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Abstract— Balance plays a crucial role in human life and
social activities. Maintaining balance is a relatively complex
process that requires the participation of various balance
control subsystems (BCSes). However, previous studies
have primarily focused on evaluating an individual’s overall
balance ability or the ability of each BCS in isolation,
without considering how they influence (or interact with)
each other. The first study used clinical scales to evaluate
the functions of the four BCSes, namely Reactive Postu-
ral Control (RPC), Anticipatory Postural Adjustment (APA),
Dynamic Gait (DG), and Sensory Orientation (SO), and
psychological factors such as fear of falling (FOF). A hier-
archical structural equation modeling (SEM) was used to
investigate the relationship between the BCSes and their
association with FOF. The second study involved using
posturography to measure and extract parameters from the
center of pressure (COP) signal. SEM with sparsity con-
straint was used to analyze the relationship between vision,
proprioception, and vestibular sense on balance based on
the extracted COP parameters. The first study revealed
that the RPC, APA, DG and SO indirectly influenced each
other through their overall balance ability, and their asso-
ciation with FOF was not the same. APA has the strongest
association with FOF, while RPC has the least association
with FOF. The second study revealed that sensory inputs,
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such as vision, proprioception, and vestibular sensing,
directly affected each other, but their associations were
not identical. Among them, proprioception plays the most
important role in the three sensory subsystems. This study
provides the first numerical evidence that the BCSes are
not independent of each other and exist in direct or indirect
interplay. This approach has important implications for the
diagnosis and management of balance-related disorders in
clinical settings and improving our understanding of the
underlying mechanisms of balance control.

Index Terms— Balance control subsystem (BCS), causal
effect, clinical scale, fear of falling (FOF), interaction, pos-
turography, structural equation modeling (SEM).

I. INTRODUCTION

A. Reviews on Balance Evaluation

ACCORDING to the World Health Organization, bal-
ance dysfunction-related falls have emerged as the

second-leading cause of accidental death [1]. In numerous
countries, falls have become the primary cause of unintentional
injury-related disability, significantly impacting individuals’
physical and mental well-being, as well as overall societal
safety. This places a substantial burden on families and society
as a whole [2], [3], [4]. Additionally, diseases such as strokes
and Parkinson’s highlight the importance of balance assess-
ments to predict prognosis and rehabilitation outcomes [5],
[6]. Moreover, accurate evaluation of balance ability plays a
critical role in candidate selection for specific professions like
athletics and aviation [7], [8]. Therefore, assessment of balance
ability and exploration of balance control mechanisms hold
significant importance across societal domains [9].

Currently, two research methods are commonly used to
assess balance: the scale method and the instrumentation
method [10], [11], [12]. The scale method includes tests such
as the Mini-Balance Evaluation Systems Test (Mini-BESTest)
and the Short International Fall Effect Scale (SFES-I) [13],
[14]. On the other hand, the instrumentation method involves
tests such as the Sensory Organization Test (SOT), which is
based on posturography [15].

(1) The scale method is commonly used for assessing
balance and involves standardized tests to evaluate an individ-
ual’s ability to maintain balance in a variety of positions and
situations. These tests encompass tasks such as standing on
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one leg, walking on a narrow beam, and performing dynamic
movements while maintaining balance. The scores obtained
from these tests are then compared to normative data to deter-
mine the individual’s overall balance ability. In recent years,
a subsystem approach, exemplified by the Mini-BESTest, has
gained prominence in identifying the underlying causes of
balance deficits and designing targeted rehabilitation strategies
for specific impairments. The Mini-BESTest incorporates a
range of individual balance assessments from various scales,
including the Berg Balance Scale [16]. Additionally, it includes
a dual-task item and postural response items, enabling mea-
surement of four distinct balance control subsystems (BCSes):
Anticipatory Postural Adjustments (APA), Reactive Postural
Control (RPC), Sensory Orientation (SO), and Dynamic Gait
(DG). The Mini-BESTest consists of 14 homeostasis tasks
categorized into these BCSes. In Magnani et al., the com-
bination of Mini-BESTest with Time Up and Go and gait
speed achieved 89% accuracy in identifying elderly individuals
at high risk of falls [17]. Zhu et al. utilized Mini-BESTest
to assess balance in patients with bilateral vestibular lesions
and found that the SO subsystem degrades with age in these
patients [18]. Phyu et al. demonstrated the high responsiveness
of Mini-BESTest in evaluating balance exercise training in
patients with type 2 diabetes and peripheral neuropathy [19].
According to King et al., individuals with Parkinson’s disease
may exhibit abnormal RPC but a normal SO subsystem,
allowing them to maintain balance with their eyes closed on
an unstable surface. Conversely, those with normal RPC may
experience abnormal SO, resulting in difficulties in maintain-
ing balance in that situation [20], [21].

(2) SFES-I is commonly used to assess fear of falling (FOF)
and has been found to have good reliability and validity.
By measuring and analyzing 751 older individuals living in
the community, Kuo et al. established a link between frailty
and quality of life in the elderly. Their findings suggest that
this scale could enhance the feasibility of falling screening for
older individuals [22]. Mehdizadeh et al. measured the scale
of Parkinson’s disease patients and showed that the SFES-I
has good psychometric properties in disease diagnosis [23].
Scholz et al. revealed that the SFES-I was one of the most
frequently used scales for multiple sclerosis to evaluate the
progression of disease [24].

(3) In the past decade, there has been a significant increase
in the availability of clinical tools to enable quantitative
assessment of postural sway. As a result, an increasing num-
ber of physical therapists and physicians are incorporating
posturography into their practice to customize treatments.
Sensory perturbations, such as manipulating the visual scene,
galvanic vestibular stimulation, and tendon vibration to disrupt
proprioception, can be used to selectively manipulate one or
more sensory inputs for postural control. These perturbations
provide valuable insights into how each subsystem contributes
to balance control and how individuals adapt to maintain
balance in different environments. The SOT is a commercially
available system which allows for systematic evaluation of
sensory contributions to balance control in a clinical setting.
It enables the visual surroundings or support surface, or both,
to be “sway-referenced,” meaning tilting in response to body

sway, creating conditions in which visual and/or somatosen-
sory inputs suggest that the subject is not swaying, which
requires the nervous system to interpret the new sensory con-
ditions and rely more heavily on sensory inputs that provide
useful feedback about body sway. For example, when the
surface under a subject is sway-referenced while their eyes
are closed, or if they are looking at sway-reference visual
surroundings, they must rely more on vestibular inputs to
maintain balance.

Posturography is a commonly used technique for evaluating
balance and postural control, particularly with the use of SOT.
It involves measuring the center of pressure (COP) signal of
the body while standing on a force plate or other instrumented
surface [25], [26]. By analyzing COP data, posturography can
detect deficits in the three balance control subsystems: vision,
proprioception, and vestibular sense. The visual subsystem
provides information about the body’s position in relation to
the environment, and is particularly important for postural
stability when the eyes are open. However, when the eyes
are closed, reliance on visual information decreases, and other
sensory subsystems become more central. The propriocep-
tive subsystem provides information about the position and
movement of the limbs and joints, which is essential for
postural stability, especially in situations with limited visual
information or when standing on a hard surface. The vestibular
subsystem plays a critical role in postural stability, especially
during dynamic movements such as standing on a soft surface
with eyes closed [15]. In studies by Prieto et al., differences
in the three sensory subsystems (vision, proprioception, and
vestibular sense) were found in patients with age-related dis-
eases such as Parkinson’s, vestibular dysfunction, and strokes
based on COP trajectory measurements obtained through
posturography [27]. Alizadeh et al. also used posturography
to evaluate vision, proprioception, and vestibular sensation of
posture control in patients with chronic neck pain, and found
that while no abnormalities were observed in their vestibular
or visual subsystems, the proprioceptive subsystem seemed
to be affected [28]. Quijoux et al. reviewed COP variables to
quantify standing balance in elderly individuals, and concluded
that COP has important applications in fall prevention, such
as early detection of balance degradation [29].

Previous research has demonstrated the high reliability and
effectiveness of scale and instrumentation methods for diag-
nosing and evaluating an individual’s balance ability. However,
these studies have solely concentrated on assessing either an
individual’s overall balance ability or the ability of each BCS
in isolation, without taking into account the influence between
the BCSes. Consequently, this study employs the structural
equation modeling (SEM) method to analyze the relations
between BCSes.

B. Structural Equation Modeling
The statistical technique known as SEM utilizes a combi-

nation of factor analysis and multiple regression to examine
the intricate causal relationships among latent variables. These
variables are theoretical constructs that are not directly observ-
able but are believed to underlie the observed variables. Since
latent variables cannot be measured using a single indicator,
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they are inferred from a set of observed variables that are
believed to be related to the underlying construct [30], [31],
[32]. For instance, in a study of academic achievement,
intelligence might be the latent variable, whereas grades and
test scores might be the observed variables [33]. SEM enables
us to model these relationships, estimate the direction and
magnitude of the effects of latent variables on each other
and on the observed variables, and provide a comprehensive
understanding of the complex relationships among variables.

C. Analysis of the Relations Between Balance Control
Subsystems Based on Structural Equation Modeling

Balance is a fundamental aspect of human life and social
activities, and it involves a complex process that requires the
participation of various BCSes. Although prior studies have
assessed an individual’s overall balance ability or the ability
of each BCS separately, they have not examined how these
subsystems influence (or interact with) one another. To bridge
this gap, we utilized SEM in this study:

(1) In the initial part of the study, a hierarchical SEM
in conjunction with the mini-BESTest scale was utilized to
examine the impact of four distinct BCSes - RPC, APA, DG,
and SO - on overall balance ability. This approach allowed
for a more comprehensive evaluation of each subsystem’s
contribution to overall balance control, thereby unveiling the
indirect influence relationship between different BCSes. In the
latter part of the first study, we utilized the SFES-I to evaluate
FOF and investigate the impact of psychological factors on
overall balance, as well as the reciprocal relationship.

(2) In the second part of the study, the researchers aim
to assess the direct influence of vision, proprioception, and
vestibular sense on each other in relation to balance. This
evaluation is based on the parameters extracted from the COP
curve using SEM with sparsity constraint, which facilitates the
identification of the most relevant COP parameters to describe
how vision, proprioception, and vestibular sense function
together to impact balance.

II. METHODS
A. Data Collection and Processing

In this study, a public Human Balance Evalu-
ation Database was implemented, and it can be
accessed and downloaded through the website:
https://physionet.org/content/hbedb/1.0.0/. A total of
163 subjects (116 female and 47 male) participated in
the experimental data collection [34]. The evaluation process
involved interviews with the subjects to gather information
regarding their socio-cultural, demographic, and health
characteristics. The subjects spanned a range of ages from
18-85, with 72 subjects over 60 years old. Their body masses
were between 44.0-75.9 Kg, heights between 140.0-189.8 cm,
and body-mass indexes (BMI) between 17.2-31.9 Kg/m2.
Additionally, each subject underwent an interview with
clinical doctors who evaluated their medical history and
current health status, along with other qualitative assessments.
It is important to note that all subjects met the qualifications
for this test. Scale evaluations were conducted on each subject

Fig. 1. The time-dependent coordinate position of the COP signal for
one subject in the x-axis direction on top and in the y-axis direction at
the bottom.

using the mini-BESTest and the SFES-I (the assessments were
conducted through individual interviews in a well-illuminated
room measuring 7.5 × 5.7 m, following the specific guidelines
of the test). The SFES-I comprises seven items, each scored
on a four-point scale (1)-4 points). A higher score indicates
greater concern about falling. Please refer to Appendix for
details on the scale items. The mini-BESTest comprises
14 items scored on a three-point scale (0-(2), which assesses
four balance subsystems: APA, RPC, SO, and DG. Each
BCS is reflected in the corresponding scale item, as shown in
Appendix.

The balance of all participants was evaluated by collect-
ing COP signals using a commercial force platform (40 ×

60.132 cm, OPT400600-1000, AMTI, U.S.) and amplifier
(Optima Signal Conditioner, AMTI, U.S.) at a sampling
frequency of 100 Hz. The foam balance board contained a
6-cm height foam block (Balance Pad, Airex, U.S, stiffness:
69.4kg/m3). Signal acquisition was performed for each partic-
ipant under four different conditions to assess balance (Each
trial lasts for 60 seconds). These conditions were defined as
follows:

Condition 1: Standing with eyes open on a rigid surface
Condition 2: Standing with eyes closed on a rigid surface
Condition 3: Standing with eyes open on an unstable surface
Condition 4: Standing with eyes closed on an unstable

surface
Participants were randomly assigned to four experimental

conditions, with three acquisitions per condition. In all con-
ditions, participants were instructed to stand barefoot at a
20-degree angle, as still as possible, with arms at their sides
and gaze fixed on a 5 cm circular black target positioned
3m above their eyes on the wall. During Condition 3 and
Condition 4 experimental conditions, participants stood on a
6 cm high foam balance board. To account for noise in the
COP signal during acquisition, a 10 Hz Butterworth low-pass
filter was utilized for processing [35]. After denoising the
COP signal, Fig. 1 illustrates an example of the trajectory
coordinates of the COP signal in the x and y-axis directions
over a 1-minute period. Figure 2 depicts the corresponding
COP trajectory in the x-y axis plane.

To extract COP features, the COP signal recorded in the x
and y-axis directions, as well as their corresponding COP tra-
jectory in the x-y axis plane, were analyzed. The specific COP
features under each experimental condition are presented in
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Fig. 2. The COP signal trajectory for one subject is plotted in the x-y
axis plane.

Table I. During the signal acquisition process, three repeated
measurements were taken for each subject under each of the
four experimental conditions. The three values obtained under
the same experimental conditions were averaged to represent
the overall performance under those conditions.

According to the previous observations on the human per-
ception system: vision, proprioceptive and vestibular sense
jointly maintain the balance of the human body, and dif-
ferent experimental conditions describe different perception
subsystems. Among them, the balance control mechanism of
experimental condition 2 (eyes closed, hard surface) is mainly
proprioceptive; the balance control mechanism of condition 3
(eyes open, soft surface) is mainly vision, and the balance
control mechanism of condition 4 (eyes closed, soft surface)
is vestibular sense (see Table II). Therefore, based on the COP
features obtained in Table I for each SOT condition and [36],
[37], [38], [39], we can derive newly constructed COP features
to characterize the vision, proprioceptive, and vestibular sense
abilities of individuals.

Pro (i) =
Fcondition2(i)
Fcondition1(i)

(i = 1, . . . , 9) (1)

V is(i) =
Fcondition3(i)
Fcondition1(i)

(i = 1, . . . , 9) (2)

V es (i) =
Fcondition4(i)
Fcondition1(i)

(i = 1, . . . , 9) (3)

where Pro(i), V is(i) and V es (i) represent the newly con-
structed COP features, which can describe the proprioception,
vision, and vestibular sense abilities of individuals, respec-
tively. For example, the newly constructed parameter Pro (1)

is determined by computing the ratio of Fcondition2(1) to
Fcondition1(1). Fcondition2(1) and Fcondition1(1) represent the
COP features extracted from the first row of Table I during
SOT conditions 2 and 1, respectively.

B. SEM Construction
SEM is a statistical technique that examines the rela-

tionships between variables by analyzing their covariance
matrices. SEM comprises two components: the structural
model and the measurement model. The measurement model
comprises latent and observed variables and serves as a mea-
surement tool to assess the appropriateness of using observed

TABLE I
THE FEATURES EXTRACTED FROM COP SIGNALS FOR EACH

EXPERIMENTAL CONDITION

TABLE II
SOT TESTING AND ITS CORRESPONDING BALANCE CONTROL

MECHANISM REVELATION

variables as indicators of latent variables. The structural model,
on the other hand, describes the causal relationships between
latent variables.

Given η = [η1, · · · , ηm]
T is the vector of an endogenous

latent variable with the dimension of m × 1, and y =

[y1, · · · , yp]
T is the vector of an observational variable with

the dimension of p × 1, i.e. an indicator of the endogenous
variable η, and then the general formula of the measurement
model is as follows:

y = 3yη + ε (4)

where 3y refers to the coefficient matrix from η to y, namely
the factor loading matrix of exogenous observational variables
on exogenous latent variables; ε is the p × 1 measuring error
of y, ε ∼ N (0, 2ε), and 2ε is the covariance matrix of
measuring error.

Similarly, as for n-dimensional exogenous latent variable ξ

and its corresponding q-dimensional observational variable x,
the general formula of the measurement model is as follows:

x = 3xξ + δ (5)

where, 3x refers to the q × n coefficient matrix from ξ to x,
namely the factor loading matrix of endogenous observational
variables on endogenous latent variables; δ is the q × 1 mea-
suring error of x, δ ∼ N (0, 2δ), and 2δ is the covariance
matrix of measuring error.

The structural model contains various latent variables only,
and the relationship between latent variables is simultaneously
estimated with the measurement model. For example, the
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Fig. 3. The proposed SEM model for the first study.

relationship between the endogenous variable η1 and the
exogenous variable ξ1 can be expressed as:

η1 = γ11ξ1 + ζ1 (6)

The endogenous variable η2 is associated with η1 and ξ1,
and it can be expressed as:

ζ2ζ1η2 = β21η1 + γ21ξ1 + ζ2 (7)

where and are the residuals for the above two equations.
Equation (6) and (7) can be expressed as a matrix:(

η1
η2

)
=

(
0 0

β21 0

) (
η1
η2

)
+

(
γ11
γ21

)
(ξ1) +

(
ζ1
ζ2

)
(8)

or the general form of the structural model:

η = Bη + 0ξ + ζ (9)

where B refers to the coefficient matrix of influence relations
between endogenous variables. 0 refers to the coefficient
matrix of influence relations of exogenous variables on
endogenous variables. The vectors η, ξ and ζ refer to
the endogenous variables, exogenous variables and residuals
for (9).

In this study, two models are established to explore the com-
plex relationship between various factors related to balance
control. Model 1 is used to study the effects of APA, RPC,
SO, DG on FOF (see Fig. 3). In Model 1, the higher-order
SEM is used; firstly, four BCSes are set, i.e. APA (η1), RPC
(η2), SO (η3) and DG (η4), and their co-influence source
“total balance system (ξ1)” is a higher-order factor, which is
an exogenous latent variable in this model, and there is no
subordinate observational variable [40]. In order to study the
relationship between balance and FOF, and the latent variable
- FOF (ξ2) is set. The observational variables y1, · · · , y14,
x1, · · · , x7 measured by Mini-BESTest and SFES-I can be
taken as the indicators for describing the corresponding latent
variables. The factor loadings λ1, · · · , λ21 are used to describe
the relationship between latent variables and observational
variables, γ11, · · · , γ14 are used to describe the relationship
between exogenous and endogenous latent variables, and
φ12, φ21 are used to describe the relationship between total

Fig. 4. The proposed SEM model for the second study.

balance ability and FOF. At the same time, the measuring
error of each observational variable is also quantified, such as
δ1, ε1.

Model 2 intends to study the mutual relation between
three sensory subsystems affecting balance (see Fig. 4).
In Model 2, three latent variables are set, i.e. the vestibular
sense (η1), vision (η2) and proprioception (η3); and the
posturography-derived COP features serve as observational
variables for describing the three latent variables [41].

The estimation of the SEM is the relationship between mini-
mized sample variance/covariance and the variance/covariance
estimated by the model. 6 is the overall variance/covariance
matrix representing observational variables y and x, and the
key to estimation of the SEM is to express matrix 6 as a
function of the free parameter θ in the hypothetical model,
with the underlying assumption of 6 = 6(θ), in which,
6(θ) is the variance/covariance matrix estimated by the model.
The objective of model estimation is to find a set of model
parameters (θ), and then minimize 6 − 6(θ). Maximum
likelihood is a common estimation method, but the premise is
that the data conform to multivariate normal distribution. Since
the data in this study do not conform to multivariate normal
distribution, MLR (Maximum likelihood with robust standard
error) is selected, which can better process the categorical data
in violation of the multivariate normal hypothesis. MLR esti-
mation adopts an asymptotically unbiased estimation method
and corrects the standard error and chi-square statistics. It is
calculated as follows:

acov (θ) = N−1(1′Iob1)−11′Iob0Iob1(1′Iob1)−1 (10)

where,

Iob = D′

{
6−1(θ) ⊗

[
6−1(θ)S6−1(θ) −

1
2
6−1(θ)

]}
D

Here, N is the sample size, 0 is estimated asymptotic
covariance matrix of S, 1 is the first-order derivative of
the parameter vector, ⊗ is the Kronecker product, and D
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is a “repetition matrix” in the process of Kronecker product
operation.

Furthermore, in the second study, the sparsity constraint is
added to SEM:

ξ̂i = arg min

lsm + λ1

27∑
j=1

ξ2
i j + λ2

27∑
j=1

∣∣ξi j
∣∣ (i = 1, 2, 3)

(11)

where,
ξ : (27 × 3) loading factor
lsm : the error sum of squares
λ1, λ2 : penalty factors
After model estimation, in order to determine whether

the proposed theoretical hypothetical model can be used to
describe the relationships between latent variables, the model
fitting evaluation is carried out for the constructed model.
In this study, six fit indices are used, as illustrated below [42].

(1) Standardized Root Mean Square Residual
The Standardized Root Mean Square Residual (SRMR) is a

residual-based index, which is unique in its direct dependence
on residuals. In contrast, the Root Mean Square Residual
(RMR) is calculated using the sample gap, and its magnitude
is influenced by the scale of the indices used. SRMR, how-
ever, employs standardized metrics, which provides greater
comparability across studies. This leads to greater ease of
interpretation of standardized SRMR values. SRMR is cal-
culated as follows:

S RM R =

√√√√√2
p
6

i=1

i
6
j=1

(si j − σ̂i j )2
/

(si i s j j )

p(p + 1)
(12)

where, si j − σ̂i j is the sample residual of the covariance of xi
and x j , and si i is the sample variance of xi .

(2) Root Mean Square of Error of Approximation
The Root Mean Square of Error of Approximation

(RMSEA) is one of the indices proposed earlier but still
favored by the researchers. It is calculated as follows:

RM SE A = max

[√
χ2 − d f

(N − 1)
/

d f
, 0

]
(13)

where d f is the degree of freedom of chi-square. RMSEA
measures the normative property of the off-center parameter
(χ2

−d f ). It is slightly affected by sample size, and it penalizes
complex models.

(3) Comparative Fit Index
The Comparative Fit Index (CFI) assesses the degree of

discrepancy between the postulated model and the null model,
which lacks any covariance relationships. CFI also accounts
for the spread of the evaluated model and the central chi-square
distribution. The calculation of CFI is as follows:

C F I = 1 −
max

[
(χ2

T − d fT ), 0
]

max
[
(χ2

T − d fT ), (χ2
N − d fN ), 0

] (14)

where χ2
N and χ2

T respectively refer to the chi-square values
obtained by the virtual fit model and hypothetical model.

(4) Tucker-Lewis Index

The Tucker-Lewis Index (TLI) is a measure of relative fit
that compares the hypothetical model to a nested model with-
out any covariance assumptions between observed variables.
TLI is calculated using the comparison principle of nested
models. The formula for TLI is as follows:

T L I =
χ2

N
/

d fN − χ2
T
/

d fT

χ2
N
/

d fN −1
(15)

The main shortcoming of TLI is the high sample volatility,
especially when the virtual model can better fit the sample
data. Nevertheless, it is still a more commonly used relative
index.

(5) Chi-Square to Degrees of Freedom Ratio
In SEM, the Chi-Square to Degrees of Freedom Ratio

(χ2/d f ) is a metric used to evaluate the model’s fit to the
data. It calculates the ratio of the model’s chi-square value to
its degrees of freedom, providing a measure of how well the
theoretical model aligns with the observed data.

(6) Incremental Fit Index
The Incremental Fit Index (IFI) is a commonly used mea-

sure of SEM to assess the overall model fit. It quantifies the
improvement in observed data fit relative to a perfectly fitting

model. The IFI is calculated as follows:

I F I =

[
1 −

(
χ2

M

/
χ2

F

)] 1
2 (16)

where χ2
M represents the model’s chi-square value, and χ2

F
represents the chi-square value of a hypothetical model which
perfectly fits the observed data. The IFI ranges from 0 to 1,
with values closer to 1 indicating better fit.

III. RESULTS

In this study, the fit statistics of our proposed models are
shown in Table III and IV, respectively. As can be seen,
we observed a good fitting model by several goodness-of-
fit indices. In the full models (see Fig. 5 and 6), we found
that the RPC, APA, DG, and SO BCSes indirectly influenced
each other through their overall balance ability, and their
association with FOF varied. APA has the strongest association
with FOF, while RPC has the least association with FOF.
Additionally, we discovered that sensory inputs, such as vision,
proprioception, and vestibular sensing, directly affected each
other, but their associations were not uniform. Among them,
proprioception plays the most important role in the three
sensory subsystems.

IV. DISCUSSION

A significant proportion of individuals aged 65 and above
experience challenges with balance or walking, with those
affected by neurological or musculoskeletal disorders at an
even higher risk of mobility issues. The intricacies of balance
control result in a range of balance problems that necessitate
BCS clinical assessment for effective treatment. However,
previous studies have focused solely on evaluating an indi-
vidual’s overall balance ability or the ability of each BCS in
isolation, without considering the interplay between BCSes
that characterizes an individual’s balance as a whole. This
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Fig. 5. Model of the first study using a SEM approach.

TABLE III
THE FIT STATISTICS OF SEM MODEL FOR THE FIRST STUDY

TABLE IV
THE FIT STATISTICS OF SEM MODEL FOR THE SECOND STUDY

study aims to address this gap by exploring the interplay
between BCSes.

The results shown in the Fig. 5 have several comments:
(1) The relationship between FOF and balance abilities has
been a topic of interest for researchers for many years. While
many studies have explored the correlation between these two
factors, few have examined their causal effects on each other.
Recently, there has been an increasing interest in investigating
the causal effects of FOF on balance abilities, and vice versa.

For example, Gazibara et al. found that FOF is one of the
factors that can cause falls in individuals over the age of
65, while Kendrick et al. demonstrated that exercise can
enhance balance control ability and further reduce FOF in
patients [43], [44]. However, most studies have analyzed the
causal effects between FOF and balance ability separately,
rather than simultaneously. Given that FOF and balance abil-
ities coexist in individuals, it is reasonable to investigate
their causal effects simultaneously. In this study, we aimed
to explore the simultaneous influence of FOF and balance
abilities on each other. Our findings suggest that balance
ability has a stronger impact on FOF than vice versa. (2)
This study also aimed to investigate the relationship between
FOF and BCSes. Our results revealed for the first time from
a data-driven perspective that the APA subsystem has the
closest relationship with FOF. Early clinical observations have
revealed a notable correlation between FOF and APA. Among
the main findings, individuals with FOF exhibit a significant
increase in APA latency: the time gap between receiving an
activity instruction and executing the corresponding postural
adjustment [45]. This suggests that individuals with FOF adopt
more conscious postural control, carefully regulating their
movements to prevent falls. However, this cautious strategy
can lead to incomplete movement execution and reduced
ability to adjust to interference, increasing the risk of falling.
A study of individuals with FOF performing a rise-to-toes
task at the edge of a high platform found a decrease in APA
magnitude due to this cautious strategy [46]. The influence of
FOF on APA may be linked to the co-contraction mechanism
proposed by Uemura et al. Individuals with FOF adopt stiff
postural strategies through simultaneous contraction of antago-
nistic muscles to reduce the risk of falls, which influences APA
to generate autonomous movements to anticipate and correct
for upcoming body disturbances [47]. Moreover, we found
that the relationship between RPC and FOF was the weakest
among the four subsystems. This is mainly because RPC
refers to an automatic movement of the trunk and limbs
when an individual is suddenly stimulated by external fac-
tors to change their center of gravity, causing the center of
gravity to return to its original stable state or establish a
new equilibrium state. In contrast, FOF mainly describes an
individual’s concern about losing balance in the future, rather
than the fear of losing balance due to sudden interruptions.
(3) This study employed a second-order SEM to investigate
the relationships among BCSes. This approach was chosen
for several reasons. First, the Mini-BESTest scale used in
this study is hierarchical, with the first layer representing the
function of individual BCSes and the second layer representing
overall balance control ability. Secondly, previous clinical
observation studies have suggested indirect, rather than direct
interactions between BCSes. As such, we selected a second-
order SEM, i.e. fork structure, which is a typical model for
studying indirect causal relationships between variables. (The
second-order SEM is a type of graphical model, which can
represent causal relationships among variables in a system.
It consists of a central variable influenced by two or more
other variables, which may not be directly related to each
other [48]). Additionally, we also explored the direct causal
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relationships among these four BCSes. Our findings suggest
that balance subsystems mainly affect each other indirectly
through the entire balance system, rather than through direct
causal relationships. Finally, it should be emphasized that the
aforementioned assertion is based on a mathematical modeling
approach, which merely alludes to the indirect relationships
among the four subsystems. From a physiological standpoint,
the functions of the four subsystems are regulated by mus-
culoskeletal factors, which can also be deemed as overall
contributing elements to the four subsystems. Consequently,
it is possible that the four balance subsystems could engage
in indirect physiological interactions through musculoskeletal
factors. (4) In this study, we used items of the scale as
observation variables to quantify the FOF and the functions
of BCSes. Our findings revealed significant differences in the
factor loadings between these observation variables. As is
well known, an individual’s balance ability is affected by
two important issues: the center of gravity and the support
surface [49]. A larger support surface leads to smoother
movements, while a stable and appropriate center of gravity
results in better balance. For instance, the item “walking on a
slope” in the FOF FES_6 item was found to have a relatively
large loading weight due to the unstable support surface and
the difficulty for individuals to maintain balance while walking
on a slope. On the other hand, the item “stand up and sit down
on a chair” in the FOF FES_3 item involves less movement of
the center of gravity compared to other items, and the support
surface is relatively stable, resulting in a small loading weight
in the SEM model. Furthermore, in the Mini-BESTest scale,
RPC refers to the pre-activation of corresponding posture mus-
cles before the body produces a target action or foreseeable
external force interference. Our results indicate that there is
a difference in the loading weights between Best_1, namely
“from sitting to station”, and Best_4, namely “compensatory
forward posture adjustment”. This loading weight difference
may be due to the fact that actions occurring in the former are
known in advance, while actions occurring in the latter are
unpredictable and cannot be proactively grasped by testers.
(5) It would be helpful to include other questions in the
FOF assessment such as confidence in not falling when being
pulled by a dog or bumped by a child, or ability to walk
on unstable surfaces. These questions would provide a more
comprehensive evaluation of an individual’s FOF. However,
the SFES-I is currently widely established and standardized
for evaluating FOF. Therefore, this study used the original
SFES-I for our SEM. Moreover, SFES-I is commonly used
among elderly individuals, but it can also be applied to subjects
of all ages without restriction. Its application orientation does
not provide any information indicating age limitations [50].
Therefore, it is entirely reasonable for this study to use SFES-I
to measure the participants of ages 18-85.

The findings presented in Fig. 6 provide several noteworthy
observations: (1) It is important to note that the visual, propri-
oceptive, and vestibular sensory subsystems play simultaneous
roles in inputting sensations into the neural center during
the process of maintaining balance. If one of these sensory
subsystems is damaged, the other subsystems will compensate
and play a greater role in balance control [51]. To model these

Fig. 6. Model of the second study using a SEM approach.

complex interactions, we employed the models of sensory
subsystems that directly affect each other, and our model
fits well. This supports the validity of our approach and is
consistent with preliminary clinical observations. (2) Based
on graph theory, the importance of hidden variables in a SEM
model is often assessed by examining the values of the path
coefficients connected to these variables. If the coefficients on
a given variable are large, it tends to play a more critical role in
the overall model. In our study, the respective path coefficients
between proprioception and the other two variables are 0.4 and
0.49, the highest values among all the paths. Therefore, based
on graph theory, it can be inferred that proprioception has
the greatest influence on balance control within the sensory
subsystems. (3) Previous clinical studies suggest that propri-
oception plays a significant role in the sensory systems of
healthy individuals. Specifically, it relies on proprioceptive
(70%), visual (10%), and vestibular (20%) information [51].
During postural control, proprioceptors in muscles, joints, liga-
ments, and other areas collect information about body changes
in response to the environment, and transmit it through sensory
pathways. In the case of nerve injury or abnormalities in
plantar skin and lower limb proprioception, individuals may
lose the ability to perceive the supporting surface, leading
to compromised postural stability, highlighting the critical
role of proprioception in balance control [52]. (4) We used
parameters F(1) – F(9) in Table I as observation variables to
quantify various sensory subsystems (i.e., latent variables) and
simultaneously adopted sparse constraint methods. As such,
the results only show observed variables that best reflect the
properties of latent variables. From the results, we can see that
parameters F(1) – F(4) is related to the distance traveled, while
parameters F(5) – F(8) is related to velocity and acceleration.
The parameters used to describe the visual system are mainly
concentrated in parameters F(1) – F(4), while the other two
subsystems have a strong association with distance, velocity,
and acceleration. These observations may be related to the
mechanism of action of the three major sensory subsystems.
For instance, the vestibular subsystem is known to be sensitive
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to velocity and acceleration, while the visual subsystem is
mainly sensitive to distance [53].

The following points need to be clarified: (1) In SEM,
randomly setting a path loading coefficient to 1 creates a
reference point or standard scale for other path coefficients.
This practice, commonly referred to as fixing the scale of
the model, allows for easier interpretation and comparison of
the magnitudes of the path coefficients. By fixing one path
loading to 1, all other coefficients are estimated relative to
this path, simplifying the analysis and facilitating meaningful
comparison. This computing strategy is widely recognized
as a standard operation in SEM and has been extensively
utilized across disciplines, including prestigious journals such
as Nature [54], [55]. (2) SEM is a statistical technique utilizing
multiple regression equations developed using data from a
large sample of subjects, rather than from just one. However,
only one multiple regression equation model can be created,
even when working with a dataset that includes many subjects.
Each dependent variable in this model has a unique coefficient,
rather than being a set. In SEM, each path is assigned a
loading coefficient that corresponds to a single coefficient
in the multiple regression model. This uniqueness can make
it challenging to identify meaningful differences in loading
values between different paths within the SEM framework,
since statistical comparisons such as the t test should involve
two sets of coefficients, rather than two different variables.
It should be noted that researchers often assess the relative
importance of specific paths in SEM by comparing their
respective loading values. For instance, Kar et al. employed
SEM to investigate the impact of personal, habitual, and
work-related factors on work-related musculoskeletal disor-
ders (WRMSDs) [56]. Their findings revealed a moderate
positive correlation between WRMSDs and personal factors
(path coefficient = 0.313), but a weak correlation between
WRMSDs and work-related factors (path coefficient = 0.296).
Despite the slight difference of 0.017 in the two coefficients,
their study suggested that the relationship represented by
the path with the larger coefficient was stronger. Similarly,
Nouri-Keshtkar et al. employed SEM to investigate the factors
contributing to prevalence of metabolic syndrome (MetS)
across different populations [57]. Their results showed that
BMI had the most significant influence on the occurrence of
MetS, with path coefficients of 0.915 for men and 0.631 for
women. Their study concluded that BMI had a greater impact
on the incidence of MetS in men compared to women. Like-
wise, Bountress et al. utilized SEM to explore the relationship
between alcohol use, alcohol use disorder (AUD), and life
satisfaction [58]. Their results indicated a modest negative
correlation between AUD and life satisfaction (path loading:
-0.17), while a substantial positive correlation was observed
between AUD and alcohol use (path loading: 0.72). These
previous studies have not conducted statistical tests on the
loading coefficients of different paths in SEM.

We also incorporated age variables into these two models
and reconducted a detailed analysis of the results, which
can be found in the Appendix (see Fig. 7 and 8). The key
findings can be summarized as follows: (1) The inclusion of
age variables did not alter the primary conclusions regarding

Fig. 7. Model of the first study using a SEM, while incorporating age as
a modeling factor.

Fig. 8. Model of the second study using SEM, while incorporating age
as a modeling factor.

the relationships between the balance control subsystems.
In Model 1, the relationships between these subsystems were
primarily influenced by overall balance rather than direct
interactions. Notably, a significant relationship was observed
between FOF and APA. In Model 2, proprioception emerged
as the most important of the sensory-related subsystems.
These findings suggest that age has a limited impact on the
relationships between the balance subsystems. (2) However,
Model 1 introduced age as a variable, finding that as indi-
viduals age, their FOF tends to increase. This result aligns
with previous studies indicating that older adults are more
susceptible to FOF compared to younger individuals. FOF is
recognized as a specific health concern among the elderly,
with a significant proportion experiencing falls and functional
decline as a result [59], [60], [61]. Additionally, the study
found a significant decline in balance ability with age. Previous
research has also shown that age affects multiple balance
subsystems, including APA, RPC, SO, and DG [62], [63], [64],
[65], [66]. Furthermore, it should be emphasized that age has
a greater impact on balance ability than on FOF. This is also in
line with expectations, since as individuals age, their various
physiological functions decrease, inevitably degrading balance
ability. FOF, in contrast, is mainly influenced by the falling
experiences of the elderly, followed by factors such as physical
activity limitations and gait impairments. These factors vary
among individuals, thus FOF also varies. In addition, FOF
can be avoided, but the decline in individual physiological
functions is unavoidable. These are all possible reasons why
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TABLE V
THE SFES-I SCALE USED TO ASSESS FOF

age has a greater impact on balance ability than on FOF. (3)
In Model 2, we utilized COP features to describe the functions
of the three sensory subsystems. Higher values of the latent
variables associated with these subsystems indicated poorer
function. Consequently, age exhibited a positive correlation
with the latent variables representing each of the three sensory
subsystems, indicating that as individuals age, their ability
to utilize these subsystems diminishes. This finding is sup-
ported by the existing literature, which highlights age-related
declines in proprioceptive function, vestibular function, and
visual acuity, thereby increasing the risk of balance disorders.
Furthermore, the results from Model 2 underscore the strong
relationship between age and proprioception function, as well
as the importance of age and vision in the balance control
process. This aligns with previous research indicating that
postural stability in older individuals is particularly vulnerable
to visual impairments [67], [68]. We also found that age has
a relatively small impact on the vestibular system, which may
be due to the following reasons. First, the vestibular system
plays a relatively small role in balance control, accounting
for only about 20% of the entire process. For young people,
proprioception plays an important role in balance, while older
people rely more on visual compensation. Second, degen-
eration of the vestibular system occurs relatively late. For
example, vestibular ocular reflex function begins to decline
after the age of 75, and primary vestibular afferent nerve
degeneration mainly occurs in the population aged 70-85 [69].
In contrast, Hurley et al. found a significant difference in
the sensitivity of proprioception between young and middle-
aged individuals, indicating that degradation of proprioception
occurs relatively early [70].

The limitations and future works are as follows: (1) Along
with the Mini-BESTest, the Physiological Profile Approach
(PPA) is a tool that assesses five physiological functions
that have been shown to differentiate between fallers and
non-fallers in institutional and community settings [71]. The
PPA is structured around the physiological impairments that
contribute to fall risk. In the future, SEM may be uti-
lized to explore the interplay among different physiological
functions measured by the PPA. This could yield a more com-
prehensive understanding of how these functions contribute
to fall risk and inform the development of more targeted
interventions. (2) Recently, multi-modal wearable devices
have been implemented that include the measurement of
electroencephalogram, electrocardiogram, electromyography,
acceleration signal, and other physiological signals for balance

TABLE VI
THE MINI-BESTEST SCALE USED TO ASSESS BCSES

evaluation [72]. In future studies, it may be possible to employ
these multi-modal physiological signals and SEM methods
together to investigate the interaction effect among these phys-
iological signals during balance control. This could provide a
more complete understanding of the underlying mechanisms
of balance control and could inform the development of more
effective interventions for individuals with balance deficits. (3)
In future research, SEM can be utilized to investigate the vari-
ations in interactions among distinct BCSes in patients with
different diseases, such as Parkinson’s, amyotrophic lateral
sclerosis, stroke, and others. This study might hold paramount
importance in comprehending how diseases affect individual
BCS capabilities and their interaction effect [73]. (4) In
principle, a variety of techniques exist for extracting COP
features, including frequency domain analysis, time-frequency
analysis, and nonlinear dynamic analysis. These techniques
often aid in automated detection of balance disorders, typically
facilitated by artificial intelligence. Our approach involves
extracting COP features using these methods and subsequently
introducing them into a classifier for disease detection. While
artificial intelligence offers advantages such as conserving
medical resources and enabling large-scale early screening
for balance disorders, it may not adequately uncover poten-
tial relationships among diverse balance control subsystems.
To address this, our study has employed a SEM. It is worth
noting that although more sophisticated nonlinear methods are
available for COP feature extraction, we opted for linear fea-
tures due to their broader applicability in the medical domain,
particularly when interpreting physiological mechanisms [29],
[74], [75]. It is important to clarify that the primary purpose of
artificial intelligence is often geared towards practical applica-
tions like automatic disease detection, rather than elucidating
balance mechanisms. This rationale guided our selection of
linear-based COP features for SEM construction, as presented
in Table I. In future studies, we aim to explore the incorpo-
ration of nonlinear COP features as observation parameters
within the SEM framework. The broader applicability of these
COP features may however require deeper examination and
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analysis. Additionally, SEM has a mathematical foundation
rooted in linear methods, further justifying our reliance on
linear features. (5) The study involved 163 participants, rang-
ing from 18 to 85 years old, with 72 individuals aged over
60. This dataset is currently the largest in the public field of
balance control research. However, creating separate models
for the younger (under 60) and elderly (over 60) groups is chal-
lenging due to the relatively small sample sizes in each group,
both having fewer than 100 participants, which is insufficient
for SEM. SEM typically requires a sample size of at least
100 participants [76]. Therefore, future research aims to gather
larger datasets to establish separate models for the young and
elderly groups, enabling a more comprehensive investigation
of their distinct characteristics and differences. (6) We attempt
to incorporate FOF into the SEM model to assess its influence
on the sensory subsystems of individuals. By exploring the
relationship between FOF and the three sensory subsystems,
we found that FOF mainly inhibits proprioception and to
a lesser extent vision. When people are in a state of fear,
their body muscles may become tense, affecting the sensory
input of proprioceptors distributed in muscles and tendons.
Previous studies have demonstrated a significant correlation
between FOF and proprioception. For instance, Shao et al.
compared the proprioception and FOF levels of elderly and
young people and found that the elderly had poorer ankle
proprioceptive discrimination sensitivity and higher FOF levels
during walking, indicating a close relationship between the
two [77]. Additionally, we found that FOF can enhance the
vestibular system’s ability. This may be attributed to FOF
increasing sensitivity to self-motion through noradrenergic and
serotonergic inputs to the vestibular nuclei [78]. A study has
shown that FOF can exacerbate vestibular balance responses,
aligning with our findings [79]. However, it should be noted
that our results indicate a relatively weak relationship between
FOF and the sensory subsystems.

V. CONCLUSION

By utilizing SEM, we provided numerical evidence of the
interdependence among various BCSes, which is a departure
from relying solely on clinical observations. Our findings
revealed that the RPC, APA, DG, and SO indirectly influenced
each other through their overall balance ability, and their
association with FOF varied. Among them, APA had the
strongest association with FOF, while RPC had the weakest.
Moreover, we identified that sensory inputs, such as vision,
proprioception, and vestibular sensing, directly affected each
other, but their associations were not uniform. Proprioception
was found to be the most crucial factor in the three sensory
subsystems. The examination of the relationships between
BCSes has significant implications for diagnosing and manag-
ing balance-related disorders in clinical settings, as well as for
enhancing our understanding of the fundamental mechanisms
of balance control.

APPENDIX

See Tables V and VI, Figures 7 and 8.
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