
652 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 32, 2024
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Abstract— Rehabilitation training is essential for a suc-
cessful recovery of upper extremity function after stroke.
Training programs are typically conducted in hospitals or
rehabilitation centers, supervised by specialized medical
professionals. However, frequent visits to hospitals can be
burdensome for stroke patients with limited mobility. We
consider a self-administered rehabilitation system based
on a mobile application in which patients can periodically
upload videos of themselves performing reach-to-grasp
tasks to receive recommendations for self-managed exer-
cises or progress reports. Sensing equipment aside from
cameras is typically unavailable in the home environment.
A key contribution of our work is to propose a deep
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learning-based assessment model trained only with video
data. As all patients carry out identical tasks, a fine-grained
assessment of task execution is required. Our model
addresses this difficulty by learning RGB and optical flow
data in a complementary manner. The correlation between
the RGB and optical flow data is captured by a novel mod-
ule for modality fusion using cross-attention with Trans-
formers. Experiments showed that our model achieved
higher accuracy in movement assessment than existing
methods for action recognition. Based on the assessment
model, we developed a patient-centered, solution-based
mobile application for upper extremity exercises for hemi-
plegia, which can recommend 57 exercises with three levels
of difficulty. A prototype of our application was evaluated
by potential end-users and achieved a good quality score
on the Mobile Application Rating Scale (MARS).

Index Terms— Deep learning, hemiplegia, motion
assessment, self-administered rehabilitation, upper
extremity.

I. INTRODUCTION

UPPER limb motor impairment is common and has been
reported in more than 80% of patients after stroke. Less

than half of the patients regain basic functions of the upper
limb by 12 months, by recovering from disabilities which
markedly restrict their independence in activities of daily
living [1], [2]. Patients with motor impairment due to stroke
experience significant limitations in their daily lives. Thus,
motor relearning programs with regular and repetitive training
are important for the successful recovery of stroke patients
with impaired movement [3], [4], [5]. Most rehabilitation
programs require supervision and guidance from experts and
are conducted in hospitals or rehabilitation centers. However,
for stroke patients with limited mobility, consecutive hospital
visits for rehabilitation and treatment are a burden, which
makes it challenging to accurately evaluate their individual
motor function or select appropriate exercises. Thus, self-
administered rehabilitation is deemed to facilitate patient
recovery, because patients show greater willingness to exercise
frequently and repetitively, which can promote neuroplasticity
[6], [7], [8], than to visit the hospital. The rehabilitation with
motor training should be based on an accurate evaluation of
individual motor function, because the upper limb dysfunc-
tion varies among patients. Therefore, the development of a
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Fig. 1. Overview of a self-administered rehabilitation system for stroke survivors. There are six steps in total, and each step is described as follows:
1) Record a video of a patient executing reach-to-grasp movements. 2) Transfer the recorded video to the application. 3) Upload the video to the
server for assessment. 4) Automatically evaluate the score of motor function on a scale of 0 to 3. 5) Display the patient’s exercise level based on the
score.6) Recommend appropriate exercises according to the patient’s level. The key component of our system is Step (4): Automated assessment
of motor function.

self-rehabilitation program with accurate evaluation capabili-
ties will greatly benefit the recovery of stroke patients.

In a self-administered exercise programme, it is important
to match the exercise level to the patient’s upper limb disabil-
ity. Thus, we consider the framework of motion assessment
followed by exercise recommendation. Specifically, we pro-
pose a self-administered rehabilitation system equipped with
automated motion assessment depicted in Fig. 1. At home,
a patient performs the task of grasping an object placed on
a table, i.e., a reach-to-grasp task [9]. The patient uses the
mobile application to record a video of performing the task and
upload the video to the system. An automated model estimates
a score for the motor function after analyzing the video
data. The patient receives recommendations for self-managed
exercises or receives a progress report related to the patient’s
score. The key component of this system is the automated
evaluation of upper extremity function, and there are two main
technical challenges: (1) video is the only available modality,
i.e., other equipment such as depth or inertial measurement
unit (IMU) sensor is unlikely to be available in the home;
(2) patients perform identical tasks, but the model needs to
identify subtle differences in task execution, which makes
the problem more challenging than typical action recognition
tasks.

In this paper, we consider the problem of design-
ing self-rehabilitation systems and developing an accurate
video-based assessment of motor skills. To that end, we pro-
pose a deep learning-based model for automated motion
assessment and design a mobile application based on the
algorithm. Our model evaluates the upper limb function of
stroke survivors using only video data without additional
sensors. The development of a fine-grained motion assess-
ment model that performs accurate and reliable evaluations
using only video data is the main goal of this research.

We propose leveraging two modalities, RGB and optical flow,
extracted from the video in order to capture subtle details in
the execution of reach-to-grasp tasks at the pixel level. We
developed a deep learning model that effectively learns the
association between the two modalities by properly mixing
features and subsequently applying cross-attention based on
the Transformer architecture. We evaluated the performance of
our model using a dataset we created and it contains 793 video
clips of the reach-to-grasp motion of stroke survivors. Our
experiments show that the proposed model achieves signif-
icantly higher accuracy than existing prior state-of-the-art
(SOTA) methods for action recognition.

In addition, we developed a mobile application based on the
proposed model for automated assessment. The dysfunction of
upper extremity and its degree varies widely among patients.
Taking the variability into account, we developed a total
of 57 exercises in four category types: postural or balance
exercise, range of motion exercise, strengthening exercise, and
task-oriented training, with three levels of difficulty based
on the severity of impairments. Our mobile application has
several benefits. First, it automatically recommends exercises
every day according to the motor function level of each
patient. Second, experts in stroke rehabilitation participated
in the application’s development, and third, the application
recommends exercises which the patient can easily and safely
perform on their own in the sitting position. Moreover, a self-
rehabilitation approach using mobile applications has many
advantages, including the absence of professional guidance
and supervision requirements, and the ability for patients to
exercise without significant time and space constraints. Mobile
applications also enable patients to assess their motor function
and practice appropriate exercises. These self-rehabilitation
approaches are less costly and allow patients to spend more
time exercising.
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The main contributions of our work are summarized as
follows:

1) Our model assesses the motor function for stroke reha-
bilitation using only videos.

2) An accurate algorithm for motor function assessment
was developed leveraging a novel method of modality
fusion, which combines RGB and optical flow data
based on deep learning.

3) Our model achieved higher accuracy in the assessment
of upper limb functions over SOTA methods.

4) A mobile health application was developed, which rec-
ommends various types of self-administered exercises
based on the assessment results and provides reports on
their rehabilitation progress.

II. RELATED WORK

A. Mobile Health Application for Stroke Rehabilitation
Smartphones are increasingly used by the general pop-

ulation, making it relatively easy to implement treatment
programs at low costs. In the field of rehabilitation, various
applications have been reported for each theme, such as stroke,
traumatic brain injury, spinal cord injury, musculoskeletal, car-
diac, pulmonary, cancer, and pain [10]. In stroke rehabilitation,
mobile applications have been developed for specific goals,
such as improvement of feedback for physical activity, apha-
sia training, cognitive assessment, training for patients with
unilateral spatial neglect, education for home-based exercise,
and functional skill training [11].

The effectiveness of mobile health programs was stud-
ied by Chung et al. [12] which showed that a mobile
video-guided home exercise program for stroke patients has a
higher self-efficacy and exercise adherence than paper-based
programs. Several studies focused on increasing and promot-
ing physical activity in patients. For example, an evidence-
based behavior change technique was used through interactive
mobile applications [13], and a finger training app on tablet
PCs was developed to restore the ability to use the affected
hands of stroke patients [14]. Ballard et al. [15] developed a
language therapy application to improve the word-production
ability of stroke patients suffering from apraxia of speech and
aphasia.

Recently, there has been growing interest on mobile appli-
cations providing stroke rehabilitation programs on language
and speech skills, physical therapy, and exercises [16], [17].
Some applications were developed for upper extremity reha-
bilitation. For example, studies in [18] and [19], developed
software systems in which mobile applications are coupled
with objects generated by 3D printers, resulting in high effi-
cacy in home-based upper limb rehabilitation. Rehabilitation
treatment programs in mobile game-based virtual reality were
shown to be effective in promoting the recovery of upper
limb function in stroke patients [20], [21], [22]. Most upper
limb exercises can be performed while sitting down and,
with a suitable guide, pose no significant safety risks even if
performed on their own by the patients. Therefore, it is appro-
priate to develop an upper limb exercise program as a mobile

health application. The unique features of our application,
such as automated action evaluation and personalized exercise
recommendation, are expected to be of great help to stroke
patients.

B. Automated Assessment of Motor Function
The use of various sensing equipment in the automated

assessment of motor function in neurorehabilitation has
recently been explored [23], [24], [25], and a description of
representative sensors is provided in Table I. Joint tracking
data from Kinect [26] have been used to evaluate the motor
function of patients using machine learning algorithms [27],
[28]. Data from additional sensors such as IMU sensors
[29] and force sensing resistors [30] were integrated with
Kinect data to analyze the patients’ movements. sEMG signals
collected during daily activities have been used to evaluate
patients’ Brunnstrom stage of recovery [31]. A home rehabil-
itation system [32] has been developed using a smartwatch
to collect IMU accelerometer and gyroscope data. In addi-
tion, several works studied the deep learning-based action
recognition for post-stroke rehabilitation using IMU sensors
[33], [34] or Kinect [35], [36]. However, the aforementioned
studies used sensor equipment, which limits their widespread
usage in home rehabilitation. Unlike these studies, our model
only requires a (smartphone) camera, helping patients perform
self-administered rehabilitation without significant limitations
in equipment.

C. Deep Learning for Action Recognition
The task of action recognition in videos has been extensively

studied using deep learning. I3D [37] has proposed to inflate
2D convolutional filters and pooling into 3D filters, and it uses
two streams of data: RGB and optical flow data. ResNet3D
[38] has extended the popular ResNet architecture to 3D
data to prevent overfitting. ResNeXt3D [39] has applied a
grouped convolution to the bottleneck module of ResNet3D
to improve efficiency of the model. X3D [40] has explored
the accuracy-complexity trade-off by expanding 2D data at
various temporal and spatial dimensional scales. TDN [41]
has captured local and global temporal information by learning
short and long-term differences in motion. TimeSformer [42]
has proposed a Divided Space-Time Attention which applies
self-attention to the temporal feature of the video, as well
as the spatial feature. MViT [43] has applied a 4-stage scale
hierarchy to Vision Transformer where the deeper the stage,
the lower the spatial resolution of the feature and the higher
the channel dimension. In addition, there have been studies
on fine-grained action recognition for automated evaluation
[44], [45], [46] that focused mostly on discriminating between
different types of action tasks with a wide range of motion. In
contrast, we address the problem of assessing identical tasks
which show relatively small differences across participants.
This is achieved by proposing a novel modality fusion method
that combines RGB and optical flow data to detect small
changes in motion at the pixel level.
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TABLE I
DESCRIPTION OF VARIETY OF SENSORS FOR REHABILITATION PURPOSE

Fig. 2. Overall architecture of the proposed model.

III. DEEP LEARNING ALGORITHM

A. Assessment of Upper Extremity Function

The videos of patients performing a reach-to-grasp task
were recorded with the patients’ consent. The task consisted of
reaching for and grabbing a plastic cone that was placed on a
table. This task was adopted from the Reaching Performance
Scale (RPS) [9], which was developed to evaluate compen-
satory movements in the upper extremity during reaching
and grasping tasks [9], [47], [48]. In RPS, the following
six components are evaluated: trunk displacement, movement
smoothness, shoulder movements, elbow movements, prehen-
sion, and global score. We used the global score, which
evaluates the global quality of movements in the upper limb.
According to the RPS, the global score has four levels [9]:

• Score 0: Less than half the task is accomplished despite
modifications.

• Score 1: The task is done partially (≥ 50%) or with
modification (such as stabilization of the cone, sliding
the cone on the table, modification of table height, shorter
distance to the cone). Prehension may be absent.

• Score 2: The task is done in the presence of tremor; dys-
metria; small, jerky movements; arc-shaped trajectory or

segmentation. Prehension is possible but may be modified
or difficult.

• Score 3: The task can be done easily, with or without
mild tremor or dysmetria, following a smooth and direct
trajectory.

B. Deep Learning Model for Automated Assessment
We present a deep learning model for classifying patients

performing reach-to-grasp tasks into the four global score
levels. The model uses only patients’ videos as input, and
it does not use any additional equipment such as depth or
IMU sensors. Another challenge for the model is that the
patients perform identical tasks. Thus, the differences between
movements that are classified to different levels are subtle,
which is not the case for typical action recognition tasks, such
as differentiating between jumping and sleeping [37]. It would
be beneficial to detect small changes in movement at the pixel
level. Thus, in addition to the RGB data, we propose using
optical flow data [49], i.e.the rate of change in pixel values in
the 2D field, as complementary information to the RGB data.

As depicted in Fig. 2, our model consists of four
stages: preprocessing, feature extraction, modality fusion, and
classification.
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Fig. 3. Overall architecture of the proposed model combining MLPMixer
and cross-attention for modality fusion. (a) The RGB and optical flow
features are concatenated and fed into the MLPMixer. (b) The MLPMixer
performs modality and feature mixing to generate the global mixed
feature. (c) We used the mixed feature as Key, Value, and the RGB
feature as Query of Cross-Attention module with the Adapter layer.

1) Preprocessing: The inputs to the model are the RGB
and optical flow data, both of which are extracted from
the video. The collected videos are of varying durations,
depending on the patients’ performance levels, and range from
36 to 441 frames in length. Patients who achieved high scores
required a relatively short amount of time, whereas patients
with low scores required more time because they felt relatively
uncomfortable with the task. However, the frame length of the
input videos had to be identical for the training of the model.
Thus, a frame sampling was performed similarly to the process
in a previous study [50], and the input frame length was fixed
to 100 after preprocessing.

2) Feature Extraction: To obtain high-level spatio-temporal
feature from the input, we first extracted a feature map using
the ResNet3D-50 backbone [38], which is widely used in
action recognition. A ResNet3D model was pre-trained on the
Kinetics dataset [37], which contains 650,000 video clips of
human actions. Subsequently, a Transformer encoder [51] was
used to capture the latent semantic and global dependency of
the spatio-temporal feature output by the backbone.

The output feature from the backbone undergoes several
transformations before being input to the Transformer encoder
as follows. A feature map output by the backbone has dimen-
sions C × T × H × W , which represents T frames of size C ×

H ×W , where C , H , W , and T denote channel, height, width,
and temporal dimension, respectively. The spatial dimension
is squeezed out by the 2D spatial average pooling to change
the feature dimensions to C × T which is permuted to the
dimensions T × C . Each feature vector in the time dimension
is then projected to an h-dimensional vector. As a result, the
output feature has the dimensions T × h, which represents T
tokens of feature of size h. The token sequence is input into the
Transformer encoder after positional encoding is applied to it.
A basic Transformer block [51] was used for the Transformer
encoder.

Fig. 4. Overall architecture of MLPMixer [52]. (a) MLPMixer performs
modality mixing and feature mixing. In the modality mixing step, the
input is transposed to mix the tokens at the same position in the
different modalities. The output of modality mixing is mixed in feature
dimension in the feature mixing step. (b) In both mixing processes, the
feature is processed by MLP blocks. The MLP block consists of two
fully-connected layers and GELU.

3) Modality Fusion: We propose a novel module to effec-
tively fuse the features extracted from the RGB and optical
flow data. There exists an asymmetry in the modalities: RGB
data is the main modality, whereas optical flow is a modality
derived from RGB data. Our model is designed to capture
such asymmetry, and attempt to extract information mainly
from RGB feature; it uses optical flow feature as contextual
information.

As shown in Fig. 3, our model fuses RGB and optical flow
data in two steps. First, the features of two modalities output
from Transformer encoders are concatenated and passed to
the MLPMixer [52]. The MLPMixer first mixes the concate-
nated feature across modality dimensions (modality mixing)
to generate the intermediate feature and then further mixes
the intermediate feature (feature mixing). The details for the
architecture of the MLPMixer are provided in Fig. 4.

Second, the mixed feature is passed as key-value pair to the
cross-attention module [51], and the RGB feature is passed as
a query. The assignment of query, key, and value is consistent
with our design intention such that RGB is the main modality,
whereas the mixed modality that contains optical flow is
used for contextual feature [51]. Thus, our model learns the
association between the modalities through cross-attention.
The adapter layer [53] is then added for parameter-efficient
tuning of the Transformer block. Finally, classification is
performed on the output from the modality fusion module
using the fully connected layer.

4) Loss Function: We applied PolyLoss [54], which is based
on cross-entropy as the loss function. The cross-entropy quan-
tifies the discrepancy between the output confidence of the
model and the ground truth of the data. PolyLoss generalizes
the cross-entropy by expanding the loss function with Taylor
polynomials. One recommended type of PolyLoss is the first-
order Taylor polynomial combined with cross-entropy, which
is called Poly-1 loss [54]. The cross-entropy loss and Poly-1
loss are given by

LCEi = − log(pi ) (1)
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Fig. 5. Sample exercises in four categories.

LPOLY =

N∑
i=1

{LCEi + ϵ1(1 − pi )} (2)

where N denotes the number of video samples, pi denotes the
prediction confidence for the target ground truth score given
input video i , and LCEi is the cross-entropy loss for input i .
The hyperparameter ϵ1 is called the perturbation coefficient.
Poly-1 loss has shown better performance empirically than the
cross-entropy or focal loss on several benchmarks for image
classification [54].

IV. DEVELOPMENT OF MOBILE APPLICATION

A mobile application was developed to support self-
administered upper extremity exercise based on the automated
evaluation by the proposed deep learning model. The degree
of upper limb function after stroke varies widely, from the
extent that it is impossible to perform any functional move-
ments, to the extent that it is somewhat inconvenient but
functional movements can be performed. Therefore, it is
necessary to develop an exercise program based on each
patient’s upper limb disability after proper evaluation. Fig. 1
shows an overview of how users are evaluated for their own
exercise level using the automated model proposed in the
previous section and receive the exercise recommendations.
In our application, we used a four-stage exercise level based
on reach-to-grasp task.

A. Features of The Mobile Application
The mobile application contains various features supporting:

my information, evaluation section, daily exercise, list of

Fig. 6. Screenshots of proposed mobile application. (a) My information:
This menu includes the user’s personal details, such as user category
(patient, caregiver, health professional), date of onset, and paralyzed
side. (b) Evaluation section: This menu evaluates the user’s upper
extremity function using two methods: uploading a video of reach-
to-grasp or answering a questionnaire. (c) Daily exercise: This menu
shows five daily exercises each day. (d) List of exercises: This menu
shows a list of exercises in four categories. (e) My current exercise
status: This menu shows the exercise status in a calendar format.
(f) Notification: The user can set a notification alarm on this page for
routine exercises.

exercises, my current exercise status, and notification. The
features are explained in detail with screenshots: see Fig. 6
and its caption.

B. Types of Exercises for Upper Extremity
A total of 57 exercises in four category types (postural

or balance exercise, range of motion exercise, strengthening
exercise, and task-oriented training) were developed. The
exercise program was divided into four exercise levels to
accommodate different levels of upper extremity function and
was designed as a 1-month program for patients.

The recommended exercises consisted of postural or bal-
ance exercises (n = 9), range of motion exercises (n = 7),
strengthening exercises (n = 16), and task-oriented trainings
(n = 25). Postural or balance exercise involves trunk flexion
and weight-shifting. Range of motion exercise is performed
on the shoulder, elbow, wrist, and finger joints. Strengthening
exercise requires sandbag, dumbbell, thera band, handgrip
equipment, socks, and hair tie for resistance. Task-oriented
training is completed using cups, towels, and buttoned shirts,
which are commonly found in everyday life. The exercises
consist of bimanual activity, one-hand activity, and in-hand
manipulation. A list of all the recommended exercises is pro-
vided in Table II. A group of specialists consisting of physical
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TABLE II
LIST OF 57 RECOMMENDED EXERCISES IN FOUR CATEGORIES

therapists, occupational therapists, and rehabilitation medicine
doctors with more than 10 years of experience brainstormed
to determine exercises which patients with hemiplegia could
perform safely without help. The specialists selected exercises
which can be safely performed while sitting based on the
motor function score. Exercise for motor function Score 0 pri-
marily includes passive joint exercises and trunk exercises,
as most patients at this stage are unable to extend their arms
on their own. Score 1 exercises are for patients who can
extend their arms but have difficulty using their hands properly.
Thus, the exercises consist of active shoulder and elbow joint
exercises, passive wrist and finger joint exercises, and trunk
exercises. Score 2 corresponds to patients whose arms can be
extended and hands can be used but there are challenges in fine
movements. Thus, task-oriented training which emphasizes
fine motor skills in addition to active joint and trunk exercises
is included. Exercises for Score 3 are similar to those in
Score 2, but are somewhat more difficult and include strength
training. Fig. 5 shows samples of the recommended exercises
by each category. Our application recommends five exercises
on a daily basis. The difficulty levels are chosen based on
the assessed scores of motor function as follows. For patients
with score 0, only the exercises with difficulty level 1 is
recommended. For patients with score 1, exercises of difficulty
levels 1 and 2 are recommended in the ratio 3:2. For patients
with score 2, exercises with difficulty levels 1, 2, and 3 are
chosen in the ratio 2:2:1. For patients with score 3, exercises
with difficulty levels 1, 2, and 3 are recommended in the
ratio 1:2:2.

C. Security and Privacy Considerations

For data security and privacy, users’ authorization to access
the application was controlled on the login page, which
appears first on opening the mobile application. To gain access,
the page requires the users to enter an assigned unique email
address and password. The data from the mobile application
is transferred from the application to cloud storage through

TABLE III
GENERAL CHARACTERISTICS AND CLINICAL DATA OF PARTICIPANTS

encryption, which makes the data illegible and unusable to
unauthorized persons.

V. EXPERIMENT

A. Setup
1) Dataset: A total of 100 stroke survivors with hemiplegia

were recruited from Korea University Guro Hospital and Sah-
myook Medical Center. The participants needed to meet the
following inclusion criteria: have hemiplegia due to ischemic
or hemorrhagic stroke, be aged > 18 years, have given their
informed consent, and have adequate cognitive function to
understand the instructions and perform the tasks appropri-
ately. The NIHSS and Fugl-Meyer Motor Assessment (FMA)
[6], [25], [27], [29], [30], [32] of the upper extremity were
used. This protocol was approved by the regional Institutional
Review Board of the Korea University Guro Hospital (IRB
No. 2021GR0178).

We obtained 793 videos of 100 stroke patients performing
reaching and grasping tasks using a smartphone (iPhone 13
Pro). Most patients performed a reaching task for a far and
a close target from four predetermined angles. Thus, approxi-
mately eight videos were obtained per patient. Two specialists
(an occupational therapist and a physiatrist) independently
evaluated the videos, and each patient’s exercise score was
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TABLE IV
COMPARISON BETWEEN OUR MODEL AND THE SOTA MODELS IN

ACTION RECOGNITION. THE RESULTS WERE AVERAGED

OVER 20 REPETITIONS OF EXPERIMENTS

classified into one of four levels according to the global
score criterion in the RPS [9]. The intraclass correlation
coefficient of two specialists was high (0.972). If the two
specialists did not agree, another specialist evaluated that video
and assessed the patients score. After a discussion of three
specialists, the patient’s score was determined. A total of
673 videos were used for training, and 120 videos were used
for the performance evaluations. Details of the participants are
provided in Table III.

2) Implementation Details: For both modalities of RGB
and optical flow, the channel dimension of the output from
ResNet3D-50 backbone is 2048. The input of the backbone
model has a shape of 3 × 100 × 256 × 256. The output
is projected to 768-dimensional space using one FC (fully
connected) layer. For the Transformer encoder, the number of
encoder layers is 3, the number of attention heads is 12 and
the feedforward dimension is set as input dimension × 4. The
cross-attention module has 12 attention heads, and the dimen-
sion of hidden states is 3072. The dropout rates of positional
embedding, Transformer encoders, and cross-attention are all
set to 0.2. The classification network is constructed with an
FC layer with an input dimension of 768. Our model was
trained on one NVIDIA RTX 3090 GPU for 200 epochs with
a batch size of 2. We used SGD(stochastic gradient descent)
optimizer, and the initial learning rate was set to 0.001.

B. Classification Performance
1) Baseline Methods: To demonstrate the effectiveness of

the proposed model in discriminating between fine-grained
movements by patients, we compared our model with four
existing SOTA action recognition models and video classi-
fication models as the baselines: I3D [37], ResNet3D [38],
ResNeXt3D [39], X3D [40], TDN [41], TimeSformer [42],
and MViT [43].

2) Results and Discussion: As shown in Table IV, the over-
all accuracy of the proposed method was 86.08%. The Pearson
correlation coefficient between the actual and the predicted
scores showed a high correlation with R = 0.93, p <

0.001. Compared with ResNet3D, ResNeXt3D, X3D, TDN,
TimeSformer, and MViT which used only RGB data, the
proposed model showed a significant improvement in accuracy
using the combined RGB and optical flow data. Notably,
I3D also used a two-stream network that combined RGB
and optical flow data [37]. However, our model outperformed
I3D by a large margin. This result demonstrates that simply

TABLE V
(A) CONFUSION MATRIX ASSOCIATED WITH THE PREDICTED SCORE

(B) AVERAGE FMA SCORES ASSOCIATED WITH THE

PERFORMANCE SCORE OF PATIENTS

TABLE VI
ABLATION STUDY

combining two streams is insufficient, and the proper fusion of
the streams is crucial for the fine-grained evaluation of motor
function.

Table V(a) presents the confusion matrix associated with
the prediction output of our model. The degree of confusion
was relatively high between the two highest scores, i.e., score
values of 2 and 3. The patients who achieved high scores
were able to accomplish the task in a relatively short time.
Thus, the variability in motion across those videos would
be low, which makes them more difficult to classify. By
contrast, the motion of patients with low scores would show
greater variability, because they tend to perform the task with
hesitation or difficulty [9]. This observation is supported by
the results in Table V(b) which shows the average FMA scores
associated with the performance scores of participants. The
construct validity between RPS and FMA is strong (Spearman
rho = 0.88-0.89, p < 0.0001) [47]. In the table, the gap
between FMA scores for participants of scores 0-1 and 1-2
is approximately 18, however, the gap in the FMA score
decreases to about 12 for participants with scores 2-3. Thus,
the difference in motor skills for participants with high scores
is potentially small. In addition, our model rarely made a
prediction that was incorrect by 2 or more score points,
i.e., there were only 3 such cases in total of 120 videos.

3) Ablation Study: We performed an ablation study on the
following components in our model: (i) the use of the two
modalities of RGB and optical flow data; (ii) the modality
fusion network. We considered the following three baselines:
(1) RGB-only; only the branch for feature extraction from
RGB in Fig. 2 is used. (2) Optical flow-only; only the
branch for feature extraction from optical flow in Fig. 2
is used. (3) Recently proposed model for modality fusion
[55]; the RGB and optical flow features are fused using the
multimodal fusion Transformer proposed in [55]. Table VI
shows the performance accuracies for the ablation study. The
results show that the multimodality approach and the proposed
method for fusing multimodal features are the most effective
for fine-grained motion assessment.
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TABLE VII
MOBILE APPLICATION RATING SCALE

C. Usability and Quality of Mobile Application
The mobile implementation was on Galaxy Note 10 device

based on Android 12 and Exynos 9825 chipset. The inference
of evaluation scores is performed on NVIDIA RTX 2080 GPU
at the server. The latency of the overall process between the
initiation of uploading videos and the display of scores was
9.5 seconds on average.

The Mobile Application Rating Scale (MARS) [56] was
used to assess the usability and quality of the health mobile
application. MARS contains five broad categories of criteria,
including four objective quality scales: engagement, function-
ality, aesthetics, and information quality, and one subjective
quality. In total, 30 people (10 patients, 10 physiatrists, and
10 therapists) rated the application using the MARS, and the
results are shown in Table VII. The mean score of applica-
tion quality was 3.64 ± 0.55 (perfect score = 5), and the
mean subjective application score was 14.97 ± 2.90 (perfect
score = 20).

VI. CONCLUSION

In this paper, we proposed a deep learning model which
automatically evaluates stroke survivors’ upper extremity func-
tion based only on videos in which the patient performs
reach-to-grasp task. We adopted a multimodality approach to
discriminate between subtle movements of patients performing
identical tasks. The proposed model with modality fusion was
effective in fine-grained assessment, and it significantly outper-
formed existing SOTA models for action recognition. Based
on the proposed model, we developed a mobile application
that supports self-administered upper limb exercise for patients
with hemiplegia. Based on the MARS assessment criteria,
this application has garnered favorable evaluations in terms
of quality from its prospective user base.

This study has some limitations. First, we focused on
developing a mobile application and its quality and usability.
The effectiveness of the application was not investigated, and
further long-term studies are required to address this limitation.
Second, our application does not record the patient’s exercise
performance or provide feedback on the appropriateness of
exercise performance. Further development of algorithms is
needed to resolve such one-sidedness of our application.

In the future, we plan to enhance the assessment model by
utilizing additional modalities of task execution of patients.
In this work, we chose the modality of RGB and optical
flow (derived from RGB) for the widespread adoption of
our mobile application. However, if additional sensors or

measurements (e.g., depth sensors, joint estimation) become
more widely available, we aim to exploit such modalities
in our subsequent research for more precise evaluation. In
addition, we envision an advanced rehabilitation system that
combines visual assessment of motion with numerical analysis
of joint and muscle movements. This research will aim at
developing an interpretable model which provides logical and
explainable feedback for self-administered rehabilitation.
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