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Abstract— The conventional surface electromyography
(sEMG)-based gesture recognition systems exhibit impres-
sive performance in controlled laboratory settings. As most
systems are trained in a closed-set setting, the systems’s
performance may see significant deterioration when novel
gestures are presented as imposter. In addition, the state-
of-the-art generative and discriminative methods have
achieved considerable performance on high-density sEMG
signals. This can be seen as an unrealistic setting
as the real-world muscle computer interface are mainly
comprised of sparse multichannel sEMG signals. In this
work, we propose a novel variational autoencoder based
approach for open-set gesture recognition based on
sparse multichannel sEMG signals. Using the predefined
corresponding latent conditional distribution of known
gestures, the conditional Gaussian distribution of each
known gesture is learned. Those samples with low
probability density are identified as unknown gestures. The
sEMG signals of known gestures are classified using the
Kullback-Leibler divergences between the predefined prior
distributions and input samples. The proposed approach
is evaluated using three benchmark sparse multichannel
sEMG databases. The experimental results demonstrate
that our approach outperforms the existing open-set sEMG-
based gesture recognition approaches and achieves a
better trade-off between classifying known gestures and
rejecting unknown gestures.

Index Terms— Open-set recognition, gesture recogni-
tion, surface electromyography, variational autoencoder.

I. INTRODUCTION

THE Muscle-Computer Interface (MCI) interprets a user’s
body language by decoding the surface electromyography
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(sEMG) signal [1]. In the prior arts, sEMG-based gesture
recognition has attracted the most investigation [2], [3],
[4]. Normally, the closed-set setting, where the type of
gestures presented in the training and test set are identical,
is adopted. In contrast, a realistic scenario assumes that a
system developer could not anticipate all the possible gestures
available during the test or deployment phase. This is to say,
a user may perform an unknown gesture, whereas the MCI
system will identify it as a known one. Thus, it is essential
to develop a system based on open-set recognition (OSR) [5]
setting.

The objective of open-set sEMG-based gesture recognition
is to identify a segment of sEMG signals and classify it
as a known gesture or an unknown gesture. Most of the
existing OSR approaches are designed for image-relevant tasks
such as image recognition and image segmentation [5], [6],
[7], [8]. Only a handful of OSR approaches are proposed
for sEMG-based gesture recognition [9], [10], [11]. Briefly,
Wu et al. [10] trained multiple autoencoders (AEs) to reject
unknown gestures with significantly different representations
of sEMG feature images. Besides, a discriminative method
based on a convolutional prototype network (CPN) constructs
multiple prototypes of known motion classes and identifies
samples of known/unknown motions using the prototype
matching [11]. Despite achieved promising performance on
high-density sEMG signals, there are no evaluations on
sparse multichannel sEMG datasets, such as the NinaPro
databases [2], [12], [13], [14]. Moreover, sparse multichannel
sEMG is more manageable than HD-sEMG in terms of data
processing and computational requirements. In this paper,
we introduce a novel open-set gesture recognition approach
based on a variational autoencoder (VAE) with conditional
Gaussian distribution learning [15] that enables classifying
known gestures and rejecting unknown gestures given the input
sparse sEMG signals for more efficiently training.

VAE exhibits the capacity to effectively reconstruct input
data while simultaneously enforcing the approximation of a
prior distribution by the posterior distribution in the latent
feature space. Based on the reconstruction loss of a test
sample, a predefined threshold is set to identify whether the
given gesture is known or novel. Due to electrode placement,
user differences, and muscle fatigue, sEMG signals can exhibit
significant variability. Previous methods might not effectively
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account for this variability, leading to inadequate rejection
of unknown gestures. Gaussian distributions can model a
wide range of sEMG representations. By conditional Gaussian
distribution learning(CGDL) [15], the model can adapt
its understanding of the variability and central tendencies.
Therefore, we adopt the techniques utilized in conditional
Gaussian learning [15], where a distinct latent conditional
distribution in the latent space for every known gesture
is predefined. Then Kullback-Leibler divergences between
the predefined prior distribution of known gestures and the
representations of input sEMG samples are regarded as the
confidences that input sEMG signals belong to a specific
known gesture. Furthermore, we conduct experiments on three
sparse multichannel sEMG datasets including NinaPro DB1,
NinaPro DB2 and NinaPro DB5 [2], [12] to validate the
effectiveness of our approach.

Our contributions can be summarized as follows:
• We propose a novel variational autoencoder (VAE)-based

approach for open-set gesture recognition based on sparse
multichannel sEMG. We present how to classify known
gestures using a VAE, which is commonly utilized for
rejecting unknown gestures.

• We demonstrate the effectiveness of the VAE by utilizing
different encoder and decoder architectures to train
models for the open-set sEMG-based gesture recognition
task. Not only our approach enables rejecting unknown
gestures, but also achieves a competitive performance of
classifying known gestures.

• We conduct comprehensive evaluations on three sparse
multichannel sEMG datasets. The experimental results
show that the proposed approach achieves better
performance than the state-of-the-art open-set gesture
recognition method. Specifically, our approach out-
performs the prior arts by 0.04, 0.02 and 0.01 on
NinaPro DB1, NinaPro DB2, and NinaPro DB5, using
the metric of the area under the receiver operating
characteristic (AUROC) which reflects the capacity
to accurately reject unknown gestures. Moreover, the
ablation studies examine various components of the
proposed approach, including architectures of the encoder
and decoder, known gestures utilized for training as well
as the effects of the VAE.

The remainder of this paper is organized as follows.
Section II summarizes the related work. We formulate the
problem of open-set gesture recognition based on sEMG and
introduce the proposed VAE-based approach in Section III.
Section IV describes the evaluation datasets, evaluation
metrics, network architectures and implementation details.
The experimental results are demonstrated in Section V.
Finally, we conclude this paper and discuss future work
in Section VI-A.

II. RELATED WORKS

In this section, we will discuss relevant literature pertaining
to our field of work regarding surface electromyogra-
phy (sEMG) based gesture recognition under the closed-set
and open-set scenarios.

A. Closed-Set Gesture Recognition Based on sEMG
This approach aims to interpret hand gestures from sEMG

signals using computer algorithms under the closed-set setting.
Depending on the way of feature extraction, the approaches
can be categorized into conventional machine learning
approach and deep learning approach [16]. The former extracts
handcrafted features such as mean absolute values, waveform
lengths, and discrete wavelet transform coefficients [17]. Upon
extracting handcrafted features, conventional machine learning
classifiers including SVMs, kNNs, Random Forests, and so
on [14], [18], and [2] are typically utilized for performing
downstream classification. Differently, deep learning-based
approaches produce discriminative features using deep neural
networks [3], [4], [19], [20], which are more effective and
faster. For example, Geng et al. [3] converted the sEMG
signals into grayscale images and leveraged a typical convolu-
tional neural network to classify the converted sEMG images.
Besides, a hybrid CNN-RNN [19] and XceptionTime [4] are
proposed to model the spatial and temporal information of
sEMG signals and achieve considerable gesture recognition
performance. On the other hand, recent works also have looked
at multi-modal gesture recognition for a higher recognition
accuracy [17], [21], [22], [23].

B. Open-Set Gesture Recognition Based on sEMG
In the test phase of closed-set gesture recognition, all

the available gestures are already known during training.
Nevertheless, it is challenging to ensure these conditions are
available in real-world scenarios. Therefore, open-set sEMG-
based gesture recognition approaches are investigated to tackle
this problem.

Open-set recognition (OSR) problem is firstly proposed for
face recognition to detect unknown faces [24]. Specifically,
the OSR problem aims to learn a classifier to not only
accurately distinguish known classes but also reject unknown
ones. Existing approaches can be divided into two categories
including discriminative approaches and generative ones.
The former utilizes discriminative models such as support
vector machine [5] and convolutional neural network [25] to
output classification probabilities of rejecting unknown classes
through a comparison with a predefined threshold. In addition,
metric learning [26], [27]) and prototype learning [28],
[29] are commonly used to distinguish between known
and unknown samples via their distances on the feature
space. With regard to the generative approaches, generative
models are trained to learn the probability distribution of
each known class. Specifically, if the likelihoods of the test
sample estimated from all known class models are low, the
sample will be classified as belonging to an unknown class.
Typically, generative adversarial networks [30], [31], [32])
and autoencoder [15], [33]) are the most popular generative
approaches applied for the OSR problem.

Although there are several typical strategies for traditional
OSR problems, open-set gesture recognition based on sEMG
is much more challenging. The main challenges lie in the
inevitable noise and the low amplitude of sEMG signals
that increase the difficulty of finding a proper function
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Fig. 1. Diagram of the proposed method based on VAE for open-set sEMG-based gesture recognition. Conv, LC, and FC respectively denote the
convolution layer, locally-connected layer and fully-connected layer. The number following the layer name denotes the number of filters, and the
numbers after the symbol @ denote the convolution kernel size and stride size.

to identify unknown classes from sEMG signals. Similarly,
discriminative approaches utilize well-performed models on
sEMG-based gesture recognition to produce probabilities that
input sEMG signals belong to unknown gestures. For example,
Robertson et al. [34] used a support vector machine classifier
to make a tradeoff between error mitigation and unknown
rejections in real-time close-loop myoelectric control at a
specific threshold. Linear discriminant analysis (LDA) [35]
and artificial neural networks (ANN) [9] are also utilized
to output entropy function to discriminate between known
command gestures and unknown gestures based on sEMG sig-
nals. Besides the aforementioned discriminative approaches,
Ding et al. [36], [37] proposed hybrid models that combine
a multi-class classifier of known classes and an one-class
classifier rejecting unknown classes. Wu et al. [10] utilized
a reconstruction-based autoencoder (AE) to reject samples
with high reconstruction errors and achieved significant
performance using high-density surface electromyography.
To overcome the respective drawbacks of discriminative
and generative approaches, Wu et al. [11] further proposed a
method that combines their advantage in an end-to-end manner
based on HD-sEMG is proposed using convolutional prototype
network (CPN) and prototype matching. Although open-set
gesture recognition based on HD-sEMG has been investigated,
few sparse multichannel sEMG datasets are utilized to evaluate
these approaches.

III. METHOD

This section delineates the proposed method based on
variational autoencoder (VAE) [38] for open-set sEMG-based
gesture recognition (Fig. 1). As a probabilistic graphical
model, a VAE is capable of accurately reconstructing input
data while also enforcing the posterior distribution qφ(z|x)

in the latent space to closely approximate a prior distribution
pθ (z). Therefore, an appropriately trained VAE is expected to

accurately discern known data and identify biased samples as
unknown via the reconstruction loss. Nevertheless, the VAE
cannot classify known categories because all samples follow
a single distribution. To enable classifying known categories,
we predefine a latent conditional distribution qφ(z|x, k) for
each known class (denoted as kth) in the latent space
via conditional Gaussian distribution learning(CGDL) [15].
Subsequently, samples of the kth known gesture are required
to approximate a multivariate Gaussian distribution p(k)

θ (z) =

N (z; µk, I ), where µk is the mean value of the kth
distribution. Because samples of each gesture conform to
its corresponding prior distribution, those samples with
low probability density are identified as unknown gestures.
With regard to samples of known gestures, Kullback-Leibler
divergences between the predefined prior distributions and
input samples are calculated as the confidences. The gesture
with the highest level of confidence is regarded as the predicted
one of the model. The complex and diverse patterns of sEMG
signals demand a more discriminative architecture of VAE.
Besides, certain unknown gestures can closely resemble known
gestures, such as the thumb up and fist, which implies that
their corresponding Gaussian distributions may be too similar.
To tackle this issue, we utilize a parameter-tuning strategy
based on Bayesian optimization to find the optimal probability
threshold for a better trade-off between rejecting unknown
gestures and classifying known ones.

A. Problem Formulation
This paper focuses on open-set sEMG-based gesture

recognition. Given a training set of sEMG signals with
data-label pairs DTrain = {(xi ∈ XTrain, yi ∈

YTrain = {1, · · · , CTrain}) | i = 1, 2, · · · , m} and a
test set DTest = {(x j ∈ XTest, y j ∈ YTest =

{1, · · · , CTrain, · · · , CTest}) | j = 1, 2, · · · , n}, where xi , x j
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denotes the sEMG signals and yi , y j for gesture labels.
As an open-set task, the CTrain is the known classes and
{CTrain + 1, · · · , CTest} is the unknown classes. Our target
is utilizing DTrain to train a model f to accurately classify
the subset Dknown

Test = {xi ∈ XTest, yi ∈ {1, · · · , CTrain}}

and detect unknown gestures in the subset Dunknown
Test =

{xi ∈ XTest, yi ∈ {CTrain + 1, · · · , CTest}}. Specifically,
the minimization of open space risk RO and empirical risk
Rϵ is solved to find the optimal function f as follows:

arg min
f

{RO( f ) + λr Rϵ( f (DTrain))}

where f (x) > 0 means that the sEMG sample x belongs to
a known gesture. The empirical risk Rϵ denotes the average
classification loss of all samples in the DTrain and λr is the
weight of classification loss.

B. Constructing Variational Auto-Encoder (VAE)
A VAE usually consists of an encoder and a decoder,

whose loss function is represented as L(θ; φ; x) where φ

and θ are the parameters of the encoder and the decoder,
respectively. A latent representation z is obtained after the
input sEMG signal x is fed into the encoder. Conversely,
a reconstructed sEMG sample x̂ is obtained by feeding the
latent representation z into the decoder. The loss function of
VAE is commonly defined as follows:
L(θ; φ; x) = −DK L

(
qφ(z|x) || pθ (z)

)
+Eqφ(z|x)

[
log pθ (x |z)

]
(1)

where qφ(z|x) denotes the approximate posterior distribution,
pθ (z) is the prior distribution of the latent representation z, and
pθ (x |z) represents the conditional possibility of input sample
x given a latent representation z. The first item of Eq. (1) is the
KL divergence between the approximate posterior distribution
and the prior distribution. This loss item enforces the similarity
between qφ(z|x) and pθ (z). The second item of L(θ; φ; x) is
often represented using the reconstruction loss.

The prior distribution pθ (z) is assumed to be an
independent multivariate Gaussian distribution, denoted by
pθ = N (z; 0, I ). Then the variational posterior distribution
obtained from the trained VAE is formulated as follows:

qφ(z|x) = N (z; µ, σ 2 I )

where the mean value µ and variance σ of Gaussian
distribution are outputted by the trained VAE. The latent
representation is z = µ + σ ⊙ ϵ and ϵ follows the standard
normal distribution. The conditional information of the kth
gesture is introduced into VAE and the prior distribution pθ (z)
is denoted as N (z; µk, I ), where the vector µk is obtained
by passing the one-hot encoding of each gesture through a
fully-connected layer. Thus, the KL divergence is calculated
as follows:

− DK L
(
qφ(z|x) || pθ (z)

)
=

∫
N

(
z; µ, σ 2)( logN (z; µk, I ) − logN (z; µ, σ 2)

)
dz

=
1
2

J∑
j=1

(
1 + log(σ 2

j ) − (µ j − µ
(k)
j )2

− σ 2
j

)

The architecture of the proposed model for open-set sEMG-
based gesture recognition is derived from GengNet [3].
It consists of a number of modules, including an encoder F ,
a decoder G, a classifier C for known gestures and a detector
D for unknown gestures. We delineate the details of these
modules in the following:

1) Encoder F : The architecture of F follows that of
GengNet and a module for calculating the mean and variance
is integrated at each layer of F . Specifically, the output
feature xl of the lth layer is transformed into a one-dimensional
representation and then it is fed into a fully-connected layer to
obtain the mean and variance values. To prevent information
loss, we replace the original ReLU activation function with
PReLU.

2) Decoder G: The architecture of G is equivalent to that of
the inverse encoder, except the convolution layers are replaced
by the transpose convolution layers and Tanh is employed
as the activation function of the last layer. This module
aims to reconstruct sEMG signals using parameter sampling
from the learned distribution. In this decoder, a probability
ladder architecture [39] is utilized to exchange bottom-up
and top-down information for restoring the information that
is dismissed by the encoder F . The information is also
represented in terms of a Gaussian distribution and its mean,
and a Gaussian distribution and its variance are as follows:

q_µl =
µ̃l σ̃

−2
l + µlσ

−2
l

σ̃−2
l + σ−2

l

q_σ 2
l =

1

σ̃−2
l + σ−2

l

3) Classifier C for Known Gestures: Firstly, the classifier C
calculates the probability densities of each gesture using
the latent representation z and Gaussian prior distributions.
Then, the probability densities of each gesture are normalized
through the Softmax function. After that, the gesture with the
highest confidence level is regarded as the final classification
result. And the probability densities of the kth gesture are
calculated as follows:

p(z|µk, I ) =
1√

(2π)N
exp

(
−

1
2
(z − µk)

T (z − µk)

)
4) Detector D for Unknown Gestures: Given the well-

trained encoder F and decoder G, a specific multivariate
Gausssian distribution fk(z) = N (z; mk, σ

2
k ) of each gesture

can be constructed. Then, we calculate the mean mk
and variance σ 2

k of the latent representations of all the
training samples of the kth gesture in the feature space.
Thus, the probability that a sample being drawn from the
distribution fk(z) is defined as follows:

Pk(z) = 1 −

∫ m0+|z0−m0|

m0−|z0−m0|
· · ·

∫ mn+|zn−mn |

mn−|zn−mn |

fk(t)dt

where n denotes the dimension of the feature space and z is
represented as (z1, z2, · · · , zn).
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C. Evaluation Procedure
We also investigate the hidden information that the

reconstruction loss carries, while the reconstruction loss
with inputs from known gestures is typically smaller than
that of unknown gestures [40]. In practical implementation,
the threshold τr for reconstruction error is determined by
identifying a fixed ratio of training sEMG data that is classified
as known. Overall, the evaluation procedure of our approach
is shown in Algorithm 1.

Algorithm 1 The Procedure of Evaluation for Open-Set
sEMG-Based Gesture Recognition
Input: A test sample X
Input: The trained encoder F , decoder D and classifier for

known gestures C
Input: The threshold probability τl for Gaussian distribution
Input: The threshold τr for reconstruction error
Input: With regard to each gesture, denoted as k, the

latent representation of the correctly classified training
sample xi,k is zi,k

1: for k = 1, . . . , K do
2: mk = meani (zi,k)

3: σ 2
k = vari (zi,k)

4: fk(z) = N (z; mk, σ
2
k)

5: end for
6: The latent representation Z = F(X)
7: The predicted gesture ypred = argmax(C(Z))

8: The reconstructed sEMG signal X̃ = G(X)

9: The reconstructed error R = ∥X − X̃∥1
10: if ∀k ∈ {1, . . . , K }, Pk(Z) < τl orR > τr then
11: X is predicted as unknown
12: else
13: X is predicted as a known gesture ypred
14: end if

D. Loss Function
The total loss function of our proposed approach is as

follows:

L = −(Lr + βLK L + λLc)

This loss function consists of three loss items including recon-
struction loss (Lr ), KL divergence (LK L ) and classification
loss (Lc). The reconstruction loss is obtained by means of the
L1 distance and the classification loss is computed using the
cross-entropy loss function. The KL divergence is leveraged to
approximate the posterior distribution to the prior distribution
of each gesture by maximizing the similarity between the
intermediate representations as follows:

LK L = −
1
L

[DK L

(
qφ(z | x, k)∥p(k)

θ (z)
)

+

L−1∑
l=1

DK L (qθ (x̃l | x̃l+1, x) ∥qθ (x̃l | x̃l+1))]

where

qθ (x̃l | x̃l+1, x) = N
(

x̃l; q−µl , q−σ 2
l

)
qθ (x̃l | x̃l+1) = N

(
x̃l; µ̃l , σ̃

2
l

)

TABLE I
SPECIFICATIONS OF THE EVALUATED SEMG DATASETS

IV. EXPERIMENT SETTINGS

In this section, we will briefly introduce the benchmark
datasets used in our experiments, the training settings,
evaluation metrics, and implementation details.

A. Datasets
Three sparse multichannel sEMG datasets, i.e., NinaPro

DB1, NinaPro DB2 [2], and NinaPro DB5 [12] are utilized
to train and evaluate the proposed VAE-based approach on
open-set gesture recognition based on sEMG. The details of
these three datasets are described in Table I. The training trials,
validation trials and testing trials columns denote the number
of trials used for training, validation and testing respectively.
The unknown gestures column represents the gestures selected
as unknown ones in the experiments.

B. Data Preprocessing
Due to the high noise of sEMG signals, it is necessary to

preprocess the raw signals in the experiments. Firstly, a But-
terworth low-pass filter, whose cutoff frequency coefficient is
set as 0.2, is applied to denoise the raw sEMG signals. Then,
NinaPro DB2 and NinaPro DB5 are downsampled to 200Hz.
To obtain the sEMG inputs with the same window length,
sliding windows of lengths 20, 40, and 40 are used to segment
the processed sEMG signals in a stride of 1 for NinaPro DB1,
NinaPro DB2, and NinaPro DB5 respectively.

C. Evaluation Metrics
To evaluate the performance of the proposed approach on

open-set sEMG-based gesture recognition, the gestures of each
dataset are divided into two parts including known gestures
and unknown gestures. Additionally, the datasets are split into
a training set, a validation set and a testing set in terms of trials.
The specific dividing strategy refers to Table I. To perform a
comprehensive comparison, four kinds of evaluation metrics
are employed:

Precision: Intra-session gesture recognition precision is
adopted for evaluation. Testing is conducted on sEMG data
that contains K + N gestures, with the output being K + 1
classification results. Therefore, Precision is computed as
follows:

Precision =

K∑
k=1

T Pk

(1 + K )(T Pk + F Pk)



DAI et al.: REJECTING UNKNOWN GESTURES BASED ON SURFACE-ELECTROMYOGRAPHY 755

TABLE II
AUROC AVERAGED OVER ALL SUBJECTS OF FOUR APPROACHES ON

THREE SPARSE MULTICHANNEL SEMG DATASETS INCLUDING

NINAPRO DB1, NINAPRO DB2 AND NINAPRO DB5. THE RESULTS IN

BOLD ENTRIES INDICATE THE BEST PERFORMANCES

Recall: The weighted average recall of all gestures

Recall =

K∑
k=1

T Pk

(1 + K )(T Pk + F Nk)

F1-Score: The harmonic mean between the Precision and
Recall, which is a comprehensive evaluation metric for
evaluating a model.

F1-Score =
2 · Precision · Recall
Precision + Recall

AUROC: The ROC curve is a graphical representation of the
classifier’s true positive rate versus its false positive rate, where
each point on the curve represents a different threshold value
for classifying the known and unknown gestures. The AUROC
is the area under the ROC curve, which ranges from 0 to 1.
The higher the AUROC, the better the performance of the
evaluated model.

D. Network Architecture
The architectures of F and G are derived from the

GengNet [3], which achieve strong performance on NinaPro
databases. Specifically, GengNet is composed of two convo-
lutional layers, two locally connected layers and three fully
connected layers. Each convolutional layer consists of 64
3 × 3 filters with a stride of 1 and a zero padding of 1.
Each locally connected layer consists of 64 1 × 1 filters.
The three fully connected layers consist of 512, 512 and
128 hidden units, respectively. Batch normalization and the
ReLU nonlinearity function are applied to each layer, and
dropout is adopted to prevent overfitting.

E. Implementation Details
Our VAE-based approach is implemented with PyTorch. For

all the three datasets, we utilize an optimizer of RAdam whose
initial learning rate, weight decay and batch size are set as
0.001, 0.01 and 512 respectively for improved convergence
and generalization. Besides, the learning rate is divided by
10 after each epoch and the total number of training epochs is
set to 28 following the settings in GengNet [3]. The weights
of loss items including classification loss and KL divergence
are set to 100.0 and 1.0, respectively. With regard to the
window lengths of input signals, 20, 40 and 40 are respectively
adopted for NinaPro DB1, NinaPro DB2 and NinaPro DB5,
to account for time delay constraints. We can see that the same
hyperparameters are used for all three NinaPro variants which
indicates that our model is not fine-tuned for each dataset.

V. EXPERIMENTAL RESULTS

A. Evaluation on Benchmark Dataset
To demonstrate the effectiveness of our proposed VAE-

based approach, we conduct a comprehensive comparison with
existing approaches on open-set gesture recognition based on
sEMG in the evaluation metrics of AUROC, Precision, Recall
and F1-Score. For a fair comparison, several existing open-set
sEMG-based gesture recognition approaches are implemented.
The details of these approaches are as follows:

• OpenMax [25] It is the most commonly used approach
for open-set recognition where an OpenMax layer is
proposed to replace the Softmax layer that is often used
in the deep classification task. In this paper, we regard
this approach as a baseline.

• Multiple-autoencoders [10] It trains multiple autoen-
coders (AEs) to reject representations from any unseen
gesture that appeared significantly different from known
gestures.

• Convolutional Prototype Network (CPN) [11] This
approach constructs a CNN feature extractor and multiple
prototypes of known gestures. Then samples of known
or unknown gestures are identified using prototype
matching.

Firstly, we compare our approach with the aforementioned
three approaches using the evaluation metric of AUROC
to validate its performance on unknown gesture rejection.
Table II shows the average AUROC using testing sEMG data
from all subjects of the four approaches. Our approach out-
performs CPN, Multiple-AEs, OpenMax with an improvement
on NinaPro DB1 and NinaPro DB2. Specifically, our approach
improves the AUROC metric by +0.04, +0.08, +0.10 on
NinaPro DB1, +0.02, +0.05, +0.04 on NinaPro DB2, +0.01,
+0.02, +0.02 on NinaPro DB5 compared with CPN, Multiple-
AEs and OpenMax, respectively. Note that AUROC metric
reflects the ability to detect unknown gestures, our approach
performs best to detect unknown gestures.

Secondly, our approach is compared with the other three
methods under the scenario to classify K + 1 gestures
including K known gestures and one unknown category.
Specifically, the metrics Precision, Recall and F1-Score in
Section IV-C are adopted to evaluate the effectiveness of our
approach. The performances of these four methods are shown
in Table III. We can see that the three used evaluation metrics
are consistent in validating the performance of classifying
known gestures and rejecting unknown ones. Specifically,
using the Precision metric, our approach outperforms CPN,
Multiple-AEs, and OpenMax by +0.01, +0.03, and +0.06,
respectively, on NinaPro DB1. Thus, our approach improves
the performances of rejecting unknown gestures alongside
classifying known gestures on NinaPro DB1. However, CPN
performs best on NinaPro DB2 and NinaPro DB5 compared
with the other three methods. Because discriminative methods
can directly learn classification boundaries, the discriminative
method CPN outperforms the other three methods in most
scenarios. As a generative method, our approach achieves
competitive performance against CPN and even performs
better on NinaPro DB1. Note that our approach surpasses
compared open-set sEMG-based gesture recognition approach
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TABLE III
Precision,Recall AND F1-Score AVERAGED OVER ALL SUBJECTS OF FOUR APPROACHES ON THREE SPARSE MULTICHANNEL SEMG DATASETS

INCLUDING NINAPRO DB1, NINAPRO DB2 AND NINAPRO DB5.THE RESULTS IN BOLD ENTRIES INDICATE THE BEST PERFORMANCES

TABLE IV
COMPARISON OF OUR APPROACH USING THREE DIFFERENT NETWORK ARCHITECTURES FOR F AND G ON NINAPRO DB1,

NINAPRO DB2 AND NINAPRO DB5. THE RESULTS IN BOLD ENTRIES INDICATE THE BEST PERFORMANCES

TABLE V
COMPARISON OF VAE WITH CGDL AND THE TYPICAL VAE ON NINAPRO DB1, NINAPRO DB2 AND NINAPRO DB5.

THE RESULTS IN BOLD ENTRIES INDICATE THE BEST PERFORMANCES

for rejecting unknown gestures, our approach achieves a better
trade-off between classifying known gestures and rejecting
unknown gestures.

B. Ablation Study
1) Effects of CGDL: To demonstrate the concrete factors that

contribute to the effectiveness of our approach, we conduct a
fair comparison between the proposed approach and the typical
VAE without CGDL on NinaPro DB1, NinaPro DB2 and
NinaPro DB5. In the experiments, GengNet [3] is selected as
the architecture of F and G. As shown in Table V, VAE with
CGDL outperforms the typical VAE in the metric of Precision.
However, their performances in rejecting unknown gestures
are comparable when using the AUROC metric. These
experimental results indicate that the introduction of CGDL
could mitigate the degradation of classifying known gestures
while sustaining the capability to reject unknown gestures.

2) Backbone Architecture of VAE: To validate whether the
architectures of the encoder F and the decoder G affect
the performance, we conduct a fair comparison using our
approach with various architectures of F and G. Specifically,
XceptionTime [4]) and TCN [41] are applied as the backbone
architecture of F and G for this validation. The former
contains multiple XceptionTime modules which are composed
of several separable convolutional layers and max pooling
layers. The latter is composed of 1D fully-convolutional
network and dilated convolutions enabling an exponentially
large receptive field. Table IV reports the performance of
our approach with three kinds of architectures of F and G.
As shown, GengNet outperforms XceptionTime and TCN.
In addition, the proposed approach consistently outperforms
the baseline with each architecture, which indicates our

approach is model-agnostic and can be applied to common
ones. In this experiment, the evaluation metrics of AUROC
and Precision are adopted for comparison.

3) Variation on Known Gestures: Here, we examine the
effects of known gestures used for training on the performance
of open-set sEMG-based gesture recognition. To cope with
this, we divide the gestures into three groups and then
conduct a 3-fold cross-validation. Specifically, two groups
are selected as known gestures for training and validation,
but the evaluation is performed on test data of all gestures.
In this experiment, we select NinaPro DB1 and mix the sEMG
data of all subjects to dismiss the influence brought by the
individual differences of subjects. As shown in Table VI, the
performances of rejecting unknown gestures using different
kinds of known gestures are comparable. However, the known
gestures used for training in our approach could affect the
performance in the metric F1-score. Specifically, when the
second group and third group are selected as known gestures,
our approach achieved an F1-score of 0.83 on NinaPro DB1,
which is much higher than the results obtained in the other
two settings.

4) Effects of VAE: In this part, we explore the effects
brought by the VAE on the features extracted using F . To do
this, we train the GengNet on NinaPro DB1 under the closed-
set and open-set scenarios respectively. Then we utilize TSNE
for visualizing the deep sEMG features, with a perplexity set to
30 and 5000 iterations. From each gesture, we randomly select
1000 samples for visualization. The specific visualization
results of TSNE are displayed in Fig. 2. From Fig 2a, we can
see that the features extracted by GengNet under the closed-
set scenario are discretely distributed throughout the feature
space and exhibit mutual overlap. In our approach (Fig 2b),
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TABLE VI
OPEN-SET SEMG-BASED GESTURE RECOGNITION

PERFORMANCE WITH DIFFERENT KNOWN GESTURES

FOR TRAINING ON NINAPRO DB1

Fig. 2. The visual comparison of features extracted by GengNet under
the closed-set and open-set scenarios using our approach. Features of
eight gestures are displayed in this figure and the 7th and 8th gestures
belong to the unknown category.

the features of each gesture adhere to their respective prior
Gaussian distributions by minimizing KL divergence. In this
way, the extracted features of the same gesture can aggregate
together, mitigating the open space risk.

VI. CONCLUSION AND DISCUSSION

A. Discussion
In this part, we discuss the reason why the introduction

of VAE can improve the open-set gesture recognition
performance and our future work. We first recall the
framework of our approach, where the conditional Gaussian
distribution learning [15]) is employed to define different
prior distributions for all gestures, enabling classification for
known gestures through comparison between distributions in
terms of KL divergence. Although there are other competitive
generative networks, such as GAN [42] and Glow [43],
the reconstruction ability and latent space representation of
VAE mitigates the negative impact caused by high noise
in the sEMG signals. In addition, VAE has a probabilistic
formulation where the encoder learns to approximate the

posterior distribution of the latent variables given the sEMG
data from a specific gesture.

B. Conclusion
Most existing sEMG-based gesture recognition approaches

are investigated under closed-set settings, which means that
gestures during testing are already known when training.
However, in a realistic scenario, the user may perform an
unknown gesture which will be misclassified as a known
gesture by a closed-set muscle-computer interface. Therefore,
we propose a novel open-set sEMG-based gesture recognition
approach based on the variational autoencoder (VAE) and
we evaluated it on 3 public sparse multichannel benchmark
databases. Different from the typical VAE, we utilize
conditional Gaussian distribution learning [15] to enable
classifying known gestures. Experimental results indicate
that the proposed approach achieves better performance in
rejecting unknown gestures compared with three existing
approaches. Specifically, our approach achieves respective
AUROC improvements of +0.04, +0.02, and +0.01 on
NinaPro DB1, NinaPro DB2, and NinaPro DB5, compared
with the state-of-the-art approach. On the other hand, our
approach achieves a competitive performance in classifying
known gestures against the discriminative open-set recognition
methods. So the proposed approach could reach a better trade-
off between classifying known gestures and rejecting unknown
ones. We also conducted an ablation study to demonstrate the
effects of known gestures for training and VAE on rejecting
unknown gestures. The experimental results show that our
approach is model-agnostic to the architecture of VAE and
the introduction of VAE could mitigate the open space risk.
Besides, the effects of known gestures used for training were
investigated and we found that the performance of rejecting
unknown gestures was minimally impacted, which means our
approach is robust to training data.

Our future work will focus on enhancing the performance of
rejecting unknown gestures meanwhile making the recognition
accuracy of known gestures comparable to that under the
closed-set settings. One way is to apply a more discriminative
network as the encoder of VAE, whose performance on sEMG-
based gesture recognition is superior. Another way is to replace
the VAE with the latest generative networks, such as the
diffusion probabilistic model [44]. We will also investigate
improving the inter-subject or inter-session open-set gesture
recognition performance based on our work considering its
more practical prospects.

REFERENCES

[1] A. Chowdhury, R. Ramadas, and S. Karmakar, “Muscle computer
interface: A review,” in ICoRD. India: Springer, 2013, pp. 411–421.

[2] M. Atzori et al., “Electromyography data for non-invasive naturally-
controlled robotic hand prostheses,” Sci. Data, vol. 1, no. 1, pp. 1–13,
Dec. 2014.

[3] W. Geng, Y. Du, W. Jin, W. Wei, Y. Hu, and J. Li, “Gesture recognition
by instantaneous surface EMG images,” Sci. Rep., vol. 6, no. 1, p. 36571,
Nov. 2016.

[4] E. Rahimian, S. Zabihi, S. F. Atashzar, A. Asif, and A. Mohammadi,
“Xceptiontime: Independent time-window xceptiontime architecture for
hand gesture classification,” in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process. (ICASSP), May 2020, pp. 1304–1308.



758 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 32, 2024

[5] W. J. Scheirer, A. de Rezende Rocha, A. Sapkota, and T. E. Boult,
“Toward open set recognition,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 7, pp. 1757–1772, Jul. 2013.

[6] W. J. Scheirer, L. P. Jain, and T. E. Boult, “Probability models for open
set recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 36, no. 11,
pp. 2317–2324, Nov. 2014.

[7] S. Kong and D. Ramanan, “OpenGAN: Open-set recognition via open
data generation,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV),
Oct. 2021, pp. 813–822.

[8] H.-M. Yang, X.-Y. Zhang, F. Yin, Q. Yang, and C.-L. Liu,
“Convolutional prototype network for open set recognition,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 44, no. 5, pp. 2358–2370, May 2022.

[9] J. Tomczynski, P. Kaczmarek, and T. Mankowski, “Hand gesture-based
interface with multichannel sEMG band enabling unknown gesture
discrimination,” in Proc. 10th Int. Workshop Robot Motion Control
(RoMoCo), 2015, pp. 52–57.

[10] L. Wu, X. Zhang, X. Zhang, X. Chen, and X. Chen, “Metric learning for
novel motion rejection in high-density myoelectric pattern recognition,”
Knowl.-Based Syst., vol. 227, Sep. 2021, Art. no. 107165.

[11] L. Wu, A. Liu, X. Zhang, X. Chen, and X. Chen, “Unknown
motion rejection in myoelectric pattern recognition using convolutional
prototype network,” IEEE Sensors J., vol. 22, no. 5, pp. 4305–4314,
Mar. 2022.

[12] S. Pizzolato, L. Tagliapietra, M. Cognolato, M. Reggiani, H. Müller,
and M. Atzori, “Comparison of six electromyography acquisition setups
on hand movement classification tasks,” PLoS ONE, vol. 12, no. 10,
Oct. 2017, Art. no. e0186132.

[13] F. Palermo, M. Cognolato, A. Gijsberts, H. Müller, B. Caputo,
and M. Atzori, “Repeatability of grasp recognition for robotic hand
prosthesis control based on sEMG data,” in Proc. Int. Conf. Rehabil.
Robot. (ICORR), Jul. 2017, pp. 1154–1159.

[14] A. Krasoulis, I. Kyranou, M. S. Erden, K. Nazarpour, and
S. Vijayakumar, “Improved prosthetic hand control with concurrent
use of myoelectric and inertial measurements,” J. NeuroEng. Rehabil.,
vol. 14, no. 1, pp. 1–14, Dec. 2017.

[15] X. Sun, Z. Yang, C. Zhang, K.-V. Ling, and G. Peng, “Conditional
Gaussian distribution learning for open set recognition,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 13480–13489.

[16] A. Phinyomark and E. Scheme, “EMG pattern recognition in the era of
big data and deep learning,” Big Data Cognit. Comput., vol. 2, no. 3,
p. 21, Aug. 2018.

[17] W. Wei, Q. Dai, Y. Wong, Y. Hu, M. Kankanhalli, and W. Geng,
“Surface-electromyography-based gesture recognition by multi-view
deep learning,” IEEE Trans. Biomed. Eng., vol. 66, no. 10,
pp. 2964–2973, Oct. 2019.

[18] A. Doswald, F. Carrino, and F. Ringeval, “Advanced processing of sEMG
signals for user independent gesture recognition,” in Proc. 13th Medit.
Conf. Med. Biol. Eng. Comput., Seville, Spain. Cham, Switzerland:
Springer, 2014, pp. 758–761.

[19] Y. Hu, Y. Wong, W. Wei, Y. Du, M. Kankanhalli, and W. Geng, “A novel
attention-based hybrid CNN-RNN architecture for sEMG-based gesture
recognition,” PLoS ONE, vol. 13, no. 10, Oct. 2018, Art. no. e0206049.

[20] X. Chen, Y. Li, R. Hu, X. Zhang, and X. Chen, “Hand gesture
recognition based on surface electromyography using convolutional
neural network with transfer learning method,” IEEE J. Biomed. Health
Informat., vol. 25, no. 4, pp. 1292–1304, Apr. 2021.

[21] Y. Jiang, L. Song, J. Zhang, Y. Song, and M. Yan, “Multi-category
gesture recognition modeling based on sEMG and IMU signals,”
Sensors, vol. 22, no. 15, p. 5855, Aug. 2022.

[22] L. Xu, K. Zhang, G. Yang, and J. Chu, “Gesture recognition using dual-
stream CNN based on fusion of sEMG energy kernel phase portrait
and IMU amplitude image,” Biomed. Signal Process. Control, vol. 73,
Mar. 2022, Art. no. 103364.

[23] A. Fatayer, W. Gao, and Y. Fu, “sEMG-based gesture recognition using
deep learning from noisy labels,” IEEE J. Biomed. Health Informat.,
vol. 26, no. 9, pp. 4462–4473, Sep. 2022.

[24] F. Li and H. Wechsler, “Open set face recognition using transduction,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 11, pp. 1686–1697,
Nov. 2005.

[25] A. Bendale and T. E. Boult, “Towards open set deep networks,” in Proc.
IEEE Comput. Soc. Conf. Comput. Vision Pattern Recognit., Jun. 2016,
pp. 1563–1572.

[26] G. Chen, P. Peng, X. Wang, and Y. Tian, “Adversarial reciprocal points
learning for open set recognition,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 44, no. 11, pp. 8065–8081, Nov. 2022.

[27] G. Chen et al., “Learning open set network with discriminative reciprocal
points,” in Computer Vision—ECCV. Glasgow, U.K.: Springer, 2020,
pp. 507–522.

[28] H.-M. Yang, X.-Y. Zhang, F. Yin, and C.-L. Liu, “Robust classification
with convolutional prototype learning,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., Jun. 2018, pp. 3474–3482.

[29] J. Cen, P. Yun, J. Cai, M. Y. Wang, and M. Liu, “Deep metric learning
for open world semantic segmentation,” in Proc. IEEE/CVF Int. Conf.
Comput. Vis., 2021, pp. 15333–15342.

[30] Z. Ge, S. Demyanov, Z. Chen, and R. Garnavi, “Generative OpenMax
for multi-class open set classification,” 2017, arXiv:1707.07418.

[31] L. Ditria, B. J. Meyer, and T. Drummond, “OpenGAN: Open set
generative adversarial networks,” in Proc. Asian Conf. Comput. Vis.
(ACCV), Nov. 2020, pp. 1–19.

[32] P. Perera et al., “Generative-discriminative feature representations for
open-set recognition,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2020, pp. 11811–11820.

[33] R. Yoshihashi, W. Shao, R. Kawakami, S. You, M. Iida, and T. Naemura,
“Classification-reconstruction learning for open-set recognition,” in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2019, pp. 4016–4025.

[34] J. W. Robertson, K. B. Englehart, and E. J. Scheme, “Effects of
confidence-based rejection on usability and error in pattern recognition-
based myoelectric control,” IEEE J. Biomed. Health Informat., vol. 23,
no. 5, pp. 2002–2008, Sep. 2019.

[35] E. J. Scheme, B. S. Hudgins, and K. B. Englehart, “Confidence-
based rejection for improved pattern recognition myoelectric con-
trol,” IEEE Trans. Biomed. Eng., vol. 60, no. 6, pp. 1563–1570,
Jun. 2013.

[36] Q. Ding, X. Zhao, J. Han, C. Bu, and C. Wu, “Adaptive hybrid
classifier for myoelectric pattern recognition against the interferences
of outlier motion, muscle fatigue, and electrode doffing,” IEEE
Trans. Neural Syst. Rehabil. Eng., vol. 27, no. 5, pp. 1071–1080,
May 2019.

[37] Q. Ding, Z. Li, X. Zhao, Y. Xiao, and J. Han, “Real-time myoelectric
prosthetic-hand control to reject outlier motion interference using one-
class classifier,” in Proc. 32nd Youth Academic Annu. Conf. Chinese
Assoc. Automat. (YAC), 2017, pp. 96–101.

[38] D. P. Kingma and M. Welling, “Auto-encoding variational Bayes,” 2013,
arXiv:1312.6114.

[39] C. Kaae Sønderby, T. Raiko, L. Maaløe, S. Kaae Sønderby, and
O. Winther, “Ladder variational autoencoders,” 2016, arXiv:1602.02282.

[40] P. Oza and V. M. Patel, “C2AE: Class conditioned auto-encoder for
open-set recognition,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2019, pp. 2302–2311.

[41] P. Tsinganos, B. Cornelis, J. Cornelis, B. Jansen, and A. Skodras,
“Improved gesture recognition based on sEMG signals and TCN,”
in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP),
May 2019, pp. 1169–1173.

[42] I. Goodfellow et al., “Generative adversarial networks,” Commun. ACM,
vol. 63, no. 11, pp. 139–144, 2020.

[43] D. P. Kingma and P. Dhariwal, “Glow: Generative flow with invertible
1×1 convolutions,” in Proc. Adv. Neural Inf. Process. Syst., vol. 31,
S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett, Eds. Montréal, QC, Canada: Curran Associates, 2018,
pp. 1–10.

[44] Y. Song and S. Ermon, “Denoising diffusion probabilistic models,” in
Proc. Int. Conf. Mach. Learn., 2021, pp. 9248–9259.


