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Abstract— Previous studies have reported a role of
alterations in the brain’s inhibitory control mechanism
in addiction. Mounting evidence from neuroimaging stud-
ies indicates that its key components can be evaluated
with brain oscillations and connectivity during inhibitory
control. In this study, we developed an internet-related
stop-signal task with electroencephalography (EEG) signal
recorded to investigate inhibitory control. Healthy controls
and participants with Internet addiction were recruited
to participate in the internet-related stop-signal task with
19-channel EEG signal recording, and the corresponding
event-related potentials and spectral perturbations were
analyzed. Brain effective connections were also evaluated
using direct directed transfer function. The results showed
that, relative to the healthy controls, participants with
Internet addiction had increased Stop-P3 during inhibitory
control, suggesting that they have an altered neural
mechanism in impulsive control. Furthermore, participants
with Internet addiction showed increased low-frequency
synchronization and decreased alpha and beta desynchro-
nization in the middle and right frontal regions compared
to healthy controls. Aberrant brain effective connectiv-
ity was also observed, with increased occipital-parietal
and intra-occipital connections, as well as decreased
frontal-paracentral connection in participants with Internet
addiction. These results suggest that physiological sig-
nals are essential in future implementations of cognitive
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assessment of Internet addiction to further investigate the
underlying mechanisms and effective biomarkers.

Index Terms— Electroencephalography (EEG), internet
addiction (IA), brain oscillations, effective connectivity.

I. INTRODUCTION

THE development of the Internet and digital information
technology has brought new public health issues, such as

internet addiction and internet gaming disorder (IGD). Inter-
net addiction (IA), also known as Problematic Internet Use,
is defined as a behavioral addiction involving psychological
dependence on internet applications, such as online social
networking, gambling, gaming, cybersex, and e-shopping [1],
[2], [3]. It is characterized by the uncontrolled use of the
internet and an excessive craving for online activities [4].
Although there is still considerable controversy surrounding
the existence of Internet addiction disorder [5], it is worth
noting that only IGD has been included as a proposed disorder
within the broader category of Internet addiction in the last
version of the Diagnostic and Statistical Manual of Mental
Disorders (DSM-5) in 2013 [6]. Moreover, the prevalence
of IGD has been reported to be high, ranging from 0.2%
to 57.5%, in general populations [7]. Previous studies have
claimed that the risk of internet addiction in children has also
become an increasing problem, particularly with the popularity
of mobile internet [8]. Furthermore, it has been found that
almost one-quarter of early teenagers spend 40 hours online
per week [9]. The rapidly increasing incidence makes inter-
net addiction a public health problem [3]. Recent evidence
has also shown that internet addiction is associated with
various comorbidities, including attention deficit/hyperactivity
disorder, depressive disorder, social phobia, hostility, and inter-
personal and emotional impairments. Additionally, internet
addiction has been linked to dissociative phenomena and
suicidal ideation [5].

A. Internet Addiction Disorder and the
Inhibitory Mechanism

The relevance of impulsivity and general executive functions
is highlighted by empirical findings on addictive behaviors
related to IA [10]. IA is claimed to be attributed to deficits
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in inhibitory impulse control and impairment of the frontal
executive control network. These deficits can lead to the devel-
opment of different kinds of behavioral addictions [1], [2],
[11]. High impulsivity is a defining feature of IA and is man-
ifested during addiction-related behaviors, such as gambling,
gaming, social network use, and binge-watching. Empirical
studies have demonstrated deficits in inhibition associated with
binge-watching [12], social networks use disorder [10], [13],
[14] problematic online pornography use [15], and gaming
disorder [16]. These studies have investigated inhibitory con-
trol in response to addiction-related cues. Therefore, it is
crucial to understand the neurophysiology of the mechanisms
underlying this condition in order to establish an effective
treatment plan. Theoretical models, such as the Interaction of
Person-Affect-Cognition-Execution (I-PACE) model proposed
by Brand and colleagues in 2019 [17], have further demon-
strated the potential interactions between impulsivity, general
executive functions, and specific inhibitory control. According
to the I-PACE model, situational factors, such as exposure
to addiction-related cues, can interact with individual coping
styles (e.g., trait impulsivity) and cognitive biases, leading to
affective and cognitive responses, including addiction, crav-
ing, and attentional bias [10]. Furthermore, distinct cognitive
impairments, such as deficits in decision-making, working
memory, attentional control, and motor inhibition, have been
demonstrated in individuals with IA [10], [18]. The behaviors
of individuals with addictions are also believed to increas-
ingly rely on limbic structures associated with impulsive and
reactive neural systems [19], while the involvement of the
prefrontal cortex in inhibitory control over urges may decrease
during the addiction process [20]. These studies on theoretical
perspectives have proposed that the decisions to engage in
specific behaviors are influenced by the level of inhibitory
control and self-directedness [17], [21], and may be primarily
guided by impulsive and reactive responses to triggers. Reduc-
tions in inhibitory control and general executive functions
can impact various cognitive processes, including attention,
information retrieval and integration, planning, monitoring,
updating, and strategy evaluation. Moreover, these reductions
may exacerbate specific behaviors, such as the excessive use
of online applications, and result in a loss of control over
behavior and negative consequences in daily life [10].

B. Neuroimaging Evidence for IA and Inhibitory Control

Possible interactions between inhibitory control and exec-
utive functions have been relatively understudied in specific
IA. Some behavioral and neurophysiological studies have
supported the evidence of a deficit in inhibitory control that
leads to addictive behavior in IA participants. In functional
Magnetic Resonance Imaging (fMRI) studies [22], IA partici-
pants have shown aberrant activations and connectivity in the
response inhibition network. The IA group exhibited signif-
icant hyperactivity during inhibitory control in the left and
right superior/medial frontal gyrus, dorsal lateral prefrontal
cortex, right anterior cingulate cortex, left inferior parietal
lobule, left precentral gyrus, left precuneus, and cuneus [23],
[24]. Decreased activation in the left medial temporal gyrus,

right supplementary motor area (SMA), and pre-SMA has been
observed during inhibitory control and tasks with anxiety inter-
ference [25], [26]. Abnormal brain connections have also been
found in resting fMRI studies, including decreased effective
connections from the parahippocampal gyrus to the prefrontal
cortex [27]. However, most of the previous studies have
reported results of resting-state brain connectivity instead of
functional connectivity during inhibitory control. These studies
have suggested that there is abnormal functional connectivity
in the cognitive control network, default mode network, and
visual attention network in IA participants [3], [4], [28], [29].

Although previous fMRI studies have identified specific
brain areas and proposed theoretical models related to addic-
tive processes in IA based on behavioral and neuroimaging
studies [17], there remains a significant gap in our understand-
ing of the neural mechanisms underlying brain dynamics and
functional connectivity. Since these addictive and inhibitory
processes exhibit high temporal dynamics, there is a need for
neuroimaging modalities with higher temporal resolution, such
as electroencephalography (EEG) and magnetoencephalog-
raphy (MEG), to explore the underlying brain functional
network. However, recent EEG studies focusing on inhibitory
control have yielded diverse and inconsistent results [2], [12],
[30], [31], [32], [33], with only a few studies investigating
brain functional connectivity [34], [35]. Therefore, in future
neuroscience research, it is crucial to define and validate
reliable neurodynamic features of IA.

In this study, we developed a stop-signal paradigm utilizing
Internet-related stimuli for IA participants. EEG signals were
recorded using a mobile EEG device to assess brain oscilla-
tions and functional connectivity during the experiment. Our
aim is to investigate the following hypotheses: 1) the presence
of altered brain oscillations and distant functional connectivity
in IA participants, and 2) the proposal of neurofeedback
indices based on recorded EEG neurophysiological signals for
cognitive assessment.

II. MATERIALS AND METHODS

A. Participants
We recruited a total of 53 participants, including 31 healthy

control (HC) participants (aged 19.52 ± 5.01; 24 men) and
22 participants with IA (aged 16.64 ± 5.88; 18 men). Prior to
the experiment, informed written consent was obtained from
the legal representatives of all participants, in accordance with
the requirements of the human subject research ethics commit-
tee/Institutional Review Board (IRB) at CGMH, Taiwan (no.
202101487A3). Participants were assigned to either the HC or
IA group based on their scores on the Chen Internet Addiction
Scale (CIAS). The CIAS is a 26-item self-reported scale
with four-point response options, assessing five dimensions of
Internet-related symptoms and problems, including compulsive
use, withdrawal, tolerance, and problems in interpersonal
relationships and health/time management [36]. The CIAS
score ranges from 26 to 104, with higher scores indicating
greater severity of Internet addiction. Optimal screening cut-
offs of 57/58 and diagnostic cutoffs of 63/64 were applied for
adolescents, while optimal screening cutoffs of 63/64 and diag-
nostic cutoffs of 67/68 were applied for college students [37].
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Fig. 1. Stop signal task. Each trial consisted of the presentation of a
background picture (neutral or Internet-related image).

Participants’ neuropsychiatric comorbidities were determined
based on the criteria outlined in the American Psychiatric
Association’s Diagnostic and Statistical Manual of Mental
Disorders (DSM-5) [6] and the International Classification
of Diseases (ICD-11; WHO 1994) criteria. Diagnostic scales
were used to assess social inference, emotional communica-
tion, language and cognitive abilities, and motor coordination
skills. Additionally, the participants’ full-scale intelligence
quotient (FSIQ) was assessed using the Wechsler Intelligence
Scale for Children [38] and Adult [39]. The IA and HC groups
were matched as closely as possible based on their FSIQ
scores.

B. Experimental Design: Stop-Signal Task
The participants were instructed to perform a stop-signal

task while their EEG data was recorded. The stop-signal task
was a modified version of the experimental task used by
Balconi and Finocchiaro [33], [40], [41]. It consisted of four
blocks, with each block containing 120 stimuli. Within each
block, there were 84 Go trials and 36 Stop trials. The task was
conducted in multiple sessions.

During the task, participants viewed randomized back-
ground pictures from two different contexts: neutral (N) and
Internet (I), each presented for 500 ms. The Internet condition
included images related to social platforms and online games.
After the presentation of the background picture, the initial
background picture returned during inter-trial intervals (ITIs)
(see Fig. 1). The duration of ITIs varied randomly between
1300 to 1700 ms, with an average of 1500 ms.

Stop signals were presented in a random order to maintain
a consistent percentage of Go (70%) and Stop (30%) trials
within each block. The stop signals appeared in the center of
the background picture after a delay of 200 ms (see Fig. 1),
and remained visible for 300 ms.

Participants were seated on a comfortable chair facing a
screen positioned approximately 60 cm away from them. They
were instructed to press a button as quickly as possible when
they saw the Go stimulus at the center of the screen, and to
withhold their response for the Stop stimulus. Additionally,
they were instructed to minimize movement and blinking
during the task to reduce noise during EEG registration. Each
participant completed a total of 480 trials.

C. EEG Recording and Signal Processing
The EEG signals were recorded using the Quick-20 Dry

EEG Headset (CGX, Inc., San Diego, CA, USA) from 20 scalp
locations. The electrodes were placed according to the inter-
national 10-20 system, with reference to the left earlobe (A1).
The specific electrode locations were as follows: Fp1, F7,
F3, Fz, F4, F8, Fp2, C3, Cz, C4, P7, P3, Pz, P4, P8, T3,
T4, O1, and O2. The EEG signals were sampled at a rate
of 500 Hz, and the stimulus triggers were synchronized and
saved in a single file using the lab streaming layer (LSL)
data acquisition framework. The data were saved in extensible
data format using LSL LabRecorder software version 1.05.
MATLAB R2022a (The MathWorks, Inc., Natick, MA, USA)
was used for data analysis.

The recorded EEG data underwent several preprocessing
steps. First, a highpass filter with a cutoff frequency of 1 Hz
was applied using the EEGLAB toolbox [42], [43]. The
Cleanline EEGLAB plug-in was then used to remove line noise
from the data. Artifacts in the EEG signals were identified and
removed using artifact subspace reconstruction (ASR) with a
parameter K set to 20 [44]. The data were then re-referenced
to the average of all channels. Signal epochs were extracted
from −200 to 1000 ms, and the signal was corrected using the
mean value in the pre-stimulus period (−200 to 0 ms). Epochs
containing extremely large amplitudes (greater than ±100 µV
or 3 times the standard deviation) were discarded. The adap-
tive mixture independent component analysis (AMICA) was
applied to further remove any remaining unwanted artifacts
that could not be identified and removed in previous steps,
such as eye blinks, muscle artifacts, and line noise [45].

Finally, the epoched EEG data were subjected to sig-
nal averaging and Morlet wavelet transformation to obtain
event-related potentials (ERPs) and event-related spectral
perturbations (ERSPs). Averaged ERPs and ERSPs were
calculated for each EEG sensor relative to the baseline.
Synchronized averaging calculations were used to observe the
ERPs of each group and condition. Event-related synchro-
nization (ERS) and event-related desynchronization (ERD)
were represented by increases and decreases in the power
of different frequency bands, respectively, relative to the
pre-stimulus baseline. Two-sample t-tests were performed
to examine the differences in ERPs and ERSPs between
the groups and conditions. Additionally, multivariate analysis
of covariance (MANCOVA) was conducted to evaluate the
influence of covariates, including comorbidity with Attention-
Deficit/Hyperactivity Disorder (ADHD) and age factors.

D. Brain Effective Connectivity
Direct directed transfer function (dDTF) has been used to

evaluate the frequency-domain representation of causality by
applying the SIFT toolbox in EEGLAB [46]. The grand-mean
effective connectivity across independent components (ICs) for
the two groups was calculated using the groupSIFT toolbox in
EEGLAB. The groupSIFT toolbox was originally developed
for the study of chronic tic disorder [47] and has since been
applied to several clinical studies [48], [49], [50], [51] and a
cognitive study [52]. The technical details of the algorithm can
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be found in the appendix, referenced in [47]. To provide a brief
explanation of the algorithm, groupSIFT resolves individual
subjects’ ICs into a common anatomical space by converting
each IC’s equivalent current dipole coordinates into a 3-D
sphere of dipole density, which serves as a probabilistic repre-
sentation of the anatomical localization of the IC. The spheres
of dipole densities are segmented into a priori defined anatom-
ical regions of interest (ROIs) using the AAL atlas [53]. The
dipole density acts as a weighting factor for the SIFT-derived
IC-to-IC connectivity measures, which converts individualized
IC-to-IC connectivity matrices into subject-consistent ROI-to-
ROI connectivity matrices. Thus, groupSIFT avoids the issue
of post-ICA inter-subject inconsistency. The weighted connec-
tivity measure, dDTF in this study, is statistically tested for
every time-frequency point and corrected using time-frequency
domain cluster-level multiple comparison correction across
all surviving graph edges to guarantee omnibus correction
across time, frequency, and graph edges. The details steps of
groupSIFT are described in the following:

1) AMICA for extracting ICs from subjects A total
of 737 ICs were preselected as brain sources (HC:
14.16 ± 1.61 ICs; IA: 14.90 ± 1.48 ICs). The
grand-mean effective connectivity across ICs for the two
groups was calculated.

2) Calculation of effective connectivity Time-frequency
decomposed dDTF was calculated across ICs with a
sliding window length of 0.5 s, sliding window stop size
of 0.025 s, 30 frequency bins ranging from 2 to 50 Hz,
and a Hamming window.

3) Validation of models The grand-average optimum
model order was 13.35 ± 2.78 and 12.15 ± 3.25 for
HC and IA, respectively, indicating delayed effective
connectivity up to approximately 25 ms.

4) Conversion to group anatomical ROIs The estimated
equivalent dipole locations of the corresponding ICs
were convolved with a 3-D Gaussian kernel with a
full width at half maximum (FWHM) of 20 mm to
obtain a probabilistic dipole density. The dipole density
within the brain space was segmented into anatomical
regions defined by the modified AAL [53]. The differ-
ence from the original AAL is that subcortical regions
are re-organized into two larger subgroups, namely
‘upper basal’ and ‘lower basal’. The purpose of this
modification is to avoid showing specific names of the
subcortical anatomical structures that is unlikely to be
sources of scalp-measurable EEG signals. The cause
of this problem is that IC dipoles are often (in our
unpublished observations, about 25% of the ‘Brain’ ICs
classified by ICLabel) localized at subcortical regions.
One possible explanation for this issue is that the EEG
sources identified by ICA may distribute to significant
area of the cortex, which introduces depth bias in fitting
a single dipole to their scalp projections. The modified
AAL consists of 76 X 76 anatomical regions. The full
list of the regions is found in the groupSIFT repository
(https://github.com/sccn/groupSIFT).

5) Statistical Analysis Overlapped graph nodes calculated
from the total dipole density between the two groups

TABLE I
CHARACTERISTICS OF THE PARTICIPANTS WITH INTERNET ADDICTION

(N=22) AND THE COMPARISON GROUP (N=31)

were further compared. The frequency range of interest
selected for analysis was 1-50 Hz. The time-frequency
representations of the data were tested against the
baseline period and then across conditions. The mass
univariate analysis using t-test was used. Multiple com-
parison correction was made using weak family-wise
error rate (wFWER) control [54]. To obtain threshold
values that are effective for omnibus corrections, sur-
rogate distributions were built from data across all of
the time, frequency, and connectivity edges. Thus, the
results are protected from inflation of the Type I error
arising from the repeated application of t-test across
all time, frequency, and connectivity edges. Statistical
significance was set at p < 0.05 with false discovery
rate adjustment.

III. RESULTS

A. Behavioral Results
The clinical characteristics of the participants are presented

in Table I. The two groups were matched in terms of FSIQ,
with no significant difference between them. The total accu-
racy rates for HC and IA participants were 94% ± 5% and
92% ± 7%, respectively, and there was a significant difference
between the two groups (p = 0.043). The task accuracy for IA
participants in the Stop trials was 91% ± 9%, slightly lower
than that of HC participants (95% ± 5%), but the difference
was not significant (p = 0.122). Similarly, the task accuracy
for IA participants in the Go trials was 91% ± 9%, also
lower than that of HC participants (94% ± 8%), but with
no significance (p = .215). The mean reaction time for IA
participants in the Go and Stop trials was 1.15 ± 0.06 s and
0.95 ± 0.04 s, respectively, slightly slower than that of HC
participants (1.15 ± 0.07 s and 0.93 ± 0.19 s), but with no
significance (p = .963 and .519).

B. ERP Results
The ERPs in the two conditions of the stop signal task were

compared between IA and HC participants (Fig. 2). The total
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Fig. 2. The 19-channel ERPs of the Go (dotted lines) and Stop (solid lines) trials were compared between the HC (blue lines) and IA (red lines).
No significant difference was observed between the two groups in the Go trials.

Fig. 3. The ERPs of the Stop trials during the two conditions (Neutral:
left column; Internet: right column) of inhibitory control at Pz between
500 and 600 ms (Stop-P3).

19-channel ERPs of the Go and Stop trials (solid lines) were
compared between the HC and IA groups. No significant dif-
ference was observed between the two groups in the Go trials.
A significant difference was observed at Pz in the ERPs of
the Stop trials during the two conditions of inhibitory control,
as shown in Fig. 3. The ERPs of the Stop trials in both the
Neutral and Internet-related stimuli during inhibitory control
showed a difference in the Stop-P3 component in the parietal

regions between 300 and 400 ms after the onset of Stop stimuli
at 200 ms. The grand averages of the Stop-P3 waveforms at
Pz and their corresponding mean amplitudes are shown in
the lower portion of Fig. 3. Participants with IA exhibited
increased Stop-P3 amplitudes (Neutral: 7.56 ± 5.62 µV;
Internet-related: 6.37 ± 5.14 µV) compared to HC (Neutral:
4.34 ± 3.68 µV, p = 0.015; Internet-related: 3.33 ± 3.29 µV,
p = 0.011), suggesting that IA participants have altered
attention processing mechanisms. No significant difference
was observed between the two conditions. When combining
the Internet-related and neutral conditions, increased Stop-
P3 amplitudes were observed in IA (6.85 ± 5.25 µV) than
HC (3.76 ± 3.40 µV, p = 0.012). However, the significance
between the two groups diminished after considering age and
comorbid factors (p = .170), suggesting that age is also an
important covariate influencing the amplitude of Stop-P3.

C. Time-Frequency Analysis
The increases in the power of different frequency bands

relative to the pre-stimulus baseline, known as ERS, as well
as the decreases in the power or ERD, are compared between
the two groups in Fig. 4. Significant differences in ERS and
ERD between the two groups were observed specifically in
the middle and right frontal regions. The average ERSPs
in the frontal regions of HC and IA are shown in Fig. 4A
and 4B. Theta and alpha synchronization often occurred in
the first 200-ms window after the onset of Go stimuli. Another
ERS was observed around 400-600 ms, corresponding to the
onset of Stop stimuli. Alpha and beta desynchronization were
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Fig. 4. The ERSPs of the Stop trials during inhibitory control are
depicted in three channels of the middle frontal regions for (A) healthy
control and (B) participants with internet addiction, with (C) the signifi-
cance levels indicated.

observed in the time interval after 200 ms, indicating motor
activity preparation and intention. The time intervals with sig-
nificance and the corresponding frequency bands are displayed
in Fig. 4C during inhibitory control. There was a pronounced
difference in ERS and ERD between the two groups in brain
oscillations of the delta, theta, alpha, and beta frequency bands.
IA showed consistent increases in theta (4-8 Hz) and alpha
(8-13 Hz) synchronization in the middle and right frontal
regions after the onset of Stop stimuli (200 ms), as indicated
by the red color in Fig. 4C. Sustained ERS was observed
in the IA group during the late period of inhibitory control
(after 600 ms). Additionally, a notable decrease in lower
beta (13-21 Hz) desynchronization was observed in IA during
motor reaction between 200 and 600 ms, represented by the
blue color in Fig. 4C. The results of MANCOVA indicated
that after considering the influence of covariates including
comorbid ADHD and age factors, significant differences in
ERSPs were observed in specific brain regions and frequency
bands. These differences included post-stimulus theta synchro-
nization at F4 between 300 and 400 ms (IA: 1.56 ± 0.91 dB,
HC: 0.77 ± 1.02 dB; p = 0.027), alpha synchronization
at Fz between 600 and 700 ms (IA: 0.97 ± 1.18 dB, HC:
0.01 ± 1.19 dB; p = 0.008), and beta desynchronization at
Fz between 200 and 600 ms (IA: −0.13 ± 0.65 dB, HC:
−0.74 ± 0.81 dB; p = 0.044). These results suggest that
ERSPs are more reliable than ERPs in discriminating between
IA and HC when considering the influence of comorbid and
age factors.

D. Effective Connectivity
Fig. 5 displays the neural networks showing increased

or decreased effective connectivity in participants with IA
compared to healthy controls. In the group comparisons,
a total of 28 out of 76 graph nodes exhibited overlap between
the two groups, accounting for 66.6% of the dipole density

Fig. 5. The brain effective connectivity during inhibitory control.
(A) The interhemispheric connection in the occipital region and connec-
tivity from the parietal to precentral regions were observed to increase in
the IA group. (B) Decreased connectivity from the paracentral to superior
frontal regions, as well as from the precuneus to middle temporal
regions, was found in IA.

from ICs. Aberrant connectivity patterns were observed in IA
participants during impulsive control. As depicted in Fig. 5,
IA participants exhibited increased connectivity from the right
middle occipital to the left middle occipital regions in the
delta and theta frequency bands immediately after the onset
of Stop signals (with a centroid frequency of approximately
5.72 Hz and a centroid time of around 225 ms). Furthermore,
there was increased information flow from the right inferior
parietal to the right precentral regions, predominantly char-
acterized by a centroid frequency of approximately 3.66 Hz
and a centroid time of around 450 ms (Fig. 5A). Conversely,
decreased connectivity was observed from the right paracentral
lobule to the right superior frontal regions (with a centroid
frequency of approximately 18.44 Hz and a centroid time
of around 525 ms), as well as from the right precuneus
regions to the middle temporal regions in IA (with a centroid
frequency of approximately 15.33 Hz and a centroid time of
around 450 ms), as illustrated in Fig. 5B. The most significant
difference between HC and IA occurred in the beta frequency
band between 0 and 500 ms after the onset of stop stimuli.
As depicted in Fig. 6, boxplots illustrate the mean values
of significant clusters in brain effective connectivity (Fig. 5,
right column) during inhibitory control, indicating increased
information flow in one group compared to the other.

IV. DISCUSSIONS

A. Increased Stop-P3 Suggests Altered Processing of
the Stop Signal in Internet Addiction

In the present study, we incorporated behavioral and
EEG measures to characterize inhibitory control in Internet
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Fig. 6. The mean values of significant clusters in brain effective
connectivity during inhibitory control are presented for the (A) IA group
and (B) HC group.

addiction. IA participants exhibited lower accuracy in the
stop-signal paradigm compared with HC, implying that they
were not able to efficiently receive and utilize the information
provided during inhibitory control. Underlying the lower task
accuracy, our ERP analysis revealed that the stop signals
elicited an increased Stop-P3 component in IA compared
with HC participants. Since Stop-P3 is associated with imple-
menting inhibition or stopping [55], the increase in Stop-P3
suggests altered neural activities of impulsive control in IA.
As illustrated in Table II, previous EEG studies investigating
inhibitory control effects on addiction-related cues demon-
strated inhibition deficits to be associated with different kinds
of IA. IA participants show atypical ERP in N170, N200,
P300, and feedback-related negativity (FRN) components [2].
Echoing these studies, we found that Stop-P3 was attenuated
in participants with Internet addiction. These findings provide
evidence to support the theory that the required cognitive
resources are aberrant in IA to successfully suppress response
impulses or the stopping processes [55], [56]. However, it is
worth mentioning that the significance of Stop-P3 between the
two groups diminished after taking age factor as a covariate in
the present study. Although many studies claim the possibility
of using P300 as a neurophysiological biomarker for IA [57],
our results suggest that the age factor may be another parame-
ter that affects the amplitude of P300 and should be controlled
with caution.

B. Sustained Frontal ERS in Internet Addiction
The investigation of EEG brain oscillations in Internet

addiction during inhibitory processes has received limited

TABLE II
PREVIOUS COGNITIVE STUDIES OF TASK-RELATED DEMONSTRATED

EEG FINDINGS IN INTERNET ADDICTION

attention. Previous studies have primarily focused on analyzing
the power spectral analysis of EEG signals during resting
states [31]. These studies have reported higher gamma activity
in internet addicts, which is associated with the integration of
perceptual and conceptual information and dysfunction in the
dopaminergic system [31], [61]. Additionally, decreased beta
and delta activity during resting states have been observed
in Internet addiction compared to healthy controls, which
has been linked to inattention and impulsivity [31], [61],
[62]. However, it is important to note that the patterns of
brain oscillations may be altered during different cognitive
processes.

In the present study, we specifically focused on brain
oscillations during inhibitory control using a stop-signal task.
Additionally, there was a decrease in beta activity during
inhibitory control in IA. Specifically, we found robust sus-
tained theta and alpha ERS in the right and midline frontal
regions in IA, independent of comorbid and age factors.
Sustained frontal theta power has been associated with the
initial phase of learning and subsequent decline [63]. Previous
studies on ADHD have also reported sustained theta and
alpha ERS activity during post-stimulus periods, indicating
incremental retention for task requirements in memory and
stop-signal tasks [64], [65].

Consistent with prior research, we observed a prolonged
increase in alpha ERS at later post-stimulus time points,
suggesting altered mechanisms in the active suppression of
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cognitive operations [64]. Recent studies have suggested that
mid-frontal theta power is modulated by switch costs and is
related to reaction time, with enhanced theta power during
task preparation [66]. The sustained frontal theta and alpha
activations observed in IA during post-stimulus periods may
be attributed to the longer time required for successfully per-
forming cognitive processes with additional neural resources.
These activations could be associated with increased attention
processes and compensatory mechanisms for insufficient vig-
ilance during the early stages of perception [65].

Moreover, increased theta oscillations have been reported in
patients with obsessive–compulsive disorder during a flanker
task [67], while decreased theta oscillations were observed
in patients with schizophrenia during a stop-signal task [68].
Although recent studies have reported different patterns of
theta oscillations in IA during a Stroop task [69], further inves-
tigation is needed to validate the patterns of brain oscillations
across different task contexts.

To the best of our knowledge, this is the first study to
investigate brain oscillations in IA during impulsive control
using a stop-signal task. These findings, which remained
robust after controlling for comorbid ADHD and age factors,
may serve as more reliable biomarkers of Internet addiction
compared to the previously discussed Stop-P3 signals in the
existing literature.

C. Hypoconnectivity of Frontal-Parietal Network in
Internet Addiction

Aberrant connectivity patterns have been found in this
study during impulsive control in IA. IA participants have
demonstrated increased connectivity in the posterior brain
regions, whereas decreased connectivity has been found in
the frontal-parietal and central executive networks during
inhibitory control. However, most previous connectivity stud-
ies of IA have focused only on resting-state analysis. Studies
on structural connectivity using diffusion tensor imaging have
shown a consistent increase in the thalamus, anterior thalamic
radiation, corticospinal tract, and inferior longitudinal fasci-
culus in individuals with IGD, along with decreased nodal
and global efficiencies [70]. In the past decade, more studies
have investigated brain networks in IA and IGD using resting
fMRI, revealing impaired connections in cortico-subcortical
circuits, including the prefrontal and parietal cortices [71],
interhemispheric functional connectivity in the prefrontal
lobe [72], the reward system and executive control net-
work [73], the frontal-parietal network and cingulo-opercular
network [74], and the executive-cerebellar networks [75].
Conversely, increased occipital-putamen connectivity has been
reported in IA [75]. Consistent findings of aberrant connectiv-
ity between the prefrontal cortex and other brain regions have
been reported in these resting-state fMRI studies. Furthermore,
very few fMRI studies have focused on task-based connectivity
in IA during impulsive control, but the results also suggest the
involvement of the prefrontal cortex in modulating impulsiv-
ity [76]. In the present study, advanced source reconstruction
and connectivity methods were incorporated for EEG data.
Taking advantage of better temporal resolution, task-based
EEG signals were analyzed, and brain effective connectivity

was evaluated during inhibitory control. The findings align
with previous studies, showing decreased connectivity in the
frontal-parietal and central executive networks, particularly
from the right paracentral lobule to the right superior frontal
regions, as well as from the right precuneus regions to middle
temporal regions in the IA group during impulsive control.
The precise time interval of the decrement was also indicated
in the present study, suggesting that aberrant information flow
occurs within the first 500 ms of inhibitory control after the
onset of stop stimuli.

Compared to fMRI, there have been only a few EEG-based
investigations with divergent results reported in the brain
connectivity of IA and IGD. Some studies that have inves-
tigated brain connectivity using resting-state EEG have
reported enhanced intra-hemisphere connectivity within the
fronto-temporal area in IA/IGD participants, specifically in
the delta, beta, and gamma frequency bands [34], [35], [77],
as well as higher alpha coherence in the right hemisphere [31],
[78]. Consistent with previous findings from resting fMRI
studies, a recent study using resting EEG also demonstrated
the important role of frontal and parietal areas in the neu-
ropathological mechanism of IA, showing a decreased shortest
path length of brain connectivity patterns [79]. In line with the
aforementioned results of the present study, we suggest that
the impairment of connectivity found in the frontal-parietal and
central executive networks not only exists in the resting state
but can also be observed during cognitive processes involved
in impulsive control. Further investigation of task-based EEG
connectivity is required to achieve a convergent result since
only a few task-based EEG studies have mentioned brain
networks in IA. In 2020, Wang et al. reported an altered brain
network during working memory processes in IA, with the
aberrant connection mainly found in the frontal and limbic
lobes and in the alpha frequency band [80]. To the best
of our knowledge, this is the first EEG study conducting
a stop-signal investigation to evaluate the brain’s effective
connection in Internet addiction. In summary, our results
suggest that increased occipital-parietal and intra-occipital
connections in the delta and theta frequency bands are found in
IA right after the onset of stop signals. In contrast, decreased
frontal-paracentral and parietal-temporal connections in partic-
ipants with IA have been reported after the first 500 ms of stop
signals in the beta frequency band. Echoing previous studies,
our findings demonstrate the possibility of using EEG signals
as neurophysiological markers for Internet addiction [57].

V. CONCLUSION

An Internet-related stop-signal game has been developed
to characterize the altered ERPs, ERSPs, and brain effective
connectivity in participants with Internet addiction. Consistent
with previous studies, altered Stop-P3 ERP components have
been reported in this study. However, our results have also
indicated that age should be considered as a covariate to reduce
the sensitivity of using Stop-P3 as a neurophysiological marker
for evaluating IA. Furthermore, our findings suggest that the
sustained frontal ERS is associated with aberrant impulsive
control in IA and may be a more reliable factor, unaffected by
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age. Additionally, our results demonstrate increased connectiv-
ity in the posterior brain regions and decreased connectivity
in the frontal-parietal and central executive networks during
inhibitory control in IA. Further investigation is needed in
this area to establish the underlying brain functional network
during impulsive control in Internet addiction.
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