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Cross-Subject Motor Imagery Decoding by
Transfer Learning of Tactile ERD

Yucun Zhong , Lin Yao , Gang Pan , Senior Member, IEEE, and Yueming Wang

Abstract— For Brain-Computer Interface (BCI) based on
motor imagery (MI), the MI task is abstract and sponta-
neous, presenting challenges in measurement and control
and resulting in a lower signal-to-noise ratio. The qual-
ity of the collected MI data significantly impacts the
cross-subject calibration results. To address this chal-
lenge, we introduce a novel cross-subject calibration
method based on passive tactile afferent stimulation,
in which data induced by tactile stimulation is utilized
to calibrate transfer learning models for cross-subject
decoding. During the experiments, tactile stimulation was
applied to either the left or right hand, with subjects only
required to sense tactile stimulation. Data from these tactile
tasks were used to train or fine-tune models and sub-
sequently applied to decode pure MI data. We evaluated
BCI performance using both the classical Common Spatial
Pattern (CSP) combined with the Linear Discriminant Anal-
ysis (LDA) algorithm and a state-of-the-art deep transfer
learning model. The results demonstrate that the pro-
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posed calibration method achieved decoding performance
at an equivalent level to traditional MI calibration, with the
added benefit of outperforming traditional MI calibration
with fewer trials. The simplicity and effectiveness of the
proposed cross-subject tactile calibration method make
it valuable for practical applications of BCI, especially in
clinical settings.

Index Terms— Brain-Computer Interface (BCI), cross-
subject decoding, motor imagery (MI), tactile ERD, tactile
stimulation.

I. INTRODUCTION

BRAIN-COMPUTER Interface (BCI) establishes a direct
communication and control pathway between the brain

and the external environment [1]. For individuals with
amyotrophic lateral sclerosis (ALS) who experience severe
communication and physical limitations, BCI represents a
valuable tool. By enabling interaction with the external world,
BCI offers a means for these patients to enhance their quality
of care and engagement with the environment [2]. Elec-
troencephalography (EEG) is one of the most widely used
brain signals in BCI, due to its safety and convenience [3].
Compared to visual P300 [4] and steady-state visual evoked
potentials (SSVEP) [5], which rely on external visual stimuli,
motor imagery (MI) [6] is completely spontaneous and not
dependent on external visual stimuli. This paper specifically
focuses on BCIs that are based on motor imagery. MI-based
BCI detects event-related (de)synchronization (ERD/ERS)
patterns that are induced when users imagine performing
kinesthetic movements of different body parts, such as the left
hand or right hand, and subsequently translate these patterns
into instructions. Due to the intrinsic relationship between
motor imagery and actual physical movement, MI-based BCI
has gained significant attention and is extensively employed
in the field of stroke neurorehabilitation [7], [8].

However, the widespread adoption of MI-based BCI has
been hindered by certain challenges, with one major obstacle
being the calibration process required prior to actual online
usage [9]. The typical MI-based BCI system consists of a
calibration phase and a testing phase [10]. During the cali-
bration phase, EEG data is collected to train a classification
model, while in the testing phase, MI tasks are decoded using
the calibrated model. Due to the non-stationarity [11] and the
low signal-to-noise ratio [12] of EEG signals, a substantial
amount of calibration data is required to obtain a more accu-
rate classifier during the calibration phase. This requirement
significantly diminishes the user experience, particularly for
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patients in clinical applications where long-term calibration
data collection is not convenient.

To reduce the calibration effort and improve the quality of
calibration data, one approach is to explore alternative meth-
ods for inducing calibration data to the traditional MI data.
In the traditional MI calibration method, users are required
to perform MI tasks in both the calibration and testing phases
[13]. However, the calibration phase lacks feedback, and users
need to repeat MI tasks without clear instructions, which can
impose a heavy cognitive burden [14]. Additionally, some
users may struggle to generate clear patterns of event-related
desynchronization (ERD) initially [2], posing challenges for
accurate decoding by the classification model [13], which can
lead to calibration failure. Moreover, MI is an abstract and
implicitly performed task, making it difficult to ensure that
users are executing the MI task correctly. To address these
challenges, researchers have proposed alternative methods to
the traditional MI calibration approach. Studies have shown
that both active and passive movements can elicit brain pat-
terns similar to MI [15]. Brain patterns induced by passive
movements [16] and functional electrical stimulation [17] have
been utilized for MI calibration. However, passive movement
calibration requires the assistance of a robot, which presents
implementation challenges and may not be well-suited for
clinical applications. Additionally, electrical stimulation can
introduce artifacts that lower the signal-to-noise ratio of the
EEG [18]. Therefore, while these alternative methods show
promise, there are practical limitations that need to be consid-
ered in their application.

Another commonly employed approach to reduce the
calibration effort is transfer learning [19], which involves
leveraging information from other domains (subjects/sessions)
[20], [21], [22] or even other datasets [23], [24] to improve
calibration performance in the target domain. Numerous recent
studies have demonstrated the effectiveness of traditional
transfer machine learning methods in BCI [21], [25], [26].
Many researchers have extended the classical Common
Spatial Pattern (CSP) algorithm by incorporating kernel
techniques [27], [28] or regularized terms [29], [30] to find
domain-invariant CSP filters. Another approach involves align-
ing the data between the source and target domains based on
the covariance matrices of EEG trials [31], [32], [33], such as
Riemannian alignment [33] or Euclidean alignment [34]. Addi-
tionally, transfer learning methods based on deep neural net-
works have also shown significant potential [35], [36], [37].
Pérez-Velasco et al. proposed the EEGSym model [38], which
facilitates knowledge transfer across datasets and reaches state-
of-the-art performance in cross-subject decoding scenarios.
The success of transfer learning hinges on identifying common
patterns across different domains [39]. However, a challenge
lies in the inherent weaknesses of motor imagery patterns [39],
which result in a decrease in the signal-to-noise ratio of the
EEG signals [12] and an increase in the variability of these
patterns across subjects [40], [41]. In the context of cross-
subject decoding, previous research has primarily concentrated
on algorithm design [19]. However, recent advancements in the
field of Artificial Intelligence (AI) have brought attention to
the significance of shifting research focus from a model-centric

approach to a data-centric approach [42], with an increased
emphasis on acquiring higher quality data [42]. Therefore, how
to obtain more distinct EEG patterns may be a crucial factor
in enhancing performance in BCI.

Tactile stimulation has gained considerable traction in recent
years as a widely utilized approach within BCI systems to
enhance BCI applications [43], [44], [45]. Tactile-induced
brain patterns were used to construct new BCI paradigms,
such as selective sensation BCIs [46], tactile P300 BCIs [43],
and hybrid BCIs with MI [47]. During the process of actual
movement, sensory interaction with the environment is also a
crucial component, where movement and sensation are consid-
ered to be a unified entity [48]. However, sensory interaction
might be absent in motor imagery. Many researchers have
suggested using tactile stimulation as a means to compensate
for the absence of sensory interaction and proposed several
approaches as tactile feedback of MI [45], tactile assisted
MI training [49], and tactile MI guidance [50]. Interestingly,
in our previous study [51], we found that tactile stimulation
can also induce brain patterns similar to that induced by MI.
As a form of passive input, tactile stimulation offers several
advantages over abstract MI tasks. It provides a more explicit
and controllable means of eliciting brain patterns, making it a
potentially promising approach for calibrating MI-based BCI
systems in the cross-subject scenario. However, the suitability
of utilizing brain patterns induced by tactile stimulation for
cross-subject motor imagery decoding remains to be verified.

In this study, we proposed a cross-subject calibration
method based on tactile stimulation. We hypothesized that the
MI-based BCI could be calibrated using the brain patterns
elicited by tactile stimulation in the cross-subject calibration
scenario. A high-density EEG device was used to obtain
EEG signals, and we compared the brain patterns induced by
tactile stimulation and MI in both the spatial and frequency
domains. We compared the proposed calibration method with
the traditional MI calibration method. The performance of our
calibration method has been verified using both the classical
Common Spatial Pattern (CSP) algorithm [52] and one of the
state-of-the-art deep transfer learning algorithms [38]. To our
knowledge, this is the first study to explore the utilization of
tactile input in the cross-subject decoding scenario.

II. MATERIALS AND METHODS

A. Subjects
A total of 12 subjects (6 males and 6 females, with an aver-

age age of 23.5 ± 1.6 years old) participated in the experiment.
Ten of these subjects participated motor imagery experiment
once, but they were all naive to tactile stimulation. They were
right-handed and in self-reported good health condition, and
they all signed an informed consent form before participation.
This study was permitted by the Ethics Committee of Zhejiang
University, Zhejiang, China.

B. EEG Recording and Stimulation Device
EEG signal was recorded with the BioSemi ActiveTwo

EEG amplifier (BioSemi Inc., Amsterdam, the Netherlands)
from a high-density (128-channel) active head cap, whose
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Fig. 1. Graphic illustration of the experimental paradigm. (1) is the MI
block, in which the subjects performed the MI-L and the MI-R tasks with
two runs, and (2) is the TS block, in which the subjects performed the
TS-L and the TS-R tasks with two runs. The red circle on the wrists
indicates that the tactile stimulation motor is on, and the blue circle
indicates the tactile stimulation motor is off.

electrodes were positioned according to the BioSemi ABC
position system. The Common Mode Sense (CMS) active
electrode served as reference and the Driven Right Leg (DRL)
passive electrode served as ground. Additional two active
electrodes were placed at the left and right mastoids for re-
references. During the whole recording process, the magnitude
of the offset of all electrodes to the CMS electrode was kept
between ±25 mV, and the signals were sampled at 512 Hz.

The tactile stimulation was generated by two linear resonant
actuators (vibrotactile stimulators, 10 mm, C10-100, Preci-
sion Microdrives Ltd., typically normalized amplitude 1.4 G),
which were attached on the dorsal side of the subject’s left
wrist and the right wrist. The Pacinian corpuscles and the
Meissner corpuscles are two kinds of tactile receptors, and
they are sensitive to mechanical stimuli of above 100 Hz
and 20-50 Hz, respectively [53]. Thus, the tactile stimulation
frequency was set as 27 Hz with a sine wave modulated by
a 175 Hz sine carrier wave to activate both types of the two
receptors. The vibration amplitude could be adjusted according
to the feedback of the subjects, and they all reported that they
were comfortable with perceiving the vibration.

C. Experimental Paradigm
This experimental paradigm consisted of a motor imagery

(MI) block and a tactile stimulation (TS) block. During the
MI block, MI tasks were performed, in which the subjects
mentally simulated kinesthetic movements of either their left
or right hand without any actual physical movement. Dur-
ing the TS block, tactile stimulation tasks were performed,
in which the tactile stimulation was applied to either their
left or right wrist, and the subjects were required to perceive
the stimulation. In each block, there were two runs, and each

run consisted of 40 trials. There were a total of 160 trials
for each subject. Subjects had a self-controlled rest period
of 1∼2 minutes between runs and blocks. Before the start
of the experiment, the subjects were fully familiar with the
experimental procedure and were given a practice session
consisting of about 30 trials.

1) Motor Imagery (MI) Block: The experiment was carried
out in a noise-shielded room. A 14 × 24-inch screen with a
black background was used for presenting instructions. The
subjects sat in a comfortable chair and rested their hands
on the armrest. They were allowed to adjust the height of
the computer desk and chair to ensure their comfort during
the experiment. Throughout the experiment, the subjects were
required to avoid any facial and hand muscle movements
and to limit blinking while performing the task. The whole
experiment was monitored by an experimenter to ensure
that the subjects followed the instructions correctly. At the
beginning of each trial (T = 0 s), a white cross appeared in
the center of the screen, and the subjects began to prepare for
the MI task and kept their eyes focused ahead. At T = 2 s, the
vibrotactile stimulators on both wrists simultaneously gave a
burst vibration for 200 ms to alert the subjects that the MI
task was about to start. At T = 3 s, a red square cue appeared
on the left or right side, overlapping on the white cross. When
the cue appeared on the left or right side, the subject started to
perform the left or right MI (MI-L or MI-R) task, respectively,
lasting for 5 s until the white cross disappeared at T = 8 s.
Note, the cue only lasted for 1.5 s and disappeared at T =

4.5 s. After the cross disappeared, the subjects had a rest time
of 1.5∼3.5 s before the start of the next trial to prevent fatigue
and limit adaptation. In this block, a total of two runs were
conducted, each consisting of 20 trials for the MI-L task and
20 trials for the MI-R task, resulting in a total of 80 trials.

2) Tactile Stimulation (TS) Block: The only difference
between this block and the MI block was that the subjects
performed different tasks, and the timeline and other settings
of this block were the same as the MI block. In this block,
the subjects performed the tactile stimulation tasks rather than
the MI tasks. When the cue appeared on the left or right
side, the tactile stimulation was applied to the left or right
wrist, respectively, and the subjects were required to perform
the left- or right-hand tactile stimulation (TS-L or TS-R)
task, perceiving the tactile stimulation on the corresponding
hand. Note, that in each trial of the TS block, the tactile
stimulation was applied only on one side (either left or right)
corresponding to the side where the cue appeared. The tactile
stimulation lasted for 5 s, starting from the appearance of the
cue. In this block, a total of two runs were conducted, each
consisting of 20 trials for the TS-L task and 20 trials for the
TS-R task, resulting in a total of 80 trials.

D. Calculation of EEG Dynamics

A custom MATLAB script and EEGLAB were used to
preprocess the raw signals according to a standard process
pipeline [54]. Firstly, the raw signals were re-referenced to
the common average and then filtered using a second order,
Butterworth, zero-phase shift [8 26] Hz band pass filter. Then,
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highly contaminated artifacts were removed by visual inspec-
tion. Thereafter, an independent component analysis (ICA)
was performed to further remove artifacts, such as ocular and
muscle artifacts.

The widely recognized physiological characteristics of
motor imagery (MI) are event-related desynchronization
(ERD) and event-related synchronization (ERS), which are
described as changes in power in a particular frequency band
relative to a baseline period [6]. Prior to calculating the
power changes, time-frequency decomposition was performed
by EEGLAB toolbox [54], utilizing a hamming taper window
(with a window length varying linearly with frequency and a
time step of 350 milliseconds). For each trial, the ERD/ERS
was calculated by subtracting the average power of the base-
line period (from 2 s to 1.2 s before the red cue bar appeared)
from the task-performing period. Then, the grand-averaged
ERD/ERS was calculated by taking the average of all the
trials across all subjects. Moreover, in order to demonstrate
the discriminative information between tasks, we also com-
puted the square of the Pearson correlation coefficient of the
powers and task class labels (i.e. R2). Subsequently, the grand-
averaged R2 was also determined by computing the average
of R2 values across all subjects. The ERD/ERS and R2 were
compared between the motor imagery (MI) task and the tactile
stimulation (TS) task.

E. Algorithms and Performance Evaluation
1) Data Alignment in the Euclidean Space: In order to

achieve data distribution alignment across different subjects
and tasks (i.e. MI and TS), we initially employed a transfer
learning technique, specifically Euclidean Alignment [34],
to map the data from various subjects and tasks onto a shared
data space. Specifically, each MI trial X i was transformed by:

X ′

i = M−1/2
M I X i (1)

where MM I is the Euclidean mean of the covariance matrices
of all MI trials. For each TS trial X i , it was transformed by:

X ′

i = M−1/2
T S X i (2)

where MT S is the Euclidean mean of the covariance matrices
of all tactile stimulation trials. It should be noted that the
Euclidean mean MM I and MT S were separately calculated
for each subject, and in the above equations, the trial and the
Euclidean mean came from the same subject.

2) Common Spatial Pattern: In the CSP-LDA algorithm,
we used the classical Common Spatial Pattern (CSP) algorithm
[55] as the feature extractor and the Linear Discriminative
Analysis (LDA) algorithm as the classifier. In MI-based
BCI, the discriminative information and common information
between the two classes can be described as the difference and
the sum of the covariance respectively:

Sd = 6(l)
− 6(r)

Sc = 6(l)
+ 6(r) (3)

6(l) represents the covariance of the left hand task, 6(r)

represents the covariance of the right hand task. CSP finds

directions, which maximize the discriminative information and
minimize the common information at the same time by:

maximize
w

w⊤Sdw

w⊤Scw

s.t. w⊤Scw = 1 (4)

Through the Lagrange multiplier method, the objective func-
tion can be transformed into the generalized eigenvalue
problem:

Sdw = λScw (5)

For the eigenvector w, it satisfies:

w6(l)w + w6(r)w = 1 (6)

In other words, in the direction, w, the sum of the variance
of the two classes is 1. Therefore, when the projection direc-
tion maximizes the variance of one class, it simultaneously
minimizes the variance of the other class at the same time.
We selected three directions to maximize the variance of the
MI-L task and the TS-L task, and another three directions to
maximize the variance of the MI-R task and the TS-R task.
After projecting the data to the six directions, the variance of
the projected data was logarithmically transformed to obtain
six CSP features. Thereafter, we used the LDA algorithm for
classification.

3) Cross-Subject Decoding: To decode the data from one
subject, the data from all other subjects were used as cal-
ibration data. The subject under consideration for decoding
was designated as the target subject, while all the remaining
subjects were referred to as the source subjects.

In the aligned data space, the calibration performance was
evaluated by two algorithms. The first algorithm is CSP-LDA,
which was previously introduced. According to the different
calibration data used, there are two CSP-LDA-based calibra-
tion methods: (1) Motor Imagery Cross-Subject calibration
(denoted as MI-CS in Table I): The MI data of the target
subject were used as testing data, and the MI data of the source
subjects were used as training data. 2) Tactile Cross-Subject
calibration (denoted as Tactile-CS in Table I): The MI data of
the target subject were used as testing data, and the TS data
of the source subjects were used as training data. Moreover,
in order to simulate trial-limited scenarios, a subset of the
trials was randomly chosen for performance evaluation, and
this process was repeated 20 times.

The second calibration algorithm was based on a deep
transfer learning model, which leveraged the technology of
transfer learning, which is a popular method in computer
vision or natural language processing. In transfer learning,
there is a pre-trained model that has been trained on large
open-source datasets. When the model is used for a specific
task, the task-specific data is then used to perform subtle
parameter updates through a process known as fine-tuning.
This technology has also been validated in MI-based BCI
[19], [38]. The deep transfer learning model EEGsym [38]
was used in this study. This cross-subject decoding scheme
comprises two primary stages: the pre-training stage and the
fine-tuning stage. During the pre-training stage, EEG data from
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TABLE I
THE DETAIL CALIBRATION CONFIGURATION. NOTE: TACTILE-CS AND TACTILE-CSFT ARE TACTILE CALIBRATION

METHODS. MI-CS AND MI-CSFT ARE TRADITIONAL MI CALIBRATION METHODS

five publicly available datasets (i.e. Physionet [56], OpenBMI
[57], Kaya2018 [58], Meng2019 [59], and Stieger2021 [60]),
including 280 subjects, were utilized to train the deep learn-
ing model EEGSym. For each subject in the pre-training
datasets, 10 trials of each class were selected for the validation
dataset, with the remainder allocated to the training dataset.
The pre-training process was terminated when the validation
loss failed to improve for 25 consecutive iterations. In the
fine-tuning stage, the pre-trained deep learning model was
further fine-tuned using aligned EEG data from our dataset,
following the fine-tuning settings in [38]: (1) Early stopping:
The fine-tuning process would automatically stop when vali-
dation loss did not improve for 25 consecutive iterations. (2)
Learning rate: The whole structure was fine-tuned at a very low
learning rate (i.e. 0.0001) until the early stopping strategy was
triggered. Subsequently, the fine-tuned model was employed
to decode the target subject in our dataset. For a more detailed
structure of the EEGSym model, we encourage readers to refer
to the comprehensive description provided in the referenced
paper [38]. Again, according to the different fine-tuning data
used, there were two deep transfer learning-based calibration
methods: (1) Motor Imagery Cross-Subject Fine-Tuning cal-
ibration (denoted as MI-CSFT in Table I): The MI data of
the target subject were used as testing data, the MI data of
the public datasets were used as training data, and the MI
data of the source subjects were used as fine-tuning data.
(2) Tactile Cross-Subject Fine-Tuning calibration (denoted as
Tactile-CSFT in Table I): The MI data of the target subject
were used as testing data, the MI data of the public datasets
were used as training data, and the TS data of the source
subjects were used as fine-tuning data. Sixteen EEG channels
were selected according to the training data of the pre-trained
model [38].

A total of four calibration methods were evaluated, which
are summarized in Table I. For each performance evaluation,
one target subject, whose EEG signals will be testing data,
was chosen from the 12 subjects. The remaining 11 subjects
were used as source subjects whose EEG signals will be used
as the calibration data for the model. Each subject would be
the target subject once evaluated by two algorithms with two
kinds of calibration data (i.e. MI data and TS data).

III. RESULTS

A. Event-Related Desynchronization Analysis
The TS task and the MI task exhibit similar patterns of cor-

tex activation, providing a neurophysiological basis for using
tactile-induced brain patterns to calibrate motor imagery-based

Fig. 2. Cross-subject BCI decoding performance with CSP-LDA
algorithm. (A) BCI decoding performance across different calibration
methods using all trials. ’n.s’ indicates no significant difference in paired
t-test. (B) The effect of the number of trials (the sum of trials in two
classes) on BCI decoding performance. ’*’,’**’, ’***’, and ‘n.s’ represent
p < 0.05, p < 0.01, p < 0.001 and no significant difference in paired
t-test, respectively.

Fig. 3. Cross-subject BCI decoding performance with a pre-trained
deep transfer learning model across different calibration methods. ’n.s’
indicates no significant difference in paired t-test.

BCIs. Specifically, the cortical activations induced by both
tasks are similar in their spatial distribution, as demonstrated in
Fig. 4 (A). In both the TS task and the MI task, the ERD/ERS
is concentrated over the left and right sensorimotor cortex.
Additionally, both tasks show a contralateral phenomenon in
their ERD activation, meaning that the ERD activation is
situated in the hemisphere opposite to the limb being imagined
or stimulated. For example, in the left MI task and the left
TS task, the ERD activation is located in the contralateral
right hemisphere, while in the right MI task and the right
TS task, the ERD activation is located in the contralateral left
hemisphere.
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Fig. 4. The grand-averaged ERD/ERS in the spatial domain and the frequency domain. (A) The topoplot of grand-averaged ERD/ERS across
different tasks and blocks, which is computed within the alpha-beta band [8 26] Hz and the 1 to 4 s with respect to the appearance of the red cue.
(A)(1) and (A)(3) are ERD/ERS patterns of the MI-L task and the MI-R task in the MI block. (A)(2) and (A)(4) are ERD/ERS patterns of the TS-L
task and the TS-R task in the TS block. (B) The grand-averaged ERSP value at small Laplace filtered C3 and C4 channels across different tasks
and blocks. ERSP for the (1) MI-L task of the C4 channel in the MI block, (2) TS-L task of the C4 channel in the TS block, (3) MI-R task of the C3
channel in the MI block, and (4) TS-R task of the C3 channel in the TS block. The dashed line at time 0 s corresponds to the appearance of the red
cue when subjects began to perform the MI or TS tasks.

Furthermore, the cortical activations induced by the MI task
and the TS task are also similar in their frequency distribu-
tion, as represented by ERSP values. Fig. 4 (B) displays the
alpha [8 14] and beta [15 26] bands being activated in the
contralateral hemisphere for both the TS task and the MI task
(with C3 representing the left hemisphere and C4 representing
the right hemisphere). Of particular interest is the observation
that the ERD activated by the TS-R task is more pronounced
in the alpha band compared to the MI-R task.

B. Motor Imagery Performance Analysis
The results of the CSP-LDA algorithm are presented in

Fig. 2 (A). Both calibration methods achieved similar lev-
els of accuracy. In the traditional MI calibration method,
the accuracy was 74.48 ± 18.25%. For the Tactile cali-
bration, the accuracy was 76.35 ± 18.61%. There was no
significant difference between the two methods (paired t-test,
p = 0.2188). However, as illustrated in Fig. 2 (B), the Tactile
calibration demonstrated a significant advantage when the
sample size was limited. When the trial number per class was
less than 30 for one subject, the accuracy achieved by the
Tactile calibration was significantly higher than that of the
traditional MI calibration at a significant level of p < 0.01.
Furthermore, the Tactile calibration required fewer calibration
trials to achieve a basic control level of 70% accuracy in BCIs.
Specifically, in the Tactile calibration, only five trials per class
were needed for one subject (a total of 110 trials), while the
traditional MI calibration required at least ten trials per class
for one subject (a total of 220 trials).

In practical applications, BCIs often face limitations in the
number of available EEG channels, which can impact MI
decoding accuracy and reliability. Transfer learning algorithms
can address this challenge by leveraging knowledge from other
subjects to improve BCI performance. Information from other

Fig. 5. The spatial distribution of grand-averaged R2 across different
frequency bands. The R2 was averaged in the 1 to 4 s with respect to
the appearance of the red cue in each block. (1) The R2 distribution
within the alpha-beta band [8 26] across different blocks. (2) The R2

distribution within the alpha band [8 14] across different blocks. (3) The
R2 distribution within the beta band [15 26] across different blocks.

subjects can be transferred to the target subject, enabling more
accurate and efficient MI decoding even with a limited number
of EEG channels. Thus, we also evaluated the performance of
a transfer learning model (i.e., EEGsym) in a 16-channel setup.
The Tactile calibration method achieved a similar level of
performance as the traditional MI calibration method (73.96 ±

17.16% vs. 75.10 ± 16.21%, paired t-test, p = 0.1794).

C. Discriminant Information Analysis
R2 values, serving as indicators of discriminative informa-

tion, were computed to gain deeper insights into how Tactile
calibration enhances BCI performance. Fig. 5 illustrates the
grand-averaged spatial distributions of R2 in the MI task
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TABLE II
TIME COST OF DIFFERENT CALIBRATION METHODS IN THE DEEP

TRANSFER LEARNING ALGORITHM

and the TS task across different frequency bands. The dis-
tribution of discriminative information is found to be similar
for both tasks, primarily concentrated in the sensorimotor
cortex. However, it is noteworthy that the R2 value for the TS
task exceeds that of the MI task across all frequency bands,
partially explaining the superior performance achieved by the
Tactile calibration method.

Moreover, a comparison was made between the time
required for fine-tuning using the Tactile calibration method
and the traditional MI calibration method. The results,
as shown in Table II, indicate that the deep transfer learning
algorithm employed in Tactile calibration achieved the early
stop strategy significantly faster than in the conventional MI
calibration. This observation suggests that the tactile stimu-
lation data exhibited more distinct and discriminative EEG
patterns, leading to a faster convergence speed of the deep
transfer learning algorithm.

IV. DISCUSSION

A. Calibration Effectiveness
In this study, the feasibility of cross-subject Motor Imagery

(MI) calibration using tactile Event-Related Desynchronization
(ERD) was validated with different algorithms. The proposed
calibration method was compared with the traditional MI
calibration method. The results revealed that the proposed cal-
ibration method achieved a similar level of performance as the
traditional MI calibration method. Particularly, when the num-
ber of trials was limited, the proposed method demonstrated
significantly higher performance compared to the traditional
MI calibration method. To validate the effectiveness of the
tactile data training model, a comprehensive performance
evaluation was further conducted on several state-of-the-art
algorithms, including basic Common Spatial Pattern-Linear
Discriminant Analysis (CSP-LDA) (i.e., CSP-LDA without
data alignment), MEKT [32], EEGNet [35], and DeepCon-
vNet [37]. As depicted in Table III, the proposed tactile
cross-subject calibration method demonstrated comparable
performance to the traditional MI calibration method. These
results are particularly promising, considering that in the tactile
ERD-based calibration approach, no motor imagery data is
needed.

B. Similar ERD in MI and TS Tasks
In our study, as depicted in Fig. 4, tactile stimuli elicited

prominent ERD, primarily concentrated in the sensorimotor
cortex of the contralateral cerebral hemisphere, which is
consistent with the previous studies [61]. This pattern closely
resembled the ERD induced by motor imagery. Two potential
reasons may account for this observed similarity. Firstly,
it may be attributed to the joint activation mechanism of
the sensorimotor cortex [62]. The sensory cortex and the

motor cortex, besides being spatially proximate, tend to exhibit
neural firing concurrently [63], given that physical movement
typically triggers sensory input. Consequently, these cortices
exhibit a robust neural interconnection wherein the activation
of one can induce concurrent activation of the other. Previous
research has demonstrated that motor imagery involves activa-
tion not only in the primary motor cortex (M1) but also in the
primary somatosensory cortex (S1) [64], even in the absence
of tactile input. Therefore, the tactile stimulation used in our
method might activate both S1 and M1 areas [65], elucidating
the nearly identical ERD patterns induced by the TS task and
MI task. Another plausible explanation for the similarity in the
ERDs induced by motor imagery and tactile stimulation lies in
the spatial resolution limitations imposed by EEG equipment,
combined with the spatial proximity of the sensory cortex
and the motor cortex. This limitation renders it challenging
to distinguish between the two distributions of ERD. Despite
employing a high-density EEG device, discerning significant
differences in the activation of brain areas between the MI task
and the TS task proved elusive. Consequently, the data gener-
ated by these two tasks may share a similar data distribution.
This alignment holds significant importance in the context of
supervised machine learning, ensuring that the training and
testing data match each other, constituting a pivotal factor for
successful calibration.

C. Comparasion With Previous Methods for Relieving
Calibration Workload

Relieving the workload of BCI calibration has attracted
extensive research interest. The existing work shows that
active movement [15], passive movement [16], and electrical
stimulation can all induce ERD patterns similar to MI, and
can be used for the calibration of MI [17]. In our cali-
bration method, tactile stimuli were applied to the wrists
of the subjects by two wearable motors, about the size of
a quarter of a coin. Compared with the passive movement
calibration method, our device is more portable and does not
require the assistance of a robot. Furthermore, individuals
who have undergone amputation can no longer utilize the
calibration methods for both active and passive movement.
Despite this, their sensory input channels remain intact after
the amputation, indicating that our calibration method may
serve as a superior replacement. Our tactile stimulation is
applied to the skin in the form of mechanical vibration and
does not involve electrical current stimulation. As a result,
it remains unaffected by current artifacts. Conversely, the
calibration method that relies on electrical stimulation runs
the risk of inducing artifacts, as stated in [18]. Furthermore,
none of the aforementioned studies focus on the cross-subject
decoding scenario. It remains an area of interest to investi-
gate whether the patterns of ERD/ERS variations observed
in the aforementioned studies are consistent with MI across
different subjects. In our calibration method, we conducted
an evaluation of cross-subject performance and discovered a
strong correlation (Pearson correlation, r = 0.97, p < 0.0001)
between Tactile calibration and traditional MI calibration,
as depicted in Fig. 6. This finding suggests that the variations
in tactile-induced ERD and MI-induced ERD may be similar
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TABLE III
CROSS-SUBJECT BCI DECODING PERFORMANCE ACROSS ALGORITHMS AND CALIBRATION METHODS

Fig. 6. Pearson correlation between Tactile calibration performance and
traditional MI calibration performance. Each subject is represented as a
green circle, and the linear polynomial is used for regression based on
a least square regression fit.

among subjects, thereby highlighting the feasibility of utilizing
Tactile calibration in the cross-subject scenario.

To mitigate the calibration workload associated with MI-
based BCI, transfer learning has also been extensively
explored [19]. In early studies, researchers primarily con-
ducted knowledge transfer between different subjects [28],
[32], [35] or sessions [20], [66], utilizing data from diverse
subjects or sessions (source domain) to train models for
decoding data from the target subject or session (target
domain). Recent advancements extend this to knowledge
transfer between different datasets [38], even those col-
lected by different devices, termed as cross-device transfer
learning [24]. Notably, He and Wu [23] proposed knowledge
transfer between distinct tasks, exemplified by data in the
source domain originating from left and right-hand MI tasks
and the target domain data consisting of tasks of feet and
tongue motor imagery. However, due to the distinct brain
activation patterns associated with hand, feet, and tongue
MI tasks [67], cross-task transfer learning may lack intu-
itive coherence. In this study, we also conducted knowledge
transfer between different tasks, specifically tactile stimulation
task and motor imagery task. As depicted in Fig. 4, tactile
stimulation induces brain activation patterns similar to motor
imagery, facilitating knowledge transfer. While the primary
aim of applying transfer learning in BCI is to tackle the
challenge of limited data in the target subject, a crucial step
involves employing domain adaptation methods to align target
domain data with that of the source domain or fine-tuning
a pre-trained model on the source domain to decode target
domain data [68]. This typically requires data from subjects
in the target domain, whether labeled or unlabeled [21]. Thus,
many existing transfer learning methods still demand motor
imagery data from the target subject for the domain adaptation
process [21]. However, given the non-stationary nature [11]

and the low signal-to-noise ratio of motor imagery data [12],
the need for fine-tuning data increases, contradicting the orig-
inal purpose of utilizing transfer learning in BCI. In contrast,
our approach involves only using tactile stimulation-induced
data for fine-tuning the pre-trained model or directly training
a classifier, as opposed to using motor imagery data. This
innovative strategy aims to achieve the noteworthy goal of
zero motor imagery samples requirement for the target subject.
As illustrated in Fig. 3, the EEGSym results indicate that
data induced by tactile stimulation can be effectively used to
fine-tune models pre-trained on motor imagery-induced data.

D. Potential Applications
The results of the current study hold potential significance in

cross-population decoding scenarios. For example, in the case
of MI decoding for the elderly population, collecting calibra-
tion data is often challenging due to the limited energy [69].
By utilizing data passively induced by tactile stimulation as
fine-tuning data for models trained on motor imagery-induced
data from young adults, direct decoding can be achieved
without the need to collect MI data. Moreover, as a convenient
and effective MI calibration method, it may have more exten-
sive application potential in clinical practice. Passive tactile
stimulation is input from the outside and can be controlled in
real-time and accurately. It may be less susceptible to interfer-
ence by the subjects’ internal task-unrelated mental state (e.g.
attention deficit patients have difficulty concentrating their
attention) than the MI task, which is a completely spontaneous
internal activity of the subjects. As shown in Fig. 5, the
ERD induced by tactile stimulation has more discriminant
information in both the alpha and the beta band, which means
data with higher quality was obtained in the TS task. In the
clinical application of stroke rehabilitation, the starting stage of
rehabilitation training is difficult [70], mainly because doctors
have difficulty making sure that patients have made correct
actions, and some patients have communication difficulties or
have difficulty understanding the abstract MI tasks. However,
the tactile stimulation can be completely controlled by the
doctor, which can help to quickly collect calibration data
and begin the feedback rehabilitation training process faster.
In other applications of BCI, such as automatic driving [71],
[72] and multitask game [73], it may be difficult for users
to focus their attention on the MI task, because they need
to allocate their attention to other tasks at the same time.
Tactile stimulation provides a passive alternative that requires
less workload and can improve the user experience of brain-
computer interfaces.

E. Limitations
The limitation of our study is that we did not evaluate

online performance because we focused on cross-subject cal-
ibration, where data from all subjects were collected before
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performance evaluation. For practical applications, online per-
formance should be evaluated in the future. First, we need to
build a database of EEG data induced by tactile stimulation
and train a deep transfer learning model. Then transfer learning
technology will be used to fine-tune the pre-trained model to
the target user and achieve real-time decoding. Additionally,
it would be worthwhile to investigate whether the proposed
method can achieve comparable decoding performance in the
elderly population, considering the decreased tactile sensitivity
observed in this demographic [74].

V. CONCLUSION

In this study, we introduced an innovative cross-subject
calibration method for MI-based BCI systems. This approach
leverages transfer learning models calibrated using tactile
stimulation-induced ERD to decode motor imagery data. Our
proposed method achieves decoding performance comparable
to the traditional MI calibration method. Notably, the proposed
calibration method outperforms the traditional MI calibration
with fewer trials. The tactile method utilizes passive afferent
tactile stimulation, which is measurable, controllable, and easy
to implement. This makes it highly promising for practical
applications of BCI, particularly in clinical settings.
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