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Abstract— Autism spectrum disorder (ASD) one of the
fastest-growing diseases in the world is a group of neurode-
velopmental disorders. Eye movement as a biomarker and
clinical manifestation represents unconscious brain pro-
cesses that can objectively disclose abnormal eye fixation
of ASD. With the aid of eye-tracking technology, plentiful
methods that identify ASD based on eye movements have
been developed, but there are rarely works specifically for
scanpaths. Scanpaths as visual representations describe
eye movement dynamics on stimuli. In this paper, we pro-
pose a scanpath-based ASD detection method, which aims
to learn the atypical visual pattern of ASD through continu-
ous dynamic changes in gaze distribution. We extract four
sequence features from scanpaths that represent changes
and the differences in feature space and gaze behavior
patterns between ASD and typical development (TD) are
explored based on two similarity measures, multimatch and
dynamic time warping (DTW). It indicates that ASD children
show more individual specificity, while normal children
tend to develop similar visual patterns. The most noticeable
contrasts lie in the duration of attention and the spatial
distribution of visual attention along the vertical direction.
Classification is performed using Long Short-Term Memory
(LSTM) network with different structures and variants. The
experimental results show that LSTM network outperforms
traditional machine learning methods.

Index Terms— Autism spectrum disorder, eye tracking,
LSTM network, scanpaths.
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I. INTRODUCTION

AUTISM spectrum disorder is a lifelong developmental
disorder that can cause social impairment and affect

cognition and communication [1]. The Morbidity and Mor-
tality Weekly Report (MMWR) [2] from Centers for Disease
Control and Prevention (CDC) released that the overall ASD
prevalence rose to 23.0 per 1000 (one in 44) children aged
8 years. Research [3] indicates that timely identification and
treatment of autism is critical. Early detection can aid in
recognizing children who show signs of the condition, thereby
reducing the severity of symptoms and improving their ability
to integrate into society. ASD is typically diagnosed using a
combination of medical and developmental history, behavioral
observations, and standardized assessments. However, there
can be subjectivity in the interpretation of behaviors and
individual differences in the presentation that may compli-
cate diagnosis. Standardized assessments, such as the Autism
Diagnostic Observation Schedule (ADOS) [4] or the Autism
Diagnostic Interview-Revised (ADI-R) [5], provide a more
structured approach to diagnosis. However, these assessments
are time-consuming and may not be widely available, partic-
ularly in underserved areas.

Since the etiology and pathogenesis of ASD are not yet
clear, there are no specific treatments and reliable clinical
diagnostic biomarkers. However, based on the core symptoms
of ASD such as social and communication deficits, researchers
utilize a variety of behavioral markers. Accurate behavioral
phenotype measurements, e.g. facial expression, stereotyped,
movement pattern, eye movement, etc., can provide various
behavioral markers for ASD diagnosis [6]. For the physio-
logical markers aspect, electrophysiological and neuroimaging
studies might provide quite objective indicators from physi-
ological and functional aspects [7]. Zheng et al. [8] reported
that brain morphology could provide a basis for discrimination
based on the level of abnormal brain structure, which may
offer new insights into the neurological underpinnings of
atypical visual patterns in autism.

Eye-tracking techniques are widely used in affective com-
puting research and are combined with other modalities to
collect multimodal data [9]. It allows a more comprehensive
understanding of emotion and its relationship to physiological
responses [10]. As a low-cost efficient and non-invasive mea-
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surement method to study infants and young children’s internal
cognitive processes, eye tracking uses relatively objective
parameters to avoid possible biases in traditional subjective
evaluation [3], [11]. As abnormal eye fixation is one of the
behavioral markers and clinical manifestations in early ASD
children [12]. Analysis of gaze data has been used to determine
the location of important and interesting information within a
stimulus [13], [14] and to identify cognitive approaches to task
completion [15], [16], which provide the basis for achieving
early screening.

Usually, eye tracking is applied to measure subjects’ eye
gaze data, and the areas of interest (AOIs) based method is
used to analyze specific eye movement behaviors in different
regions. It defines either priori or posteriori boundaries in the
stimulus [17]. The traditional priori AOIs approach, which is
based on a top-down strategy, defines the boundaries of AOIs
according to experience and the semantic parsing of stimulus,
then calculates statistical characteristics within different AOIs
[18], [19]. This approach relies on precise and promising
manual annotation but lacks a comprehensive examination of
visual objects. It only retains data in the region of interest for
analysis, and discards fixations that are not within anyone AOI.
What is more, it is controversial that the AOI size and location
across studies [20]. While a posteriori AOIs method, which is
based on a bottom-up strategy, analyzes the eye movement
behaviors on the whole stimulus according to the distribution
of eye gaze data, provides more objective results by avoiding
determining AOIs boundaries [21].

Some studies use a combination of methods for analysis.
In [22], complementary data analysis techniques are used
to examine the strategies of human face processing by both
children with autism and TD children. Three methods are used:
the AOI method which defined five regions covering the entire
face, the Data-driven method which used the MAP Matlab
toolbox to create heat maps, and the Saccade Path method
which indicated the frequency of transferring from one interest
region to another. This work uses these three techniques in
concert, shedding light on potential similarities and differences
in face-scanning patterns between ASD and TD children that
would not have been observed using the AOI method alone.

Numerous methods have been developed to identify ASD
based on eye movements. In recent years, some studies have
started to focus on the spatio-temporal model of combining
fixations and saccades, known as scanpath. Scanpath has
shown high potential in the medical field for diagnosis and
treatment, as it has been used as a useful tool for identifying
people with schizophrenia [23] and ASD [24], [25]. Analysis
of fixation sequences can reveal the cognitive strategies that
drive eye movements and provide useful clues for diagnosing
whether a subject has ASD or not.

Scanpaths are visual representations that describe eye move-
ment dynamics by characterizing the location and duration
of gaze sequences on stimuli [26]. However, there are rela-
tively few studies on scanpath in the field of ASD that have
been published so far. Startsev and Dorr [27] combined eye
movement statistics, saliency-based, and face-based features
to automatically differentiate scanpaths belonging to ASD
subjects and control groups. However, the performance of the

TABLE I
INFORMATION ABOUT THE PARTICIPANTS

model in classifying between the training set and the test set
is not consistent.

Li et al. [28] make the first attempt to use deep learning
techniques to diagnose ASD children in raw video data. They
utilize a tracking-learning-detection algorithm to calculate
the gaze trajectory of each video and divide it into two
components, angle and length. Finally, a three-layer LSTM
network is used for classification, and the results show that
the LSTM network outperformed traditional machine learning
methods. In another study, Carette et al. [29] aim to learn the
eye-tracking pattern of ASD by transforming scanpaths into a
visual representation. Diagnosis is approached as an image
classification task, and neural network models are used to
achieve promising classification accuracy on a limited dataset.

In this paper, we propose a digital phenotyping method
for studying atypical gaze patterns in children with ASD by
analyzing spatio-temporal properties and dynamic changes in
scanpaths. Unlike earlier works, our method relies solely on
gaze sequences from eye-tracking recordings and takes into
account the spatio-temporal dynamics of gaze behaviors. We
generate scanpaths and represent them using three components
that characterize spatial coordinates, attention duration, and
eye movement transfers, along with their dynamics. Our qual-
itative and quantitative results reveal a significant difference in
attention span between children with ASD and TD children.
ASD children exhibit greater individual variability in their
visual patterns compared to normal children, who tend to
develop more similar patterns. Additionally, we employ a clas-
sification model with an LSTM network based on scanpaths
and achieve a remarkable classification accuracy of 97%.

II. DATA COLLECTION

A. Participants
This study involves a group of participants with ASD and

a control group of TD. Data were collected from a total of
96 participants (54 ASD and 42 TD) and 95 participants were
retained (one in the TD group lacked demographic informa-
tion). Details about demographic characteristics are shown in
Table I. The Ethics Committee of Sichuan Guangyuan Mental
Health Center approved the informed consent and study design
for the quantitative assessment study of children’s autism
in accordance with the Declaration of Helsinki, the ethical
guidelines of the World Medical Association. All the subjects’
guardians agreed that the subjects would participate in this
study, signed the informed consent form, and filled in the
demographic questionnaires.

1) Inclusion and Exclusion Criteria: The inclusion conditions
for the ASD are as follows: (1) participants in the ASD group
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have a formal diagnosis of autism and all participants meet the
DSM-5 diagnostic criteria; (2) the age range is 12 months to
12 years old, both male and female; (3) IQ is greater than 70.
The exclusion criteria for ASD consist of (a) a history of
organic brain disease or craniocerebral trauma; (b) genetic or
metabolic disease, such as Rett’s syndrome; (c) other mental
developmental disorders, like attention deficit hyperactivity
disorder (ADHD), heller syndrome, etc. (d) Red-green color
blindness, diagnosed using a color blindness map. (e) other
conditions deemed by the researchers to be inappropriate
for participation in this study. Participants in the TD group
consist of TD children who must meet (2) and (3) inclusion
conditions, and all the exclusion criteria as listed for the ASD
group.

B. Materials
Wan et al. [13] proposed that to make it easier for children

to participate in experiments, the development of a short and
informative paradigm is essential for eye tracking, and their
work has shown that a short video clip can provide enough
information to distinguish between ASD and TD children.
Various types of stimuli are employed for eye-tracking exper-
iments. For example, static faces, stationary moving objects,
and other joint attention stimuli. The different stimulus types
are viewed as different paradigms, with transitions between
them using an animated clip, which may be particularly
appealing to children. An eye-tracking experiment usually
takes up to 4 minutes. The content and length of the images
and videos varied to analyze different aspects of eye behaviors.

We use the human face images experiment paradigm in
our subsequent analysis. Due to its superior performance in
early ASD research, it has become the most commonly used
experimental paradigm for eye tracking in ASD detection
[30], [31].

The human face stimulus set consists of a 34-second
video segment that includes six images of a woman’s face
expressing different emotions from the Chinese facial affective
picture system (CFAPS) [32]. Each image consists of a frontal
woman’s face above the neck with a solid black background
and lasts for 5 seconds.

C. Experimental Setup
The eye-tracking experiment consisted of a set of image

and video scenes specifically designed to stimulate the gaze
on different screen parts. The experiment is conducted in
a quiet room with only the researchers, the subjects, and
their guardians. The distance between the participant and the
eye tracker is approximately 60cm. To record the children’s
gaze behaviors, we employ a 90HZ Tobii Eye Tracker 4C
video-based eye tracker below a 23-inch display that the LCD
monitor with a resolution set to 1920 × 1080 pixels. An RGB
camera is set up on the side to record the whole experiment,
as shown in Fig. 2.

Before commencing the experiment, participants are
required to engage in a preparatory session aimed at acquaint-
ing them with the experimental environment and procedures.
A five-point calibration is performed using the Tobbi internal

program. Calibration is deemed successful when all five points
exhibit a strong fit in the computational mapping. The eye-
tracker is responsible for capturing the subject’s gaze behavior,
and the ordinary camera records the subject’s viewing process.

III. METHOD

In this section, we will provide a detailed description of
our proposed method, which includes feature extraction of
raw eye-tracking data, classification, and similarity analysis,
as shown in Fig.1. By characterizing the scanpath that reflects
changes in fixations and saccades, we differentiate between
ASD and TD children and conduct qualitative and quantita-
tive analyses of differences in continuous visual behavioral
patterns.

A. Fixations and Saccades Identification

Velocity-threshold fixation identification (I-VT) [33]
algorithm which identifies fixations from saccades based on
the fact that fixations have lower velocities than the saccades
is the simplest of the identification methods to understand and
implement that is widely accepted in eye-tracking protocols.
It requires one specification parameter, the velocity threshold
that can be computed when the distance from the eye to
visual stimuli is known [34]. Karthik et al. [35] achieved a
custom implementation of the velocity threshold algorithm for
fixation identification. They found that even by considering
only points of regard to finding fixations, results obtained
are similar to those obtained by running SMI BeGaze. Their
work provides us with a potential reference.

The raw eye gaze data are generally expressed by sequences
of sampling gaze points. Compared to controls, children with
ASD spend less time attending to people and goal-oriented
tasks so they have a harder time maintaining sustained atten-
tion and fewer fixations on the monitor. The definition of
velocity is v = d/t and the sampling rate is provided above.
Therefore, only the distance between the two fixation positions
is required to calculate v. In our study, sequences with missing
values of less than 10 sample points are retained. We calculate
the original velocity of each sampling point in the individual
scanpath. If the v of the point is below a predefined threshold,
then the point will be considered a fixation. Otherwise, it will
be considered a saccade and be excluded.

B. DTW and MultiMatch Based Scanpath Similarity

In this paper, we use two different measures of similarity
to explore differences in scanpaths between ASD children and
TD children. Fig. 3 shows a brief diagram of both approaches.

The Dynamic Time Warping (DTW) [36] method is suit-
able for calculating the similarity of time series, especially
for those with different lengths, which correspond to the
characteristics of the scanpath. Each scanpath may have a
different length, as the duration of gaze and the frequency of
gaze shifts are subjectively controlled. Given two scanpaths
Q =< q1, q2, . . . , qm > and P =< p1, p2, . . . , pn >, where
m and n represent the length of the sequence Q and P ,



868 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 32, 2024

Fig. 1. The framework of the proposed method in this paper. It consists of four steps: (1) velocity calculation; (2) outlier elimination; (3) construction
of networks for classification; (4) similarity measurement for analysis based on MultiMatch and DTW.

Fig. 2. The experimental scene layout of this study.

Fig. 3. Schematic diagram of the two similarity methods calculated.

respectively. The DTW distance is recursively computed by
the following formula:

D(Qi , Pj ) = δ(qi , p j ) + min


D(Qi−1, Pj−1)

D(Qi−1, Pj )

D(Qi , Pj−1)

(1)

where Qi , Pj are the subsequences of Q and P , δ(qi , p j ) is
the Euclidean distance between points qi and b j , D(Qi , P j)
is the DTW distance between Qi and Pj . Therefore, we obtain
a DTW matrix with the DTW distance between any pairwise
subsequences of two given scanpaths. Based on this matrix,
we can find the path of cost accumulation from the bottom
right to the top left, which indicates the optimal alignment
between sequences.

On the other hand, we estimate scanpath through similarity,
which is evaluated by MultiMatch [37], [38]. MultiMatch
is not simply comparing the similarity of fixation points,
it also takes into account the sequential relationship between
different fixations and is capable of handling the similarity
between multiple scanpaths at once. Moreover, MultiMatch
provides five different evaluation metrics, making it adaptable
to diverse eye-tracking data analysis needs. By splitting a
single scanpath into multiple vector segments, the MultiMatch
method directly compares these vectors from five aspects
that capture the similarity between different characteristics of
scanpaths, namely vector similarity, direction similarity, length
similarity, position similarity, and duration similarity. The two
endpoints of a vector represent consecutive gaze points, and
the vector segments represent the saccade behavior between
consecutive gaze.

Given two vectors consisting of a pair of fixations and
saccades from different scanpaths Q and P , represented by
ui and vi . The average of the following measured values will
be calculated:

• |ui − vi | represents the shape difference.
• ∥ui − vi∥ represents the length difference.
• The Euclidean distance is used to indicate the distance

of the fixations.
• The direction difference is represented by the angle

between ui and vi .
• The duration of the fixations indicates the difference

in the vector’s duration.
The values on each metric are normalized between 0 and 1,

the screen diagonal is used as a reference. π is used to
normalize direction, and the difference for the duration is
normalized against the maximum duration of the two fixations
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being compared. Finally, we end up with five similarity
scores.

C. MIC Score Based Path and Similarity
The Maximal Information Coefficient (MIC) [39] method

can capture a wide range of associations between features and
labels and is not limited to specific types. Compared with the
embedding method which combined some machine learning
models to get the weight coefficient of features, the bias of
selecting different machine learning models is avoided. The
correlation is obtained by calculating “the estimation of the
mutual information between each feature and the label”.

To explore the interpretability of the scanpaths, we
add the extra length attribute for each fixation for analysis.
Given the features fi = (xi , yi , di , vi , li ) and labels si . To
encode the scatter plot consisting of a label and each feature
of f into a grid, the mutual information between features and
labels is calculated by joint distribution, as follows:

I ( f, s) ≈ I (F, S) =

∑
f

∑
s

p( f, s)log2
p( f, s)

p( f )p(s)
(2)

And normalized the value into the range [0, 1] (0 means the
two variables are independent, and 1 means the two variables
are completely correlated).

mic( f, s) =
maxG∈G( f,s) I (F(G), S(G))

log2min( f, s)
(3)

Notice that we calculate MIC values in turn for the features
in f . And G( f, s) is the set of two-dimensional grids of size
f × s.

D. Features
Outlier scanpaths will introduce noise to the distribution

trend of the population over time and space. We observe
the dispersion of scanpaths using five statistical measures,
including the minimum, lower quartile, median, upper quartile,
and maximum. Based on the DTW distance, values that deviate
from the upper or lower quartile by 1.5 times the interquartile
range in either of the two groups are considered outlier
scanpaths and removed.

In the first step, the average DTW distance is calculated
between each scanpath and all remaining scanpaths in the
same group. This value is then used to calculate statistical
characteristics for outlier elimination. It is worth noting that
every time excluded one scanpath, the average DTW distance
of the remaining scanpaths will be changed and recalculated
accordingly.

In scanpaths, we extract four features for each fixation,
fi = (xi , yi , di , vi ) namely x_pos, y_pos, duration, and
veloci ty. Where x_pos and y_pos represent the coordinates
of the participant’s gaze on the monitor, duration is the level
of sustained attention, and veloci ty means the speed at which
the current fixation transferred to the next. When one fixation
consists of multiple sampling points whose velocity is less
than the velocity threshold, x_pos, y_pos, and veloci ty are
the average of these points, while duration is the sum of the

duration of each one. These features reflect the current location
of interest, duration, and speed of shift of attention.

When the number of positive and negative samples is not
equal, or even the gap is large, a larger proportion of samples
of a certain category will account for most of the loss values.
Therefore, the model learns less for the smaller sample size
category, resulting in a worse generalization of the model. In
our study, after the pre-process, the number of scanpaths in the
ASD group is found to be significantly lower than that in
the TD group. In order to balance the two groups, we carry
out the following procedure: Each face stimulus image is
treated as a distinct experimental paradigm, and the scanpaths
that have been processed as described above are considered
valid data for each paradigm. Then, all scanpaths within each
paradigm are sorted according to the DTW distance, and an
equal number of samples are retained for the ASD and TD
groups to eliminate the bias that may have been introduced by
the imbalance of samples in the classification model.

E. Classification
LSTM can effectively express and convey information in

a long time series without forgetting useful information long
ago, so it is very suitable for sequence. Based on this charac-
teristic of LSTM, this study uses LSTM and different variant
networks of LSTM for training and classifying ASD and TD.
After feature extraction, we fed four different combinations of
features into the following networks: (1) GRU. (2) 2-LSTM.
(3) Bidirectional LSTM (BiLSTM).

To achieve the training of unequal-length sequences, we use
the Mask mechanism for processing before inputting the
model. Given the maximum length of scanpaths, the Mask
mechanism would pad other sequences up to that length and
then remove these parameters during training. For classifica-
tion, each layer of the LSTM has 128 hidden units, and only
the outputs of all hidden units in the last layer are taken and
then fed into the fully connected layer, which uses a softmax
regression layer to predict the probability of each class for
binary classification. All experiments are performed on a batch
size 64 with a cross-entropy loss function and a learning rate
of 0.0001.

For performance and evaluation, we use a 5-fold cross-
validation for classification. In each fold, 70% of the data is
used as a training set, 10% as a validation set, and the remain-
ing is used for testing. We repeat this process 5 times and
finally average the evaluation results for each classification.

In addition, traditional machine learning methods are also
considered for comparison. The features are fed into a tra-
ditional machine classification model to verify whether the
neural network model has better performance in the scanpaths
classification task. Random forest (RF) can provide informa-
tion about the relationship between variables and labels, while
XGBoost uses multiple weak classifiers to integrate a strong
classifier, which can control the complexity of the model and
prevent overfitting. We also take a 5-fold cross-validation for
classification.

To evaluate the performance of the binary classification,
we employ accuracy (Acc.), recall (Rec.), and f1_score (F1.)
as our evaluation indicators. Details of the classification results
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Fig. 4. Comparison of scanpaths’ features. A boxplot is drawn on the
four features. It can be found that the difference between position and
duration is significant, but the velocity distribution of the two groups is
similar.

are shown in Table III. We can find that no matter what
kind of classifier, when the feature set contained duration (see
row2 and row4), the accuracy is higher. And better classi-
fication results are achieved on LSTM and GRU networks.
We speculate that complex network models (2)-LSTM and
Bi-LSTM) bring additional redundancy parameter information
due to a more complex network structure. As for machine
learning models (RF and XGBoost), the classification accuracy
is inferior to that of neural network models due to the lack of
time series information.

IV. RESULTS

We aim to reveal the differences in eye movement behavior
between individuals with and without ASD by exploring sim-
ilarities within and between scanpaths. This approach enables
us to capture both individual variability and group differences,
and we use the MIC to offer potential explanations. Our
findings suggest that accounting for continuous visual behavior
can yield more valuable information than relying solely on
discrete fixation points, and both the classification and analysis
results confirm that duration is the most notable difference
between the two groups.

A. Scanpath Measurements
For the scanpaths, we obtain the features of five dimensions,

fi = (xi , yi , di , vi , li ), including the four features of the input
neural network and the newly added length feature. Taken
these features as the input of the MIC method to get the
correlation coefficient. The discrete distribution of features
is shown in Fig. 4. From the results, we can observe that
duration is associated with the label the most, followed by
the y. It indicates that these two features are most associated
with classes.

1) Scanpath Position: Many studies have identified atypical
gaze behaviors in children with autism, such as eye gaze
avoidance, using a fixation-based AOI approach. However,

Fig. 5. MIC score calculation from the scanpath and the similarity of
scanpaths. A significant difference in position can be observed from
both results, and the DTW takes Euclidean distance as elements are
more sensitive to changes on the Y-axis to capture this otherness. For
the duration, the MultiMatch segmenting scan path shows no distinction
between within and between ASD, while the DTW does not include gaze
duration in its calculations.

in our study, the coordinates of fixation points are divided
into x and y for analysis. As shown in Fig. 4, we can find
that the gazing distribution of ASD is more discrete in the
vertical direction than in the horizontal direction compared to
the TD group. This suggests that children with ASD tend to
have more up-down shifted attention when looking at faces.

2) Scanpath Duration: When exploring a visual scene,
we can locate the visual information of a certain part of
the image through fixation. The duration reflects the accu-
mulated attention of the focus area and is related to the
processing of visuals. According to the MIC results, duration
has the strongest correlation with groups, which indicates a
significant difference between the two groups. As shown in
Fig. 4 and Fig. 5(a), we can observe that the duration of gaze
in children with ASD is generally shorter than that of TD
children, whether in terms of the mean or median values.
It reflects a gaze pattern of TD children, which is that for
most given images, they tend to focus on certain regions and
maintain attention for a period of time.

3) Scanpath Velocity: Velocity reflects the eye movement
behavior of moving from the current fixation to the next, dur-
ing which little or no valid visual information is acquired. We
can notice that velocity has the least correlation with groups,
which is consistent with the classification results. As shown
in Table III, row 2 is significantly improved compared with
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TABLE II
AVERAGE OF MULTIMATCH AND DTW SIMILARITY MEASUREMENT

TABLE III
COMPARISON BETWEEN DIFFERENT CLASSIFIERS

row 1 on all models, while row 3 has no such performance.
So we suggest that velocity does not provide additional useful
information. In other words, the process of transfer attention
can not provide visual pattern distinctions, but the continuous
attention process reflects atypical behavior in individuals with
ASD.

4) Scanpath Length: The length of scanpaths reflects the
frequency of attention shift. Li et al. [40] analyzed the length
of scanpaths in two publicly available datasets, OSIE and
MIT1003, and found that the distribution of length is similar
to normal distribution. This suggests that when viewing a
given stimulus, most subjects exhibit similar gaze distribution
patterns, but a small number of individuals exhibit infrequent
shifts or rapid changes of attention. Since gaze behavior is
subjectively controlled, the length of scanpaths may vary
among subjects, but this bell-shaped distribution characteristic
is shared. In the data we collected, both ASD and TD children
maintained this distribution of scanpath length.

B. Similarity
It is important to take into account the required quantifi-

cation format when choosing a scanpath comparison method
[41]. The MultiMatch method employs a direct quantifica-
tion, which enables the direct comparison of eye movement
behaviors across scanpaths. Using the MultiMatch method,
we obtain similar values on the five features of scanpaths,
and the values on each metric are normalized between 0 and
1. The larger the scores, the higher the similarity.

In addition, we use the DTW to calculate the similarity
between the two groups. The DTW uses a global optimization
strategy to consider the best alignment between the two
sequences without other processing. We expect that scanpaths
of the same class are as similar as possible, while different
classes are as far apart as possible. And a smaller DTW
distance means a better similarity.

1) Overall Scanpath Similarity: We compare the scanpath
similarity with all scanpaths in the same classes and all in con-
trols using both algorithms and compute the average (Table II)
scores. From the results of MIC as shown in Fig. 5(b), we can
observe that the correlation between the DTW and position is
much higher than other characteristics, which corresponds to
the results in Table II. The mean values of the DTW in the
TD group are much smaller than that in the ASD. However,
it is not easy to distinguish the difference between the two
groups in the score of the MulitiMatch method. This may
be because MultiMatch simplifies or quantifies the scanpath
before comparison, whereas DTW directly uses the Euclidean
distance between fixation points as the element of the cost
matrix.

C. Comparison on Open Dataset
To validate the generalizability of our method, we per-

formed a comparison on an open dataset of eye movements
of children with ASD [42]. It consists of 300 natural scene
images and corresponding eye movement data collected from
14 children with ASD and 14 TD children. The Saliency4ASD
Grand Challenge “Saliency4ASD: Visual attention modeling
for Autism Spectrum Disorder” was organized (presented at
ICME 2019), which is based on publicly available datasets
mentioned above to align the visual attention modeling com-
munity around the application of characterizing and diagnos-
ing ASD.

Considering that this public dataset is the latest and most
similar to our experimental data, we apply our method to this
dataset and compare it with all methods published at ICME.
We conducted two separate experiments, one using all the eye
movement data from 300 natural scene images for training
and classification, and the other selecting the eye movement
data corresponding to the images that contain human themes.
It is a subset of all the images. We select the LSTM model
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Fig. 6. Visualization of scanpath. Different colors represent the scanpaths of different individuals. On each scanpath, the size of the circle indicates
the duration of each fixation point, and the number identifies the order in which the fixation points are observed.

with the most superior performance in our experiments as the
classifier. The experimental procedure remains consistent with
the above, and only the model parameters epoch and learning
rate are adjusted for different data volumes.

As shown in Table IV, Startsev and Dorr [27] in their study
used AUC scores as an evaluation metric and extracted the
basic fixation statistics of each scanpath as the features, which
ultimately achieved 75% AUC. Their further analysis showed
that eye movement data containing multiple face images had
a higher discriminative ability (76.9% AUC on average). Wu
et al. [43] employed the methods of classification using images
with gaze and synthetic saccade, respectively, and achieved
better results on the latter with an accuracy of 65.41%.
Tao and Shyu [44] proposed an SP-ASDNET network that
combines CNN and LSTM and the best classification result
accuracy is 74.22%. Using our method, the average accuracy
of cross-validation on the full dataset is 83.93%, while on the
dataset containing only faces, the average accuracy achieved
is 87.95%. The experimental results show that our method has
better classification performance than others and can capture
discriminative features of eye movement data better on human
face image paradigms. Furthermore, the application across
datasets indicates the effectiveness and generalizability of the
proposed method for ASD classification in this paper.

TABLE IV
COMPARISON OF DIFFERENT CLASSIFICATION METHODS ON

SALIENCY4ASD DATASET

D. Visualization of Scanpaths
Scanpath visualization shows the distribution of visual

attention when subjects observe a given image, aiding in the
analysis and comprehension of their visual attention prefer-
ences. The results of scanpath visualization for each facial
stimulus image are displayed in Fig. 6. Overall, children with
ASD tend to have a gaze distribution that roams over the entire
image, while TD children tend to concentrate on the central
part of the image. Specifically, ASD children are inclined to
focus on the left half of the face (below the left eye), while
the TD group tends to focus on the middle part of the face
(the nose area). Buchan et al. [45] utilized the AOI method
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to assess individual preferences and found that some subjects
prefer to gaze at the left half of the face, whereas others prefer
to gaze at the right half. This reflects the asymmetry of facial
expressions, wherein the right side of the face is better at
expressing emotions than the left side [46], which may have
a potential correlation with the avoidance of the right half of
the face by ASD children.

V. DISCUSSION
Eye tracking studies have the potential to provide a unique

and intermediate-level description of autism, linking under-
lying neurocognitive networks to the upper level of everyday
functioning and dysfunction [47]. And it can reveal how people
with ASD process social visual information.

Unlike prior research that analyzes gaze behavior using
statistical features across distinct facial regions, this study
examines fixation locations and discovers that children with
ASD exhibit larger vertical gaze shift amplitudes than hor-
izontal ones. This finding is consistent with the results of
Wegner-Clemens et al. [48]. They find that ASD children
and TD children exhibit significant individual differences in
their tendency to gaze at the eyes or mouth, confirming that
the distribution of gaze on the upper and lower face is the
largest difference between the two groups. The next largest
difference is the distribution of gaze on the left and right
halves of the face. It may explain why the distribution of
gaze in the vertical direction is more dispersed than in the
horizontal.

By examining the degree of association between features
and labels, we discover that duration is the most significant
feature for distinguishing between ASD and TD children. In
contrast, velocity, which characterizes the process of gaze
shift, does not provide additional information for classification.
This suggests that the ability to sustain attention is the primary
difference between the two groups. Specifically, during the
process of viewing facial images, ASD children exhibit shorter
fixation duration and more frequent shifts, while TD children
tend to generally maintain their visual attention.

We further analyze scanpath similarity from a visual behav-
ior perspective. As gaze behavior is a continuous process,
individual differences in visual behavior can be exposed by the
overall shape of the scanpath and the order in which it unfolds.
In this study, we utilize two different similarity measures. The
MultiMatch method represents a single scanpath as multiple
segments of vectors and calculates alignment by optimizing
vector differences between scanpaths. However, this method
may reduce sensitivity to minor temporal or spatial changes.
The DTW method aims to make the shapes of two sets of
sequences as similar as possible by warping them. Through
the above analysis, we can observe that the visual distribution
of ASD children differs more in the vertical direction, and
the DTW method, which employs Euclidean distance as an
element, is more sensitive to distance in the Y direction.
Finally, we compare multiple neural networks and machine
learning methods to demonstrate the effectiveness of LSTM
in continuous visual behavior.

Our study also has some limitations to consider. Firstly,
small-scale datasets are currently a common problem in the

ASD research field. To obtain a sufficient amount of valid
data, we preserve valid scanpaths in any paradigm. However,
this may lead to a problem that an ASD child has valid
data in one paradigm but not in others, resulting in different
subjects having different sample sizes. Secondly, the DTW
method is commonly applied in the field of speech recognition,
which only considers the alignment of gaze points in scanpaths
without considering duration. In future work, we will focus on
improving this algorithm by incorporating duration as a weight
in the alignment process.

Finally, there are also some limitations of the eye-tracking
technology. Visual exploration is a highly specific and per-
sonalized process. Therefore, the eye tracker needs to be
calibrated before use by each subject to ensure accuracy.
If the calibration process is not accurate, the data may be
offset during subsequent acquisition. Data offset is one of
the sources of noise. Data offset may also occur when the
position of the eye relative to the camera is shifted, or when
the pupil size changes. In addition, multiple calibrations
can create a burden on the time and labor costs of the
experiment.

In our study, children between the ages of 3 and 12 are
included. This contributes to facilitating that the participat-
ing children can understand the experimental task to ensure
their cooperation. For some children, maintaining sufficient
attention and cooperation to complete calibration can be
challenging. Data integrity checks and denoising also lead
to a reduction in the size of the dataset. In addition, current
eye-tracking methods require special eye-tracking equipment,
which is not inexpensive enough, which limits the widespread
use of the method in autism screening, especially in extremely
underdeveloped regions.

VI. CONCLUSION

In this study, we focus on the scanpaths which are seen as
visual representations that describe eye movement dynamics
on stimuli and there are rarely works specifically for it.
We propose a scanpath-based ASD detection method that
aims to learn the atypical visual patterns of ASD. This digi-
tal phenotyping method provides qualitative and quantitative
results. The classification results show that LSTM outperforms
traditional machine learning methods. In terms of intra- and
inter-group similarity in scanpaths, it reveals that ASD children
exhibit greater individual variability from three dimensions
in visual patterns, which are spatial coordinates, attention
duration and eye movement transfers.
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