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Electrical Input Filters of Ganglion Cells in Wild
Type and Degenerating rd10 Mouse Retina as a

Template for Selective Electrical Stimulation
Hamed Shabani , Eberhart Zrenner, Daniel L. Rathbun , Member, IEEE, and Zohreh Hosseinzadeh

Abstract— Bionic vision systems are currently limited
by indiscriminate activation of all retinal ganglion cells
(RGCs) – despite the dozens of known RGC types which
each encode a different visual message. Here, we use
spike-triggered averaging to explore how electrical respon-
siveness varies across RGC types toward the goal of
using this variation to create type-selective electrical stim-
uli. A battery of visual stimuli and a randomly distributed
sequence of electrical pulses were delivered to healthy and
degenerating (4-week-old rd10) mouse retinas. Ganglion
cell spike trains were recorded during stimulation using
a 60-channel microelectrode array. Hierarchical clustering
divided the recorded RGC populations according to their
visual and electrical response patterns. Novel electrical
stimuli were presented to assess type-specific selectivity.
In healthy retinas, responses fell into 35 visual patterns and
14 electrical patterns. In degenerating retinas, responses
fell into 12 visual and 23 electrical patterns. Few correspon-
dences between electrical and visual response patterns
were found except for the known correspondence of ON
visual type with upward deflecting electrical type and OFF
cells with downward electrical profiles. Further refinement
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of the approach presented here may yet yield the elu-
sive nuances necessary for type-selective stimulation. This
study greatly deepens our understanding of electrical input
filters in the context of detailed visual response character-
ization and includes the most complete examination yet of
degenerating electrical input filters.

Index Terms— Neural implants, neural prosthesis, neuro-
prostheses, visual prosthesis.

I. INTRODUCTION

DURING the last few decades, successful efforts have
restored limited vision to patients with progressive reti-

nal degenerative diseases such as retinitis pigmentosa and
age-related macular degeneration by electrically stimulating
the retina [1]. Leading implants include the Argus II epireti-
nal implant of Second Sight Medical Products, Inc., Sylmar
California, USA [2], the IRIS II epiretinal implant of Pixium
Vision, Paris, France [3] and the Alpha AMS subretinal
device from Retina Implant, GmbH, developed in Tübingen,
Germany [4] which have each received regulatory approval
and been sold commercially.

Despite these successes of retinal implants, it remains
necessary to refine our understanding of signal processing
through the implant-stimulated retina in the interest of improv-
ing visual percepts for implanted patients. Only recently has
it become possible to differentiate between the dozens of
distinct types of retinal ganglion cells (RGCs) which each
convey their own visual information to the brain. Catalogs of
differentiated RGCs have been achieved through state-of-the
art techniques including 47 morphological types [5], 40 genetic
types [6], 28 physiological types using spike train data [7],
45 types based on scRNA-seq [8], 32 types using calcium
signal data [9]. With these catalogs now available, a next step
is to use the most applicable amongst them to understand
how responses to electrical stimulation differ between the
various types. The main purpose of this study is to develop
cell type-selective stimulation by examining spiking responses
to the novel electrical noise stimulus in the context of these
newly-refined visual response catalogs.

Many researchers have explored electrical stimulation
parameters for preferential activation of one retina ganglion
cell (RGC) type over another. The broadly defined ON and
OFF RGC types respond to different phases of a low frequency
sine wave [10], [11]. Similarly, Twyford et al. [12] also
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showed that an amplitude-modulated pulse train envelope
could differentially activate RGCs through direct stimulation,
e.g. ON cells with decreased activity and OFF cells with
increased activity. Other recent contributions to growing evi-
dence of cell-type selective stimulation include [13], [14], [15],
[16], [17], [18], [19].

In contrast to such parametric approaches, the method of
white noise stimulation, paired with reverse correlation of
response to stimulus (examined in [20]) allows each neu-
ron to select out its optimal stimulus from a broad field
of potential stimuli without those stimulus patterns being
explicitly presented. We previously leveraged this white noise
method to estimate the electrical input filters of mouse RGCs
via indirect stimulation of the retinal network [21]. Because
the estimate is achieved by the reverse-correlation technique
of spike-triggered averaging of electrical pulse sequences,
we designated it the electrical Spike Triggered Average
(eSTA). Subsequently, we demonstrated that there is a cor-
respondence between visual and electrical input filters of ON
and OFF mouse retinal ganglion cells [22]. As confirmed by
Ho et al. [23] ON cells have a characteristic upward deflection
of eSTA, whereas OFF cells have a downward deflection.
This dichotomy echoes the finding that ON and OFF cells
respond to different phases of an ongoing sine wave [10].
This dichotomy likely exists because the retinal element that
is most strongly activated by such stimulation precedes a
signal inverting split between ON and OFF pathways (e.g.,
photoreceptors or A-II amacrine cells, discussed in [22]).

Most recently, we attempted to benchmark eSTA differences
with an established catalog of RGC types based on functional
responses to light stimulation [24]. Owing to the difficulty
of precisely connecting spike trains with calcium imaged sig-
nals, this attempt met with only qualified success. Therefore,
we conducted the present study to build on this earlier work
of comparing the electrical input filters of different RGC
types to their visual responses. Our hope has been that clear
eSTA differences between RGC types can be used to design
electrical stimuli to target selectively RGC types.

Here, we have expanded on our previous work by using
type boundaries that are best matched to our data. We have
clustered RGCs of healthy and rd10 degenerated retinas using
either visual responses to light stimulation or eSTA shapes.
This study presents 35 visual patterns and 14 electrical patterns
of healthy mouse retina as well as 12 visual and 23 elec-
trical patterns of degenerating rd10 retina. This experimental
approach presented here constitutes a significant elaboration
upon prior methods, and a significant contribution to bionic
vision in the effort to design new electrical stimuli that can
selectively activate RGC types.

In parallel to these main experiments, we have begun
testing 4 types of electrical stimuli where the pulse train is
modulated by either half or full sinusoids. These correspond
to our earlier observations that the broad RGC categories of
ON and OFF cells have stereotypically upward or downward
eSTA shapes, respectively. Unsurprisingly, given the hetero-
geneity of the broad ON and OFF classifications, we found
a range of selectivity for these sinusoids that generally con-
firm expectations. Rather than wait until this puzzle is fully

resolved, we present these preliminary results to hasten that
resolution.

II. METHODS

A. Animals
Male and female adult wild type (WT) mice C57Bl/6J (The

Jackson Laboratory, Bar Harbor, ME, USA) with age ranging
from postnatal day 29 to 74 and rd10 (on a C57Bl/6J back-
ground, The Jackson Laboratory) mice from 29 to 31 postnatal
days were used for this study. Since the photoreceptor layer is
not completely degenerated at this age they can be considered
as a proper model for progressive Retinitis Pigmentosa in the
stage where some neurons still respond to light stimulation.
Before each experiment, animals were housed under standard
lighting conditions with free access to food and water. All
procedures were done in accordance with the ARVO statement
for the use of animals in ophthalmic and visual research;
and experiments were approved by the Tübingen University
committee on animal protection (Einrichtung für Tierschutz,
Tierärztlicher Dienst und Labortierkunde).

B. Retinal Preparation
Animals were dark-adapted for at least one hour before each

experiment and anesthetized with Isoflurane before cervical
dislocation. The absence of withdrawal reflex was checked by
pinching the tissue between the toes before euthanasia. The
eyes were removed and dissected under dim red light in car-
bogenated (95% O2 and 5% CO2) artificial cerebrospinal fluid
(ACSF) solution containing the following (in mM): 125 NaCl,
2.5 KCl, 2 CaCl2, 1 MgCl2, 1.25 NaH2PO4, 26 NaHCO3,
and 20 Glucose, pH 7.4. The retina was detached from the
pigment epithelium, after removing the cornea, ora serrata,
lens and vitreous body from the eye. Half or whole retina
was then placed carefully on the planar microelectrode array
(MEA) in a way that the ganglion side faces the electrodes.
A dialysis membrane (CelluSep, Membrane Filtration Products
Inc., Seguin, Texas, USA) mounted on a custom Teflon ring
was placed on the MEA to keep the retina immovable and in
contact with electrodes while letting the carbogenated ACSF
reach the tissue [25], [26]. After connecting the preamplifier
to the MEA, the retina was continuously perfused with car-
bogenated ACSF at ∼3 ml/min rate and maintained at 33◦C
using both a heating plate and a heated perfusion cannula (HE-
Inv-8, PH01, Multi Channel Systems, Reutlingen, Germany).
At least 30 min of stabilization time was observed before each
recording.

C. MEA Recording
A 60-channel planar MEA with an 8∗8 rectangular layout

(60MEA200/30iR-ITO, Multi Channel Systems, Reutlingen,
Germany) was used for recording the extracellular activity
of RGCs. The MEA was connected to a preamplifier (MEA
1060-Inv-BC) located on the setup rig with a gain of 53x.
The output of the preamp was connected to the next amplifier
with the gain of 21x and an analog to digital converter, with
separate inputs on the recording computer data acquisition card
for stimulus triggers. The MC_Rack program developed by
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Multi Channel Systems was used for the collection and online
visualization of data. Raw data were recorded with the rate of
50 kHz/channel using the Multi Channel Systems amplifiers
with a total gain of 1100 using a filter with bandwidth of 1Hz
to 3 KHz.

D. Spike Detection and Preprocessing
A commercial spike sorting software (Offline Sorter, Plexon

Inc., TX, USA) was used to detect and sort spike events.
Raw data were filtered with a second-order 300 Hz high
pass Bessel filter. Spike events then were detected by using
a simple threshold crossing algorithm by which the nega-
tive deflections below 5 standard deviations of mean were
considered as an event. Spike sorting was performed using
the T-distribution Expectation-Maximization algorithm and the
final sorting solution was determined manually by visual
inspection of spike grouping quality [21], [25]. The NeuroEx-
plorer program (Plexon Inc., TX, USA) was used to export
spike timestamps into MATLAB (The Mathworks, Natick,
MA) for final analysis.

E. Visual and Electrical Stimulation
The visual stimulation set was adapted from Baden et al. [9]

and customized for MEA implementation [27], [28]. The stim-
uli consist of a set of 1000 × 300 µm moving bars sweeping
over the MEA surface in eight directions (up, down, left, right,
and the 4 diagonals) with vertical bars at 15 locations, hori-
zontal bars at 10 locations, and diagonal bars at 17 locations
for each diagonal axis, with the centers of adjacent locations
separated by 200 µm; a set of full-field contrast and tem-
poral frequency chirps, consisting of two sinusoidal intensity
modulations, one with increasing frequency up to 8 Hz and
one with increasing contrast; black and white flash (2 s white
and 2 s black); and blue-green color flashes for 3 s each in
a sequence of blue, black, green, black. For light stimulation,
we focused a developer module projector (DLP® LightCrafter
4500, Texas Instruments) through a custom light path of lens,
mirror, and condenser onto the MEA. Stimulator intensity (as
photoisomerization rate, P∗/s/cone) was calibrated to match
the previous Baden e al. [9] study as closely as possible, with
the white stimulus set to 3×104 P∗/s/cone photoisomerization
rage for mouse UV- and M-cones and the black stimulus
set to 104 P∗/s/cone. A steady mean illumination 2 × 104
P∗/s/cone was present during, before, and after all electrical
and visual stimuli to maintain adaptation state.

The electrical stimulation was delivered epiretinally after
visual stimulation. Although network activation is typically
the goal of subretinal implants which stimulate from the
photoreceptor side of the retina, network activation can be
achieved at reasonable thresholds by stimulating from either
side of the retina. The electrical white noise stimulus was
a 25 Hz train of monophasic, rectangular, cathodic voltage
pulses with 1 ms width selected with replacement from a
Gaussian distribution of amplitudes with a mean of -800
mV and standard deviation of 35% (280 mV). The electrical
noise stimulus was delivered to the MEA using an STG
4008 stimulus generator (MCS, Reutlingen, Germany). This

stimulus protocol has previously been shown to be effective
in estimating integrative electrical input filters of the type
examined here [21], [22]. The electrical charge was delivered
to tissue via one of the 59 recording electrodes of the MEA
- chosen based on proximity to electrodes with robust light-
induced activity. In these experiments, electrically stimulated
cells were recorded on all electrodes of the MEA. Accordingly,
the distance between stimulating electrode and stimulated cell
ranged up to 1 mm. No eSTA parameters were found to
vary systematically with distance from stimulating electrode,
therefore, all distances were grouped for analysis. The duration
of each identical trial was 100 s. For electrical noise analysis,
a spike latency exclusion period of 10 ms was applied to
remove the influence of direct RGC activation on our results.
The number of trial repetitions varied from 15 to 30 across
different experiments - depending on available recording time.

F. ON/OFF Index
The ON/OFF index was computed for each cell based on the

full field flash stimulus. This index quantifies the preference
of each cell for onset vs. offset of light by comparing the
maximum firing rate of light and dark periods. We computed
the ON/OFF index as follows:

OOi = (AON) − (AOFF)/(AON) + (AOFF) (1)

where (ARON) and (AROFF) are peak amplitudes of the
response PSTH during light on and light off periods, respec-
tively. The output of this formula is a number between -1
to +1 which respectively show the level of OFF and ON
preference. We have not used this index for clustering, but
it was considered as extra information for interpreting the
clusters.

G. Direction Selectivity Index
We customized the direction selectivity index (DSi) for our

drifting bar stimuli that were presented in 8 directions and
along 59 paths across the MEA during experiments [27]. First,
for each cell, we used responses to the 3 bars of each direction
that passed closest to the cell’s electrode. Because the bars
began drifting at different times relative to the cell’s receptive
field, we aligned the times of each recording so that each bar
entered the cell’s receptive field at the same adjusted time.
Then, for computing DSi, the relative maximum firing rate was
taken for each of the 8 directions and transformed to a vector
that represents each direction using 200 ms time bins [7]. The
first two eigenvalues of the vector were used to compute the
DSi index: DSi=1-λ1/λ2.

H. Variance Ratio
To remove noisy units with low stimulus-driven activity

before clustering, we compared the response variance of chirp
data with the overall variance of the recorded data during
chirp stimulation. This reflects how strongly the response of
each unit is modulated by the stimulus. To compute response
variance, the variances across at least 10 trials of 100 ms
binned spike counts was calculated, and these values were then
averaged. The overall variance was calculated across the full
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set of time bins and trials including both response intervals and
spontaneous intervals. Cells with a response variance higher
than the overall variance (a ratio higher than 1) were excluded
from analysis as unreliably driven cells [24].

I. Response Clustering
No standardized method has yet been established to assign

mouse RGCs into their presumed dozens of true functional
types based on spiking responses to visual stimuli. Therefore,
we sought to sort our data, using previously established
methods, into the maximal number of visual response groups
that the dataset could support [7].

We used interspike interval (ISI) and spike based (SPIKE)
distance metrics for clustering of visual response spike
trains [7], [29], [30], [31]. These are parameter-free measures
that quantify the similarity between pairs of spike trains as a
distance between the two trains. We chose these metrics from
the many appropriate ones that could be used because they
have previously been used in a similar application. Therefore,
comparison with the earlier work will be more meaningful.

ISI and SPIKE metrics are complementary. Both have been
used here to remain agnostic about the most relevant neural
response features. The ISI method is especially useful with
responses exhibiting diverse time scales. The SPIKE metric’s
utility lies in its capacity to gauge the level of coordina-
tion exhibited between neural spike occurrences. This metric
proves particularly advantageous in identifying functional rela-
tionships between individual neurons.

For each stimulus and each cell pairing, distances were
calculated between each pairwise combination of stimulus
repetitions and averaged to produce a single distance between
the two cells using the PySpike toolbox [32, version 0.5.3].
The computed matrix of pairwise cell distances then was used
for hierarchical clustering by implementing the SciPy library
[33, version 1.0.1] with the Ward minimization algorithm [7].

Hierarchical agglomerative clustering was implemented to
construct a dendrogram ranging from each cell as its own
cluster to all cells combined into a single cluster [7]. In this
method, each unit is considered as a separate cluster, then
iteratively, the clusters are merged according to a minimum
variance constraint. To set the dendrogram cut-off point,
different criteria can be used to quantify the quality of each
clustering solution. The two measures used to estimate the
optimal number of clusters were the gap statistic and adjusted
mutual information. For the gap statistic, the distance matrix is
shuffled to create a random surrogate to which each clustering
solution is applied; and the dispersion of these clusters is
calculated. The dissimilarity between this random surrogate’s
cluster dispersion and that of the unshuffled data constitutes
the gap statistic. Scanning across all numbers of clusters, the
clustering solution that produces the largest gap statistic is
taken to represent the optimal number of clusters [7], [34]. Gap
statistics can be too conservative in terms of cluster numbers
for data with higher variability [7]. Therefore, we also com-
puted the adjusted mutual information (AMI) as a consensus
method between ISI and SPIKE metrics. For the AMI, the
ISI- and SPIKE-based solutions are compared at each point
along the clustering dendrogram. The more these solutions

agree with each other above a random agreement expectation,
the higher the mutual information. The clustering solution with
the highest AMI was taken to represent the optimal number
of clusters.

For clustering of electrical responses, the eSTA for each cell
was computed; and the Euclidian distance between normalized
eSTA vectors was computed for all cell pairs to yield a distance
matrix. The gap statistic was then applied to agglomerative
clustering solutions to identify the optimal number of clusters,
as described above. Mutual information could not be applied
for this clustering since eSTA vectors rather than spike trains
were used.

J. Electrical Input Filter Estimation
An established method to estimate a neuron’s sensitivity to

complex electrical stimuli is to generate an eSTA. To obtain
the eSTA, Gaussian white noise stimuli were applied to the
retina. Then, the stimuli that precede each neuronal spike
were averaged across all spikes, yielding an estimate of the
input filter for that neuron. The MATLAB toolbox developed
by Pillow et al. (https://github.com/pillowlab/LNPfitting) [35],
[36] was used to generate eSTAs for the 1 s preceding and
1 s following spikes. The computed eSTA then were imported
into the Python environment for further analysis. For analysis
eSTAs were first smoothed with a cubic spline interpolation
at 8 ms samples, and then normalized according to a z-score
method by subtracting the mean and dividing by the standard
deviation of the STA. Notably, we used the term ‘electrical
STA’ to differentiate these filters from the more common visual
STAs that are often referenced in the visual neurophysiology
literature.

It has been reported that subthreshold stimulation leads to
network-mediated activation of RGCs, sometimes character-
ized by burst responses with low spike-time precision [37],
which could artificially broaden the width of eSTAs. To avoid
this problem, we applied the burst correction algorithm pro-
posed by Sekhar et al. [21]. Through burst correction, only
the time of the first spike of a burst is considered and then
the contribution of the associated stimulus is weighted by the
number of spikes in that burst.

The significance of eSTAs was computed differently for
wild type and rd10 data. For wild type data, we used the
Python function normal test to test the null hypothesis that
the 25 samples (1 s at stimulation frequency of 25 Hz)
of eSTA prior time zero come from a normal distribution
(alpha=0.001). Applying this test to rd10 data gave a high
false-positive error due to the rhythmic oscillations of rd10
eSTAs. Therefore, we implemented a different approach in
which the hypothesis that positive and negative peaks come
from the same distribution as the baseline is tested using ztest
in MATLAB (alpha = 0.0001) [21].

K. Electrical Sinusoid Stimulation
We have previously found a strong correspondence between

the eSTA and visual response pattern for ON and OFF RGCs.
In the preliminary experiment reported here, we sought to
test whether electrical stimuli derived from these eSTAs could
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preferentially activate ON and OFF cells. Because the eSTA
represents an estimate of the best electrical stimulus for
activating a cell, we designed standardized sinusoidal stimuli
approximating the monophasic and biphasic eSTA shapes
that were most commonly encountered (Fig. 8). These full-
and half-sinusoids were embedded within ongoing cathodic
pulse electrical noise so that the cells were in the same
adaptational state as when the eSTAs were generated. The
sinusoids were 100% modulated to range from 0 to -1600 mV,
with a mean of -800 mV. For activation of ON cells, full
and half sinusoids ending with an upward deflection were
presented. Similarly, full- and half-sinusoids ending with a
downward deflection were intended to activate OFF cells. For
these 4 different shapes, 4 different temporal frequencies were
presented resulting in a complete stimulus set of 16 different
noise-embedded sinusoids. The frequencies of 1, 2, 3, and 4 Hz
were chosen to cover the range of previously observed eSTAs.

L. Statistics
Unless otherwise noted, population data were expressed

as arithmetic means ± SEM. Statistical analysis for power
spectrum densities and eSTA parameters were performed using
GraphPad Prism 6 software (GraphPad Software, La Jolla, CA,
USA). For comparisons between groups, Student’s unpaired
t-test was used with an alpha < 0.05. Bimodality was tested
with the Hartigan dip test.

III. RESULTS

Our main purpose is to develop cell type-selective stim-
ulation by examining spiking responses our electrical noise
stimulus in the context of detailed visual response classifi-
cation. To obtain the electrical characteristics of individual
mouse RGC types, we performed agglomerative hierarchical
clustering on both light- and electrically-induced responses.
For visual-based clustering, the ISI and SPIKE distance matrix
were computed. The temporal linear filters estimated by the
eSTA were used to create alternative clusters based on the
responses of RGCs to electrical Gaussian noise stimulation.

A. Clustering RGCs per Visual Responses From Healthy
Retinas

The light-induced activity of 2632 detected units from
22 wild type (WT) C57Bl/6 mouse retinas, recorded with a
60-channel MEA (Methods) was used for clustering. Since the
purpose of this study is to characterize the electrical profiles
of RGCs, only cells with significant eSTAs were consid-
ered, which left 476 cells for further analysis. Additionally,
low firing rate cells with the average of interspike intervals
above 2 SD (standard deviation) of the population mean
(during flash) were considered as outliers and removed from
clustering leaving 353 cells. To ensure that analyzed responses
were stimulus-driven, the Pearson correlation between stimu-
lus and response (for flash) was computed and only cells with
a correlation value higher than 0.1 were included. In addition,
cells with a variance ratio (Methods) of 1 or higher during
chirp stimulation were excluded. This yielded a total number

Fig. 1. Optimization of RGC clusters from healthy retinas. (A-C)
Pairwise distance matrices for flash, chirp, and flash + chirp + color
stimulus responses, respectively. SPIKE-based distances are shown.
Vertical and horizontal black lines separate clusters. (D) Gap statistic
scanned across cluster number for combinations of stimuli with either ISI
or SPIKE-based distances. Dashed vertical lines indicate optimal cluster
number. (E) Mutual information between ISI and Spike distance-based
clustering solutions for three visual stimulus combinations. Dashed
vertical lines are optimal cluster number for each. (F-H) Cluster similarity
between ISI and SPIKE distance-based solutions for flash, chirp, and
flash + chirp + color stimulus responses.

of 295 WT cells, with 18 of the retinas contributing at least
one cell for final clustering.

The ISI and SPIKE distance matrices were used to con-
struct the cluster dendrogram using a hierarchical clustering
algorithm (Fig. 1A-C) [7]. To estimate the correct number
of clusters we examined two metrics; adjusted mutual infor-
mation and the gap statistic. The gap statistic [34] estimates
the optimum cluster number by comparing the dispersion of
each cluster to the dispersion of a uniformly drawn sample.
The number of clusters that produces the largest gap between
these two dispersion values, taken across all clusters, is an
estimate of the optimal number. Calculating the gap statistic
of clustering solutions derived from ISI and SPIKE distance
matrices for flash, chirp, and the combination of flash, chirp,
and color responses (Fig. 1F-H), yielded optimal cluster num-
bers between 7 and 13 (Fig. 1D) – significantly lower than
the 20-50 clusters expected based on prior work [5], [6], [7],
[8], [9]. In contrast, the adjusted mutual information between
the ISI-distance-based clustering solution and the solution for
SPIKE distance peaked at 4, 21 and 35 for flash, chirp, and
the combined three stimuli (Fig. 1E-H). We chose to use 35 as
an optimal number of clusters for data obtained from wild
type retinas based on a visual inspection of the clustered
distance matrices and clustered response dissimilarity. Specif-
ically, upon inspecting visual responses in Fig. 2, we found
nontrivial differences between similar clusters (e.g., clusters
32-35) to support their separation (see also Fig. S1). Using
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35 clusters yielded similar adjusted mutual information as the
21 cluster solution (Fig. 1e). While the 4 cluster solution in
Figure 1e has higher mutual information, it is clear that the
number of clusters should be higher. Generally speaking, our
rationale in favoring a clustering solution with more clusters
was twofold. First, consensus (mutual information) between
ISI and spike-based strategies remains high indicating that
such high cluster numbers meaningfully differentiate features
in the data. Second, inappropriate splitting of a cluster -
as becomes more likely with high cluster numbers - would
only yield two clusters with the same filter. In contrast,
inappropriate lumping of clusters would obscure the filter
shapes of dissimilar clusters. Because we were interested
in electrical filter differences, more clusters were preferred.
Although the gap statistic is known to favor fewer clusters,
it is only reduced from its peak value by about 25% for such
high cluster numbers, indicating that the clustering solutions
remain appropriately non-random.

Having determined an optimal number of clusters using
mutual information, we next examined which stimulus and
which distance metric to use for our final solution. We cal-
culated the mutual information between clustering solutions
using either flash or chirp as the visual stimulus. Comparing
this mutual information score for SPIKE and ISI distance
metrics, we found that the SPIKE distance metric had a
higher score (not shown). Therefore, we chose to use the
SPIKE metric for our final clustering solution. Finally, because
we found that use of all three visual stimulus responses
consistently yielded a higher number of clusters (Fig. 1E), all
three were used for our final solution (Fig. 2).

Clustering revealed a range of transient and sustained ON
and OFF subtypes with different levels of contrast and color
preference (Fig. 2). Some of the clusters had few cells and
noisy responses (clusters 3, 13, 18, 19, 21, 22, 31), indicating
that the clustering algorithm was successful in separating
these lower-quality data out into their own clusters. Similarly,
clusters 11 and 20 only contained a single cell because that
cell was poorly matched to other clusters.

For mouse retinal ganglion cells, the time course of eSTAs
can often be sorted into one of four rough categories [22], [23],
[38]. They can be either mono- or bi-phasic; and the deflection
most closely preceding time zero can be either upward or
downward (Fig. 2f). A downward deflection indicates that the
average stimulus pulses preceding spikes were more nega-
tive (larger amplitude) than the mean stimulus of -800 mV.
A notable nuance for eSTA interpretation is that an upward
eSTA deflection does not indicate that the cell was activated
purely by one or more low amplitude pulses, but rather than it
was activated by a sequence of decreasing amplitude pulses,
typically following multiple pulses of average or above aver-
age amplitude – the removal of moderate ongoing stimulation.
Because a major goal of this work was to elaborate on previous
reports that ON cells have upward deflecting eSTAs whereas
OFF cells have downward deflecting eSTAs [22], we carefully
examined this hypothesis in the present data. For each cluster
in Figure 2F, we illustrated the smoothed, normalized eSTAs
of individual cells (color traces), as well as the average of
these normalized eSTAs in each cluster (thick black traces).

We also calculated the average of the ON/OFF index for all
clusters (numbers in Fig. 2B). Boundaries in the ON/OFF
index are somewhat arbitrary, but we found that a lower cutoff
of 0.12 captured most ON clusters and that an upper bound of
-0.20 captured most OFF clusters for not only these clusters
but also the 3 other cluster solutions presented below (Figs. 3,
5, and 6). Clusters between -0.20 and 0.12 were assumed to be
ON-OFF cells. Based on these definitions, there were 17 ON
clusters (49%), 13 OFF clusters (37%) and 5 ON-OFF clusters
(14%) (Fig. 2B).

Of the 17 ON clusters in Fig. 2B, five had upward eSTAs
(16, 30, 32-34) as expected, three had downward eSTAs (9,
13, 15), and nine had uncertain eSTAs (3, 7, 8, 12, 18, 19,
27, 29, 35) in Fig. 2F. These three downward eSTAs disagree
with our hypothesis that ON cells have upward eSTAs; but
each cluster could arguably have been assigned as ON-OFF
clusters, instead. Of the 13 OFF clusters, only one (10) had an
uncertain eSTA, with the remaining 12 having clear downward
eSTAs (1, 2, 4-6, 14, 17, 20, 23-26). This agreed well with
the previous assertion that OFF cells have downward eSTAs.
Finally, of the 5 ON-OFF clusters, two had downward eSTAs
(11 & 28) and 3 had uncertain eSTAs (21, 22, 31). In summary,
all clusters with clearly upward eSTAs were classified as ON
cells whereas all OFF cells had downward eSTAs in Fig. 2F.

We noted that for all ON clusters with uncertain eSTAs, the
overlay of individual cells (Fig. 2F) showed a clear mix of
upward and downward eSTAs (see also Fig. S2). This suggests
either that the clusters were ‘dirty’ and contained multiple
different cell types, or that the clusters represent true cell types
that have no fixed association with a particular eSTA shape.
To gain more insight on this issue, we chose to create an
alternative clustering of the same data, but this time using the
eSTA shape as the basis for cluster definitions.

B. Clustering RGCs per eSTAs Responses From Healthy
Retinas

To assess the diversity of eSTAs more directly, we per-
formed clustering based only on the shape of the eSTA using
a similar hierarchical clustering algorithm. Computing the
gap statistic from the pairwise distance matrix of normalized
eSTAs for different cluster numbers showed a peak at 14.
Hierarchical clustering of eSTAs divided them into 6 upward
and 8 downward clusters (Fig. 3). Clusters 1 to 6 include
monophasic and biphasic upward eSTAs. Clusters 7 to 14 have
eSTAs with monophasic downward deflections of differing
widths and latencies. As expected, we observed that the
ON/OFF index was positive in the clusters with upward eSTA,
indicating a large contribution of ON cells. Similarly, the
ON/OFF index in 5 out of 8 clusters with downward deflection
were negative, indicating the higher contribution of OFF cells
in these clusters. As reflected in the low magnitude of their
negative ON/OFF indices, most of these latter clusters also
had significant ON responses suggesting heavy contamination
by ON-OFF and possibly ON cells.

Looking more carefully at these eSTAs in the context of
their visual cluster counterparts a few other details are of note
(compare Fig. 3B to Fig. 2F). First, eSTA clusters 4, 5, and 6
(Fig. 3B) had narrow upward deflections that were preceded



856 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 32, 2024

Fig. 2. Clustering RGCs per visual responses from healthy retinas. Timing of visual stimuli are represented at bottom. (A) Hierarchical
clustering dendrogram. Each row represents a cluster. Cluster number (bold) and number of contributing cells (in parentheses) are listed for each
cluster. (B) Peristimulus time histogram (PSTH) of responses to flash stimulus, averaged across all cells in each cluster. Inset numbers are ON/OFF
indices for each cluster average (between -0.20 and 0.12 are ON-OFF, 0.12 and higher are ON, −0.20 and lower are OFF). (C) Average PSTH
of chirp stimulus responses. (D) Average PSTH of color stimulus responses. Timing of color stimuli is indicated graphically at bottom of figure. (E)
Distribution of direction selectivity indices for each cluster (blue) overlaid on the population distribution for all WT RGCs (grey). (F) Spike-triggered
average of electrical stimuli (eSTA) for each cell in cluster (colored lines) and cluster average (thick black line). (G) Contribution of different retinas
to each cluster indicating how broadly each cluster is represented within the population. Pie chart colors are re-assigned for each cluster. Grey box
indicates stimuli used for clustering.
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Fig. 3. Clustering RGCs per eSTA responses from healthy retinas. Figure conventions as in Figure 2. (A) Dendrogram with number and
cell count for each cluster. (B) Contributing and average eSTAs. (C-E) Response PSTHs for flash, chirp, and color stimuli, respectively. (F) DSi
distribution. (G) Power spectrum density (PSD) of eSTAs for contributing cells (colored lines) and cluster average (thick black line). Peak of average
PSD (in Hz) is inset. (H) Fractional contribution to each cluster from different retinas.

by a weaker, narrow downward deflection. This indicates that
these cells tended to spike following a fast alternation between
downward and then upward electrical pulses. Put another way,
the eSTA indicates that the cells prefer electrical alternations
in the 2-5 Hz range as can be seen in the eSTA power spec-
trums found in Fig. 3G. Interestingly, looking back at Fig. 2F,
we found no clusters with this pattern. However, we did find
that the individual cells (thin colored lines in Fig. 2F) with this
eSTA pattern were sorted into many different visual clusters
(3, 5, 7, 8, 17-19, 21, 22, 27, 29, 35) – most of whom
had indeterminate eSTA shapes due to averaging of multiple
different shapes. Importantly, these visual clusters spanned the
range of ON, OFF, and ON-OFF responses; however, the eSTA
clusters 4, 5, and 6 were exclusively ON clusters. Thus, not
only does electrical clustering sort cells with similar electrical
preferences together, but it also groups cells with similar visual
responses that were poorly clustered based purely on visual
responses.

Second, examining the downward eSTAs of Fig. 3,
we found that all biphasic downward eSTAs had a broad
upward phase preceding the fast downward phase (8, 10,
13, 14). This contrasts with the narrow upward biphasic
eSTAs discussed above. Whereas upward eSTAs 4 and 5 had
bandpass-shaped power spectrums, these downward bipha-
sic eSTAs had low-pass power spectrums mostly peaking
below 2 Hz. Revisiting the visual clusters of Fig. 2, we also

found this eSTA pattern for clusters 2, 6, 14, 15, 23, 26 – most
of which were OFF clusters.

Taking these observations together, a picture emerges of a
clear association between OFF cells with a downward, broad
then narrow, biphasic eSTA pattern on the one hand and ON
cells with an upward, narrow-narrow, biphasic eSTA pattern
on the other hand. Detailed statistical analysis of these patterns
follows.

So far, our analysis of the eSTAs for visual and electrical
clusters has been somewhat subjective. To better quantify these
differences, we also extracted features from the smoothed
average of each of the cluster eSTAs shown in Figure 3.
Extracted features were peak latency and width of the fast
and slow deflections (Fig. S3). For the fastest deflection, both
upward and downward eSTAs had similar latencies and widths
(p = 0.12 and 0.34, respectively). For the slower deflections,
both upward and downward eSTAs latencies tended to fall near
one of two modes. Collectively, the slow deflection latencies
were bimodal (p = 0.044) with downward eSTAs favoring long
latencies and upward eSTAs favoring short latencies, although
these differences were not significantly different due to this
bimodality (p = 0.19). Although slower deflection widths
exhibited a similar pattern with upward deflections favoring
shorter widths, the small number of samples were neither
significantly bimodal (p = 0.81) nor significantly different
between upward and downward eSTAs (p = 0.26).
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Fig. 4. Optimization of RGC clusters from rd10 retinas as in
Figure 1. (A-C) Pairwise distance matrices for flash, color, and flash
+ color, respectively. (D) Scan of gap statistics across cluster number
for these stimulus combinations paired with ISI and SPIKE distance
metrics. (E) Mutual information between ISI and SPIKE for each stimulus
combination. (F-H) Cluster similarity between ISI and SPIKE for flash,
color, and flash + color, respectively.

Fig. 5. Clustering RGCs per Visual Responses from rd10 Retinas
as in Figure 2. (A) Dendrogram with number and cell count for each
cluster. (B-C) Response PSTHs for color, and flash stimuli, respectively.
Grey box indicates color stimuli were used for clustering. (D) eSTAs for
contributing cells (colored lines) and cluster average (thick black line).
(E) Fractional contribution to each cluster from different retinas.

When the subsets of these data that could be assigned to
either ON or OFF visual categories were examined, these
differences became more pronounced. Again, fast latencies

Fig. 6. Clustering RGCs per eSTA responses from rd10 retinas as
in Fig. 2. (A) Dendrogram with number and cell count for each cluster.
(B-C) eSTAs for contributing cells (colored lines) and cluster average
(thick black line). (D) Response PSTHs for flash, and color stimuli,
respectively. (E) PSD of eSTAs for contributing cells (colored lines) and
cluster average (thick black line). (F) Fractional contribution to each
cluster from different retinas.

and widths did not significantly differ between ON and OFF
clusters (p = 0.12 and 0.74, respectively); however slow
deflection latencies were slower (p = 0.019) for OFF clusters
compared to ON clusters and, although not significant between
ON and OFF clusters (p = 0.11) slow deflection widths were
near bimodally distributed (p =.052) with a subset of broader
widths for OFF clusters.

The duration - and for biphasic eSTAs the ratio – of an
eSTA’s deflection(s) reflects the cluster’s temporal preference
for electrical stimulation. Therefore, we further examined the
eSTAs in frequency space to evaluate the similarity of these
preferences. For each eSTA cluster, we computed the power
spectrum density (PSD) of the eSTA using the Welch method
(Fig. 3G). The peak frequency and the bandwidth of PSDs
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were extracted for each cluster’s eSTA. No significant dif-
ference was observed between the PSD properties of upward
and downward eSTAs (p = 0.36 and 0.86 for peaks and
bandwidths, respectively, Fig. S3).

C. Clustering RGC per Visual Responses From rd10
Retinas

Next, we evaluated RGC visual types and their e-STAs in
rd10 degenerating retina. The extracellular activity of rd10
retinas at postnatal age 29 to 31 (P29 to 31) was evoked using
the same electrical noise stimulus. We chose the rd10 model
as a slower retinal degeneration model, resembling retinitis
pigmentosa. Retinas aged P30 (in the middle of degeneration)
were chosen so that enough visual responses would remain for

some ganglion cells to be visually classified, while still
characterizing electrical responses in unhealthy retina.

Chirp responses in initial rd10 experiments were weak and
unreliable. Therefore, to optimize for high quality data collec-
tion, we used only flash and color stimuli for visual stimulation
of the rd10 retina. Since most of the recorded units were poorly
responsive to light, we did not apply the light response criteria
for removing noisy data. The significance test of positive and
negative eSTA deflections (ztest alpha=0.0001) [21] excluded
all but 234 units from 4 retinas that were subsequently used for
clustering. To find the optimal number of clusters we used the
same approach as for healthy retinas where pairwise ISI and
SPIKE distances were calculated (Fig. 4A-C). As before, the
gap statistic (Fig. 4D) yielded a very low number of clusters.
Therefore, the adjusted mutual information was used (Fig. 4E-
H). It peaked at 12, 15, and 3 clusters for flash, color, and the
combination of flash and color, respectively. As the highest
number of clusters, we used the color stimulus-based solution
of 15 clusters.

Most detected clusters were selective to the offset of the
flash stimulus (Fig. 5). Whereas many of these clusters also
contained ON responses, only cluster 7 was sufficiently dom-
inated by ON responses to be classified as an ON cluster.

Clusters 1, 4, 8, and 12 were OFF, with the remaining
clusters categorized as ON-OFF. Interestingly, whereas most
clusters were dominated by OFF responses to monochromatic
stimuli, ON responses to green light predominated, and only
a few had responses to the onset of blue light.

As expected based on WT clusters, the OFF rd10 clus-
ters had downward eSTAs. Likewise, ON cluster 7 had an
upward eSTA. Most of the ON-OFF clusters had ambiguous
eSTA shapes as the contributing cells had both upward and
downward eSTAs. To get a better sense of how specific eSTA
shapes relate to visual responses, we next clustered rd10 cells
according to their eSTA shape.

D. Clustering RGC per eSTAs Responses From rd10
Retinas

The eSTAs of rd10 data were divided into 23 clusters using
the same approach as for wild type eSTA data (Fig. 6). The
gap statistic was used to estimate the optimal cluster number
from agglomerative clustering based on the matrix of pairwise
Euclidian distances between normalized eSTAs. In contrast

to visual sorting of this data, the eSTA-sorted clusters had
very low variability amongst eSTA shapes (compare single
cell overlays between Fig. 5d and Fig. 6b). More surprisingly,
electrical sorting revealed clusters with blue-ON, green-ON
responses (Fig. 6; clusters 1, 3, 6, and possibly 2 and 5) where
visual clustering (Fig. 5) was unable to reveal this pattern.

Examining these clusters in Figure 6, we found that all of
them had multiphasic eSTAs with an oscillatory appearance
– except for the low-quality cluster 4. In clusters where the
eSTA oscillations were most pronounced (clusters 1-3, 5-11,
15-21), the visual responses were notably noisier. For the
remaining 5 clusters, the eSTAs were downward; and visual
responses were very clearly OFF (13, 14, 22, 23) or on the
boundary with ON-OFF (12). In contrast, all five clusters with
upward eSTAs (1)-3, 5-6) had a positive ON/OFF index. This
alignment of upward eSTAs with ON clusters and downward
eSTAs with OFF clusters matches the previously established
pattern for WT cells. The remaining 13 clusters (4, 7-11,
15-21) were ON-OFF or only weakly fell into the ON and
OFF categories. Additionally, they had oscillatory eSTAs with
downward short-latency deflections; however, these deflections
were seldom stronger than the preceding upward deflection.
An exception to this latter observation was cluster 4 which
appeared to be noisy due to a low cell count.

Digging into the first and second fastest deflections of these
eSTAs (Fig. S4), we found very little variability between
upward and downward eSTAs for first latency (p = 0.37) and
width (p = 0.34), as well as second latency (p = 0.78) and
width (p = 0.69). Likewise, there was no difference between
ON and OFF cluster eSTAs for first latency (p = 0.13), first
width (p = 0.26), second latency (p = 0.99) and second width
(p = 0.84). Given these results, it is unsurprising that there
were also no differences in PSD comparisons: upward vs.
downward peak (p = 0.16) and bandwidth (p = 0.60), and
ON vs. OFF peak (p = 0.21) and bandwidth (p = 0.28).

E. Comparing RGC Clusters From Healthy and rd10
Retinas

Comparing all healthy clusters with all rd10 clusters
(Fig. 7), we found that whereas first eSTA deflection latency
did not significantly differ (p = 0.44), first deflection width
was significantly narrower for rd10 (p = 0.044) – likely
owing to the influence of oscillatory spiking in shortening this
deflection. As previously observed, second deflection latencies
were bimodally distributed for healthy eSTAs (p = 0.044).
The absence of the slower latencies in rd10 data led to a
significant difference between healthy and rd10 clusters (p <

0.0001). Similarly, although not truly bimodal in distribution,
the broader second eSTA deflection widths in healthy retina
produced a significant difference in comparison with rd10
retina (p = 0.0003). Finally, the influence of oscillatory spiking
in rd10 retinas resulted in higher PSD peaks (p = 0.0003) and
narrower bandwidths (p = 0.0015) in comparison with healthy
retinas.

F. Preliminary RGC Responses to Electrical Sinusoid
The experiments presented so far have aimed to identify

unique electrical input filter shapes for the various RGC types.
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Fig. 7. eSTA Parameters, WT vs. rd10 as in Fig. 4. (A-B) Distribution of
first deflection latencies and widths, respectively. (C-D) Second deflec-
tion latency and width distributions, respectively. Inset in C illustrates
bimodal distribution of WT second latencies. (E-F) Distribution of peak
frequencies and bandwidths, respectively, of PSD from each cluster’s
eSTA. Asterisk (∗) indicates a statistically significant unpaired t-test (p <
0.05).

By identifying such filters, we hoped to gain insight into
electrical stimuli that could selectively activate individual RGC
types. Separately, we have also begun experiments to test
the selective stimulation hypothesis at a rudimentary level.
Based on our earlier work [22], we developed a set of stimuli
representing an idealized version of the eSTA shapes we had
seen (Fig. 8). These stimuli consisted of a background noise
stimulus like that used here, but with sinusoidal modulation
imposed upon this noise at regular intervals. The sinusoids
match the 4 basic shapes we have seen – upward and
downward half sinusoids and down-up and up-down full sine
waves. Furthermore, because we observed a range of frequency
preferences in the eSTAs, we presented these 4 basic sinusoid
shapes with the frequency of the sinusoid set at 1, 2, 3,
and 4 Hz. Here we examine responses qualitatively from the
perspective of the selective stimulation hypothesis.

Our primary hypothesis for selective electrical stimulation
is that an upward deflection in electrical pulses should prefer-
entially activate ON RGCs and a downward deflection should
activate OFF RGCs. Among the 14 cells we have recorded
with preferential sinusoid responses and clear eSTAs, the
following patterns were noted.

We noted a collection of 5 ON cells that were suppressed by
downward sinusoids of low frequency and had fast, biphasic
upward eSTAs (Fig. 9, S5-S8). Although such suppression
was not included in our original hypothesis formulation, sup-
pression of ON cells by downward electrical sinusoid phases
agrees with our selectivity hypothesis. In further agreement to
this observation were 4 other ON cells with slow biphasic
upward eSTAs. One was also inhibited by low frequency

Fig. 8. Selective stimulus design. (A) The eSTA of a sample cell is
discretized by a 25 Hz stimulus pulse train that can be approximated
with a 2 Hz sine wave modulation. (B) Example 2 Hz full- and half-wave
sinusoid stimuli embedded within ongoing 25 Hz cathodic pulse electri-
cal noise. The first two (ending with upward modulation) are expected
to preferentially activate ON RGCs and the second two (ending with
downward modulation) are expected to activate OFF RGCs.

Fig. 9. Example response to sinusoidal stimulation. ON cell with
upward biphasic eSTA, inhibited by slow downward sinusoids. (A) Noise
embedded sinusoid pulse train envelope (red) with corresponding spike
train rastergrams (black) and average response (blue). Sinusoids of 1,
2, 3, and 4 Hz are shown in rows 1-4, respectively. (B) Rastergram
of spiking responses to 60 presentations of visual flash stimulus (2 s
ON, then 2 s OFF). Vertical red line marks start of ON flash. (C) eSTA
calculated from separate white noise stimulus.

downward sinusoids (Fig. S9). One only responded to down-up
sinusoids (Fig. S10). One was inhibited by down sinusoids
and also responded to the lowest frequency down-up sinusoid
(Fig. S11). The fourth responded both to down-up sinusoids
and the end of down sinusoids in the manner of rebound
excitation (Fig. S12).
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Fig. 10. Example response to sinusoidal stimulation as in Figure 9.
ON-OFF cell (B) with triphasic downward-dominated eSTA (C), excited
by downward sinusoids (A).

We also encountered 4 ON-OFF cells that responded to the
downward phase of sinusoids (Fig. S12, S13-S15). Two had
fast, monophasic eSTAs (Fig. S13, S14). The other two had
strong, slow downward eSTAs (Fig. S15, 12), but one of those
was unusual in being triphasic with preceding and following
weak upward deflections (Fig. S12).

In this small pilot study, we did not encounter any
clearly OFF cells with electrical responses. We did, however,
encounter one cell which violated our hypothesis. It was an
ON cell that responded weakly to some downward sinusoids
and had a fast downward eSTA (Fig. S16). These preliminary
observations suggest that the noise-embedded sinusoidal stim-
uli hold promise as a tool for probing RGC dynamics. Yet,
to establish the validity and significance of these findings,
larger-scale studies are essential. Future investigations with
more data will be necessary to confirm the trends observed in
this pilot study and to elucidate the mechanisms underlying
the responses to these stimuli.

IV. DISCUSSION

This work caps a series of experiments we have undertaken
to better understand the relationship between a retinal neuron’s
visual and electrical response preferences. Our underlying pur-
pose has been to refine the neural coding used in bionic vision
through the development of RGC type-selective stimulation.
In 2016, our group reported on a novel method to estimate the
electrical stimulus preferences of retinal ganglion cells [21].
This method and variants upon it have since been used by
other groups [23], [38], [39]. A year later, we followed our
initial paper with a report on differences between electrical

STAs for ON and OFF ganglion cells [22]. Since then,
we reworked our visual stimulation protocol to implement the
best-available differentiation of functional ganglion cell types
in the mouse retina. Our goal was to elaborate on our previous
papers and shed light on electrical stimuli specific to each of
the dozens of ganglion cell types [20]. In our most recent
elaboration attempt [24], we demonstrated the difficulties of
connecting our spike train data to mouse cell types derived
from calcium signal data and presented a preliminary sample
of the limited diversity of eSTAs across these types. Finally,
here, we present our most exhaustive examination of eSTA
diversity to date, as it relates to visual responses. Rather
than forcing our visual types to adhere to prior classification
schemes, we have here optimized cell sorting according to the
diversity of responses that is found in our own data. To gain
additional insights, we have inverted the question and queried
how visual responses differ when eSTA patterns are clustered
instead; and we have also implemented these methods for
degenerating rd10 retina. In both healthy and rd10 retinas,
cells with ON visual responses tend to have upward deflecting
eSTAs whereas OFF cells tend to have downward deflecting
eSTAs and ON-OFF cells exhibit both up and down eSTAs.
Leveraging these correspondences, we designed and tested a
set of noise-embedded sinusoid stimuli reflecting many of the
common eSTA shapes observed.

Many others have also examined this selective stimulation
question with a range of methodologies and met with similarly
qualified success [10], [13], [14], [15], [16], [17], [18], [19].
Despite these efforts, much work remains to identify selec-
tive electrical waveforms for enough of the retina’s parallel
information pathways to support detailed information coding
in bionic vision.

In this study we not only validated our previous results
but also report many new and valuable advances. To our
knowledge, no other group has measured electrical input filters
for so many visually-defined RGC types. Our examination of
eSTAs in degenerating retina brings us closer to understanding
how to relate knowledge from healthy retina to blind retina.
In particular, eSTA-based sorting revealed visual response
features that were not evident through visual sorting. It may
be found that electrical responses in these degenerating cells
are a more reliable way of identifying cell type. This also
provides hope that electrical stimulation in blind retinas can
be targeted according to RGC types in the absence of visual
classification, thus leveraging the parallel pathways of normal
vision for bionic sight.

A. On the Uncertainty of Cell Type Clustering
In this work, we have taken the view that the careful work

of Baden et al. [9] is the most useful approximation to the
theoretical full cohort of functionally differentiable RGCs in
the mouse retina. They reported 32 RGC types clearly differ-
entiated, with a small number of additional types suspected.
Key to their work was an analysis of the tiling mosaics for
each purported functional type. Such analysis describes close
to the complete cohort of parallel visual information pathways
of the retina – each of which completely samples from the full
visual field. Our previous study using pseudo-calcium data
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was an attempt to cleave as close as possible to this ‘gold
standard’ while using MEA-recorded spike train data [24].
As noted, however, the pseudocalcium approach was found
to be fundamentally flawed for the intended purpose.

Because the ‘true’ number of functional RGC types remains
unresolved, the best approximation we currently achieve is
to sort our data such that responses within cluster are very
similar while differences between cluster responses are very
different. Many algorithms exist to optimally balance these
two competing goals; and improvement of such algorithms
is an active domain of research unto its own right [40].
For data such as ours where multiple potential clustering
solutions are equally valid, it helps to have an idea of the
ideal number of clusters. In our case, that is ‘a little bit more
than 32’. Therefore, in Fig. 1 we chose the solution with
35 clusters, whereas in the other four clusterings, we chose the
highest number of clusters from among the optimal solution
candidates.

Improvements to clustering methodology are outside of
our expertise; and we must rely on others in this respect.
In contrast, we can work to improve the visual and electrical
response data that is fed into the algorithms. To do this, we are
continuing to investigate stimulus designs that produce very
different responses for different functional cell types.

B. Lessons From Electrically-Based Clustering
We examined electrically-based clustering to more pre-

cisely characterize the properties of eSTA profiles and to
evaluate their full diversity. Surprisingly, electrical clustering
also revealed additional unexpected visual information. With
electrical sorting, blue light responses were revealed for some
clusters of ON cells that were not apparent using visual
sorting. This suggests that type-specific electrical responses
might deteriorate more slowly (if at all) than visual responses.
Moreover, the modest success of electrical sorting in differ-
entiating visual cell types raises the prospect that cell-type
identification from purely electrical stimulation could be used
after visual responses disappear during degeneration. Thus,
proposed bidirectional retinal implants [41], [42] may be
able to identify cell type so that the correct neural code
is delivered to each cell. For example, formerly ON cells
could be stimulated to produce ON-like spike trains, with
OFF-stimulation delivered to formerly OFF cells. More work
is needed to test this hypothesis that electrical responses alone
can be used to identify RGC type.

It is also important to note, however, that relying solely
on electrically-based clustering may conflate multiple visual
response patterns. For example, the 35 WT clusters shown in
Figure 2 are reduced to only 14 clusters in Figure 3, with
clear visual response patterns lost (e.g., strongly green-OFF
signals).

C. eSTA Oscillations in rd10 Mice
Degenerated retina differs from normal retina due to loss

of photoreceptors, leading to changes in network activity pat-
terns and eventual reorganization of the remaining cells [43].
An oscillatory spiking activity with a fundamental frequency

in the 5-10 Hz range is a frequently reported consequence
of photoreceptor loss in the degenerative retinal models, rd1
and rd10 [44], [45]. In our data, eSTAs obtained from rd10
retina carry an echo of these oscillations with frequency peaks
ranging from 3 to 8 Hz – in agreement with previous reports
for rd10 retina. The oscillations appear to be synchronized in
phase by electrical stimulus sequences that elicit a response
from the cell; but because phase and/or frequency vary slightly
throughout the recording, this synchronization decays within
the second of time shown in our eSTAs. In principle, it should
be possible to remove the influence of oscillations from eSTAs
such that the eSTA primarily reflects the average stimulus
sequence that elicited spiking responses; however, this difficult
task will require significant effort to complete. Until such
corrections are made, we recommend caution in comparing
eSTAs between healthy and rd10 retinas.

D. Selective Electrical Stimulation
We have included in this report early data on our attempts

to selectively stimulate RGC types using 1, 2, 3, and 4Hz sinu-
soidal amplitude modulation of a 25 Hz pulse train, embedded
within a background of white noise pulse amplitudes. Encour-
agingly, we found some cell types with differential responses
to the probe sinusoids and present two examples in this paper.
Amongst these few cells, most responses are in keeping with
the hypothesis that upward sinusoid deflections should activate
ON cells but not OFF cells, and that downward deflections
should activate OFF cells, but not ON cells. Notable, however,
is the diversity of responses which included pure spike train
suppression and possibly rebound excitation in addition to
immediate and delayed excitation. These data broaden our
understanding of the relationship between visual cell type and
electrical response; but are not yet sufficient either to reject our
initial hypothesis or to guide a more sophisticated hypothesis
for the dozens of true cell types that are understood to exist.
Notably, a dearth of OFF cells prevented us from testing
whether they are inhibited by upward deflections or activated
by downward deflections.

From this pilot data, we have learned that a simple exci-
tation model is insufficient to predict from the eSTA how
cells will respond to electrical stimuli. Our hypothesis for
visual type-selective electrical stimulation must be revised to
incorporate neural phenomena like suppression and rebound
excitation. Furthermore, the crude ON/OFF classification
results in many different response patterns being attributed
to ON, OFF, and ON-OFF RGC types. More complete visual
characterization like that presented in the first part of this study
may disambiguate this response diversity.

E. Other Considerations
MEA recording has some drawbacks. For example, identify-

ing RGC types from fully degenerated rd10 retinas using MEA
recordings is not possible. Therefore, we used the early stage
of degeneration in rd10 mice (P29-31) to classify RGCs where
some visual responses persist. Alternatively, this challenge
can also be addressed by using whole-cell patch clamping
recordings with dye injection. In this case, RGC classification
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is based on dendritic tree stratification and other morphological
properties. Another advantage of patch clamping is that it can
capture nonlinearities internal to the cell that are not evident
with extracellular recordings. In this context, the eSTA clusters
provide an alternative framework that allows us to uncover
response patterns that might be obscured by the degeneration
of visual responses.

For eSTA estimation, we excluded spikes occurring during
the first 10 ms. Our rationale is that this eliminates the
potential eSTA contribution of both stimulation artifacts and
spikes that result from direct electrical activation of the RGC
– with only limited reduction of ‘indirect’ spikes (discussed
further in [20]). This exclusion allows us to estimate the
eSTA for the indirect stimulation of RGCs via the retinal net-
work. Additionally, the mean amplitude of the noise stimulus
has been optimized to activate the retinal network through
temporal integration of multiple pulses – in contrast to the
single pulse activation that has been traditionally investigated
(an approach we have termed ‘tickling the retina’; described
in [21] and discussed further in [22]). In the present data,
we report eSTA latencies of less than 10 ms, despite discarding
spike with latencies below 10 ms. This is a known artifact
of splining our data. Accordingly, the latencies reported here
should be interpreted as only approximate. Nevertheless, they
are useful as we have presented them – for comparisons
between first and second eSTA deflections, between RGC
cluster types, and between WT and rd10 eSTAs.

F. Future Work
There is great difficulty in collecting enough recordings

with enough data from each recording to support nuanced
classification of both visual and electrical response properties.
Calcium imaging is one method of recording from enough
cells; however, our ability to match calcium activity with spike
trains remains incomplete (discussed in [24]). To remain useful
for a bidirectional visual prosthesis [39], [40], MEA-based
recordings remain the best way to collect data from thousands
of cells.

In this work, compromises were made to accommodate
simultaneous recording from dozens of cells spread over
a large area. As a result, the stimuli were not optimized
for individual cells. Going forward, visual stimuli could
be optimized to better differentiate between the known
color-selective cell types as well as the range of direction-
and orientation-selective cell types. In both cases, optimal
selectivity is achieved when center and surround of a cell’s
receptive field are differentially stimulated.

Regarding electrical stimulation, the eSTA is a rough esti-
mate of the theoretical electrical input filter applied by each
cell to incoming stimulation, however this estimate could
be refined significantly. For example, we believe it may be
possible to reveal various components of the retinal circuitry
with a sufficiently detailed eSTA [20]. To do this, it will be
necessary to present a current-controlled, time-varying stimu-
lus without artifacts obscuring the recorded spike train. Such
methods are available [39], but remain difficult to implement
for the collection of thousands of data points for long recording
times. Additionally, the amplitude and spectral statistics of

such stimuli must be carefully optimized to fully reveal all
components of a cell’s electrical responsiveness. Moreover,
the network elements giving rise to the eSTA remain unclear.
To date, there is ambiguity about which cells and synapses
underlie the eSTAs that we have reported. Differences between
the time course of eSTAs reported here and Sekhar et al. [21],
as well as between our lab’s eSTAs and those of other
labs [23], [38], [39] suggest that multiple circuit elements
can be activated to elicit RGC eSTAs. Previously, we pro-
posed a theoretical framework for how these mechanisms may
interact [20]. We and others continue to pursue the use of phar-
macological agents and transgenic mice to better understand
eSTAs. Another caveat remains that the STA method employed
here reveals even the faintest correlations between electrical
stimulus and response. Our initial attempts to computationally
model the electrical sensitivity of RGCs to support optimal
stimulus design have revealed high variability in responses
to the stimuli presented here [46]. To better support bionic
vision, it may be necessary to improve this stimulus response
correlation during electrical noise stimulation.

Early data from our attempt to achieve selective RGC type
stimulation using sinusoidal pulse modulation are encouraging.
However, they further emphasize the need to refine visual
and electrical characterization stimuli so that the full set of
RGC types can be differentiated. Such refinements must yield
a compact tool that can be included in selective stimulation
experiments alongside the main stimuli without requiring
excessive experimental recording durations. Ultimately, these
initial attempts to connect visual RGC types with characteristic
electrical stimulation patterns has been limited to only the
coarsest ON and OFF types. Whether or not visual-electrical
correspondences exist for more precisely defined RGC types
remains to be demonstrated.
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