and post-central regions.
The identified locations confirmed previous electrocorticog-
raphy (ECoG) studies, which showed that both the primary
motor and sensory cortex contain rich information related
to movement [39], [40]. In addition, the proposed methods
also frequently identified regions, such as PCC and white
matter, as shown in Fig.11 and Tab.II. The identification of
white matter and its lower selection frequency than that of
the pre and post-central areas is in line with previous SEEG
studies showing that white matter is also activated and contains
useful information but contributes less than grey matter to the
decoding task [45]. The identification of the PCC, which was
proved to be activated during memory retrieval [49], might
imply rehearsal was performed by the participant before actual
movement when the cue was presented. Together with the
comparable decoding accuracy using the selected channels,
this paper proved that these two deep learning methods
were capable of identifying task-related regions and channels.
This ability might help to identify a distributed, yet closely
connected neural network. For example, to facilitate motor
control, two brain networks exist and both converge on the
primary motor area [50], [51]. While the distributed neural
response has yet to be fully understood, channel selection
has the potential to identify distributed regions engaged in a
network.

B. Gumbel Selection Versus STG Selection
From the previous analysis, it is clear that both methods

have advantages and disadvantages. For Gumbel selection,
it achieved higher decoding accuracy than STG when using the
same channel count. In Gumbel selection, the selected channel
count, which needs to be set a priori, is not obvious without
iterative testing, which is time-consuming.
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On the other hand, there is no fixed channel count that
the STG method needs to select. By selecting any possible
informative channels, it can achieve the highest decoding accu-
racy, but when using only a subset of the selected channels,
its accuracy is inferior to the Gumbel selection. Therefore,
STG selection would be more appropriate when there is no
requirement for the channel number.

C. Characteristics of the Informative Channels
At this point, the characteristics of the informative chan-

nels remain elusive. The average decoding accuracies were
65% and 60% when using Gumbel and manual selection
methods, respectively. The relatively higher decoding accuracy
implies the Gumbel method has identified a better channel
subset. The next question is, can the channels selected by the
Gumbel method help to facilitate the manual selection? To
answer that question, there is a need to understand what the
Gumbel selection method looks at during the training. While
the criteria of channels selected manually are the spectral
response (ERS/ERD), the Gumbel selection looks at something
more than that. As demonstrated in Fig. 12, while there are
many channels that exhibited strong ERS/ERD, the channels
selected by Gumbel selection showed a much weaker spectral
response. To answer that question requires further study on
the learning process of the so-called ‘black-box’ deep learning
model.

D. Limitations and Prospects of The Study
This paper presented two channel selection networks based

on deep learning methods. However, there are limitations to
both methods. For Gumbel selection, the selected channel
count needs to be set before the selection. For STG selection,
there is also a hyperparameter to control the selected channel
count. Both hyperparameters can only be obtained by multiple
training experiments. These multiple experiments would vio-
late the essential idea behind the embedded selection method.

However, repetitive training is, sometimes, inevitable in
BCIs applications. In BCIs, the task-related signals are usually
distributed into a wide area, which means not only directly
related but also indirectly involved channels (electrodes) are all
useful. Also, volume conduction means the useful information
is not spatially confined but rather distributed. Therefore, the
informative channels are not definitive, only the degree of
usefulness is different. From this point of view, it is natural
and inevitable to conduct multiple experiments to achieve a
balance between decoding accuracy and channel count.

Another limitation is the inherent randomness of the deep
learning model. This non-determinism could come from many
aspects, such as random initialization, dropout, and noisy
injection [41]. This randomness leads to inconsistent results
in multiple training processes, as demonstrated in Fig.11
that showed that whilst most informative channels can be
repetitively selected, there is still a certain chance to select
other channels.

Except for the limitation, the algorithms proposed in this
paper can be used in broader applications, not confined to
SEEG-based BCIs or classification tasks. They can be inte-
grated into any deep learning method for both invasive and
non-invasive BCIs. For example, in ECoG-based BCIs, the
standard recording devices have 64 (8×8 grid), 48 (6×8 grid),

or 16 (2×8 strip) contacts [52], [53], whilst high-density
ECoG with more than a thousand channels has also been
proposed [6], [54]. The high channel count complicates the
data transmission and hardware design, where the power con-
sumption and heat need to be carefully handled [7]. Further,
there might be redundancy between the neighboring electrodes
of high-density ECoG (µ ECoG) [55]. In this context of
high channel count and high-density devices, channel selection
has paramount significance in achieving the balance between
decoding accuracy and data volume.

VI. CONCLUSION

In this paper, two deep learning-based channel selection
methods (Gumbel and STG) were introduced and compared
with manual and Mutual Information-based channel selection.
By using a plug-and-play approach, these selection networks
can be stacked on top of any deep learning network (classifi-
cation or regression) and trained simultaneously. The highest
decoding accuracy arose from STG selection using all identi-
fied channels, while Gumbel selection was superior when only
10 channels were used. On the other hand, manual selection
could lead to suboptimal classification accuracy because of
human error. By comparing the channels selected by the two
methods, it is proved that most channels selected by these two
methods were overlapped, and the identified anatomic regions
confirmed the previous understanding of movement control.
The proposed methods can be used in future high-throughput
BCIs to achieve a balance between invasiveness and decoding
performance.
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