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Multi-Scale FC-Based Multi-Order GCN:
A Novel Model for Predicting Individual
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Abstract— Predicting individual behavior from brain
imaging data using machine learning is a rapidly growing
field in neuroscience. Functional connectivity (FC), which
captures interactions between different brain regions, con-
tains valuable information about the organization of the
brain and is considered a crucial feature for modeling
human behavior. Graph convolutional networks (GCN) have
proven to be a powerful tool for extracting graph struc-
ture features and have shown promising results in various
FC-based classification tasks, such as disease classifica-
tion and prognosis prediction. Despite this success, few
behavior prediction models currently exist based on GCN,
and their performance is not satisfactory. To address this
gap, a new model called the Multi-Scale FC-based Multi-
Order GCN (MSFC-MO-GCN) was proposed in this paper.
The model considers the hierarchical structure of the brain
system and utilizes FCs inferred from multiple spatial
scales as input to comprehensively characterize individual
brain organization. To enhance the feature learning ability
of GCN, a multi-order graph convolutional layer is incorpo-
rated, which uses multi-order neighbors to guide message
passing and learns high-order graph information of nodal
connections. Additionally, an inter-subject contrast con-
straint is designed to control the potential information
redundancy of FCs among different spatial scales during
the feature learning process. Experimental evaluation were
conducted on the publicly available dataset from human
connectome project. A total of 805 healthy subjects were
included and 5 representative behavior metrics were used.
The experimental results show that our proposed method
outperforms the existing behavior prediction models in all
behavior prediction tasks.

Index Terms— Functional connectivity, human behavior,
graph convolutional network, multi-scale, multi-order.

I. INTRODUCTION

AFUNDAMENTAL goal of neuroscience is to understand
how the structure and function of the human brain
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give rise to behavior [1], [2], [3], [4]. Previous studies have
established that individual differences in diverse brain charac-
teristics, such as morphological features [5], structural [6], [7]
and functional connectivities [8], [9], [10] etc., are associated
with behavioral and demographic traits. With the increasing
availability of advanced neuroimaging technology and pow-
erful computational tools, there is growing interest in using
machine learning algorithms to construct individual-level
behavioral predictive models based on neuroimaging data [11],
[12], [13], [14], [15], [16], [17].These prediction models not
only help to explore the relationship between subtle differences
in brain characteristics and specific behaviors [11], [12],
[13], [14], but also identify potential individual behavioral
problems [15], [16], [17], such as cognitive or psychological
disorders, enabling the earlier intervention and treatment.

Compared to structural magnetic resonance imaging (MRI),
functional MRI (fMRI) directly measures the blood oxygen
level-dependent (BOLD) signal of neurons [18], [19], which
not only allows for recording brain activity levels over different
time periods, but also characterizes brain response patterns
under different external stimuli. Therefore, this technique is
more suitable for revealing the neural mechanisms behind
complex human behaviors [20], [21], [22]. These studies
typically model the brain as a complex network system,
using brain regions as nodes and functional connectivity (FC)
between regions as edges, known as the FC network (FCN).
Mounting evidence indicates that the rich information on
regional connections and brain organization patterns contained
in functional connectivity networks (FCN) can significantly
enhance our understanding of various behaviors and cognitions
[11], [12], [23], [24], [25]. The utility of FCN in behavior
prediction is particularly notable. Firstly, FCN provides a com-
prehensive view of brain activity, not limited to the single brain
regions. This aids in clarifying how the brain network collabo-
ratively operates to process specific behaviors [26]. Secondly,
FCN highlights the inter-relationship between brain regions,
which is crucial for understanding complex cognitive functions
[27], [28]. Many studies also repeatedly observed significant
associations between FC patterns and behavior/cognition [11],
[12], [24], [25], [29], and FC has also been shown to be
an effective feature for predicting individual characteristics,
including language memory ability [11], [30], attention
ability [31], [32], and fluid intelligence [24], [25], [29],
[33] etc. Therefore, in recent years, increasing studies have
begun to use FC as feature data for human behavior research
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and have constructed diverse FC based individual behavior
prediction models [12], [24], [25], [29], [32], [33], [34].

Currently, the most commonly used individual behavior
prediction models are implemented by combining regression
methods (such as linear regression [12], [35], kernel ridge
regression [11], [14], and support vector regression [13],
[36]) with feature selection. Although these models have
achieved good performance in predicting several important
behaviors, they have two significant drawbacks. First, these
models heavily rely on expert knowledge for constructing the
feature database limiting their generalization ability across
different tasks. For example, some models directly use FC
as features [12], [13], while others use connectivity profiles
extracted from FCN as features [35]. The diversity of models
makes it difficult to achieve satisfactory results in predicting
all behaviors. Second, almost all of these methods belong to
linear models, which are based on the assumption that there
is a linear relationship between brain imaging measurements
and behavioral scores, and thus cannot capture the complex
relationship between the brain and behavior. In recent years,
deep learning methods have been successfully applied in vari-
ous graph-related tasks due to their powerful feature extraction
ability and complex relationship analysis ability, providing
new insight for constructing FC based behavior prediction
models [11], [37], [38].

Due to non-lattice-like graph structure, conventional deep
neural networks (DNNs) cannot extract effective feature rep-
resentations of FCNs [11], [37], [38]. Graph convolutional
network (GCN) is considered as a promising solution because
it can learn features via message passing of nodal features
based on graph structure, preserving the topological informa-
tion of FCN [11], [38], [39], [40], [41], [42]. However, the
existing FC-based GCN models cannot achieve the satisfactory
prediction of brain behaviors, largely hindered by the follow-
ing two limitations.

First, the model only learns brain connectivity representa-
tion based on the single-scale (i.e., single spatial resolution)
FCN. An increasing amount of studies indicate that the brain
is a hierarchical system, and its network organization is
formed by neural coordination that spans overlapping spatial
scales [43], [44], [45], which is crucial for efficient information
processing to support responses for different behaviors. Differ-
ent brain-behavior relationships may exist at different scales,
and each scale provides complementary information about
various processes [45]. Therefore, the current brain represen-
tation that relies on a single network scale is almost certainly
incomplete and cannot fully characterize the multi-scale and
hierarchical organization of the brain system in terms of its
structural and functional dynamics, which in turn affects the
performance of subsequent behavior prediction models.

Second, the graph convolution layer only utilizes the latent
information from 1-order neighbors of nodes, ignoring the
rich information generated by far-distance functional inter-
actions among brain regions [11], [39]. Different-order node
connections describe network structures from different levels
of scope, which provide us valuable information with different
granularities [46]. Therefore, relying solely on low-order node

similarity or even any specific-order node similarity may not
necessarily perform best on all networks and target applica-
tions. For example, in classification tasks with coarse-grained
classes, higher-order approximations are likely to be more
helpful than lower-order approximations [46], [47].

To tackle above two problems, this paper proposes a Multi-
Scale FC based Multi-Order GCN (MSFC-MO-GCN) model
for individual behavior prediction. This model uses functional
interactions estimated from multiple spatial resolutions as
input, and designs multi-order graph convolution layer and
inter-scale contrastive constraint to learn the comprehensive
representation of individual’s brain connectivity. The usage of
multi-scale FC provides the characterization of hierarchical
brain organization. Multi-order graph convolution layer allows
model updating nodal features based on multi-order neighbors
instead of 1-order neighbor to introduce high-order graph
information to guide message passing. Inter-scale contrastive
constraint ensures the within-subject across-scale similarity
of graph features during feature learning process to remove
the redundant information of FCs among different spatial
scales. After that, multi-scale features are fused with weight
connection method and used for the final individual behavior
estimation.

To sum up, our main contributions are summarized as
follows:

1) We confirm that functional interactions from different
spatial scales provide complementary information for brain-
behavior relationship. Based on this conclusion, we construct
individual behavior prediction model based on multiple FCNs
from coarse-to-fine scales, which improves the model’s pre-
diction ability.

2) Our method designs multi-order graph convolution layer
in GCN for feature representation learning, enabling the intro-
duction of rich graph information from different-order node
connections.

3) Comprehensive experiments on real-world dataset veri-
fied the superior performance of our proposed method than the
other conventional methods.

The rest of the paper is organized as follows. We describe
the data information and imaging preprocessing in Section II.
Section III investigates the relationship between FC and
human behaviors from different spatial scales. In Section IV,
we provide the detailed introduction of our proposed method
MSFC-MO-FCN. Section V describes the model implementa-
tion details. Section VI gives results and discussion. Finally,
we conclude the whole paper in Section VII.

II. MATERIALS

A. Data Information
This study was carried out using a dataset from the publicly

available Human Connectome Project (HCP) database S1200
release. It includes 1200 healthy subjects with full 3T imaging
scans and behavioral tests. All participants were free of
current psychiatric or neurologic illness. All rs-fMRI data were
collected with eye open and relaxed fixation on a projected
bright cross-hair on a dark background. Each subject has two
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resting-state fMRI (rs-fMRI) sessions with different readout
directions. The acquisition parameters for rs-fMRI were: TR =

720 ms, TE = 33.1 ms, flip angle = 52◦, voxel size = 2 mm3

(isotropic), 72 slices, and total volumes = 1,200 (15 min). For
extensive descriptions of the imaging information, please refer
to [48]. After quality control, 805 subjects were finnaly used
in this paper.

The HCP dataset includes a battery of behavioral/cognitive
tests. In this paper, we selected five representative behav-
ior tests for evaluating the performance of the individual
behavior prediction model, including one motor-related test
(Endurance), one executive-function-related test (Cognitive
Flexibility), one memory-related test (Episodic Memory), one
language-related test (Story Difficulty Level), and a com-
prehensive cognitive test (Fluid Intelligence). All the tests
are estimated using the NIH Cognition Battery toolbox, and
the raw scores for each test are further transformed into
age-adjusted scores with a mean of 100 and a standard
deviation of 15 using the NIH National Norms toolbox. For
the detailed description of behavior test, please refer to [49].

B. Imaging Preprocessing
All rs-fMRI data were first preprocessed by “HCP fMRIvol-

ume” minimal preprocessing pipeline [50], including the
following procedures: 1) gradient distortion correction, 2) head
motion correction, 3) EPI distortion correction, 4) registration
to the Montreal Neurological Institute (MNI) space, 5) inten-
sity normalization to a global mean, and 6) masking out
non-brain voxels. After that, we further adopted independent
component analysis (ICA) based FIX Xnoiseifier to remove
artifacts from fMRI data [51], [52]. During this cleanup,
24 head motion parameters (including 6 rigid-body motion
parameters, their backward temporal derivatives, and squares
of those 12 time series) and “bad components” estimated
from ICA were regressed from blood oxygen level dependent
(BOLD) signals of each scan.

III. MULTI-SCALE BRAIN-BEHAVIOR RELATIONSHIP

As mentioned in the introduction, the motivation for utiliz-
ing multi-scale FC for individual behavior prediction is based
on the previous research finding that distinct brain-behavior
relationships may be present at different scales, with each scale
potentially providing complementary information regarding
multifaceted processes. To test this hypothesis, we designed a
pre-experiment in this subsection to compare brain-behavior
relationships between different spatial scales and to testify
whether they exhibit scale-relevant differences. The imple-
mentation of this experiment includes two steps described as
follows.

Based on the preprocessed rs-fMRI data, we first used a
multiscale brain parcellation atlas to estimate functional inter-
actions among brain regions at different spatial scales. In this
paper, the multiscale brain parcellation atlas was provided
by [43], which was generated by clustering analysis based on
the FC patterns of all gray matter voxels of 1489 participants,
according to their local and global similarity. By adjusting
the resolution parameter in the clustering analysis, multiple

parcellation atlases with 100 to 1000 ROIs were generated.
The spatial relationships between ROIs in these multiscale
atlases can be considered as biologically meaningful brain
hierarchies. This study selected representative atlases with 100,
500, and 1000 ROIs, respectively, to construct FCNs at three
spatial scales of coarse, medium, and fine. At each scale, the
BOLD signals of all voxeles belonging to each ROI were
averaged to obtain ROI signals, which were then pairwise cor-
related using Pearson correlation to generate the corresponding
FCN. For each FCN, we set all negative correlations as 0 and
only kept 5% strongest edges [11].

After obtaining the FCN for each scale, we further assigned
each brain region to its corresponding functional subsystem,
and calculated the system-level correlation between FC and
behavior at different spatial scales. We used a system-level
analysis rather than node level in this experiment for the
following two reasons: 1) Traditional neuroscience studies
often investigate the mechanisms of cognitive function pro-
cessing in the human brain via neural circuits, and thus
brain-behavior analysis based on functional systems is more
interpretable; 2) A matrix at the system level, containing
fewer nodes, facilitates clearer and more visually intuitive
comparative results across different spatial scales. To do this,
we first referred to [53] to divide the brain regions into seven
functional subsystems, including the visual network (VIS),
somatosensory-motor network (SM), attention network (ATT),
salience network (SAL), limbic system (LIM), frontoparietal
network (FP), and default mode network (DMN). For each
subsystem, we divided its contained nodal brain regions into
two systems according to the left and right brain, respectively.
Then, for each system, we calculated the Pearson correlation
between all included FC connections and behavior, and cal-
culated the percentage of connections with significant results
(p < 0.05 after FDR correction) out of all connections to
measure the correlation score (CS) between the subsystem
and behavior. For connections between different subsystems,
we used the same appraoch to calculate the correlation
between inter-system FC and behavior. Therefore, for each
scale of FCN and each behavior, we finally obtained a 14×14
CS matrix, where the diagonal of the matrix represents the CSs
between intra-system and behavior, and the off-diagonal values
represent the CSs between inter-system FC and behavior.
A higher CS value represents a higher correlation between
brain connectivity and the corresponding human behavior
metric.

IV. MULTI-SCALE FC BASED MULTI-ORDER GRAPH
CONVOLUTIONAL NETWORK

The flowchart of the proposed individual behavior pre-
diction model is shown in Fig. 1, which consists of four
steps: (Step A) multi-scale functional connectivity estimation,
(Step B) multi-order graph convolution network, (Step C)
adaptive feature fusion, and (Step D) behavior score estima-
tion. In Step A, the input is voxel-wise BOLD signal, and
we construct FCNs from multiple spatial scales by utilizing a
set of coarse-to-fine brain parcellations on rs-fMRI data. Each
scale provides a characterization of brain connectivity from a
specific spatial perspective. Step B uses multi-scale FCNs as
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Fig. 1. The overall framework of MSFC-MO-GCN utilizes rs-fMRI data as input and outputs predicted behavioral scores, including four modules.
(A) Based on rs-fMRI data, multiple FCNs are computed at different spatial scales by using multiscale brain parcellation atlas. (B) A multi-order
graph convolutional network is used to learn brain connectivity representations at each scale. (C) An adaptive feature fusion module is used to
integrate multi-scale FC features for each subject. (D) The joint features are fed into a fully connected layer for behavior prediction.

input and extracts the corresponding feature representation via
a multi-order graph convolution layer and pooling layer. Our
designed graph convolution layer considers the multi-order
functional interactions of nodes, rather than only 1-order
neighbors, to update nodal feature representations, enabling
the use of high-order graph information for brain graph
representation learning. Considering the potential redundancy
in multi-scale FCNs, we add an inter-scale contrast constraint
in GCN to improve the similarity of learned feature represen-
tations across different spatial scales for each individual. After
obtaining multi-scale brain connectivity features, Step C fuses
them using an attention block and obtains the joint feature
representation. Finally, the behavior score of the subject is
estimated based on a fully connected layer with the learned
joint feature as input. The detailed description of each step is
given below.

A. Multi-Scale Functional Connectivity Estimation
The main task of this module is to construct multi-scale

FCNs based on rs-fMRI data, which serve as input for the
subsequent modules to achieve comprehensive learning of
brain connectivity representation. As shown in Fig. 1(A),
we selected a set of coarse-to-fine brain parcellation atlases,
and constructed corresponding FC matrices for each spatial

resolution, where each element in the matrix represents the
Pearson correlation between the averaged BOLD signals of
the two corresponding brain regions. Considering that the
biological significance of negative connections is still unclear,
we set all negative correlation values in each FC matrix to 0.
Meanwhile, we performed sparsification on each FC matrix,
retaining only the top 5% strongest edges to construct the
brain functional network (or brain graph). In order to maintain
the graph connectedness, for each node, we kept the top five
strongest edges connected to them. Thus, given M coarse-to-
fine brain parcellations, each subject will generate M FCNs
representing the brain connectivity pattern at M spatial scales,
denoted as G = {G1, G2, . . . , G M

}.

B. Multi-Order Graph Convolutional Network
With multi-scale FCNs as input, we utilized GCN to learn

the feature representation of brain connectivity. For each
subject n, we represent multi-scale FCNs as a graph set
Gn = {G1

n, G2
n, . . . , G M

n }. The graph at m-th scale is denoted
as Gm

n = (V m
n , Am

n , Xm
n ), where V m

n is the set of nodes at m-
th scale, Am

n is the adjacency matrix, and Xm
n is the attribute

matrix initialized as identity matrix. The conventional GCNs
extract deep feature representations of graph data by prop-
agating node features through the graph Laplacian operator.
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Despite being widely used, these methods have a limitation
that ignores the rich information engendered by high-order
functional interaction of brain regions because they only con-
sider node’s immediate neighbors. To tackle this problem, this
paper proposed a novel GCN model for FC feature extraction,
which consists of three important components: multi-order
graph convolution layer, pooling layer, and inter-scale contrast
constraint.

For the clear description in the following text, we first
give the definition of multi-order neighbors. Specifically, given
a node v, 0-order neighbor represents the vertex v itself;
1-order neighbors are the vertices adjacent to v (as shown
in Fig. 1(B)); k-order neighbors is the set of vertices that can
be reached from the node v by traversing exactly k edges (as
shown in Fig. 1(B)).

1) Multi-Order Graph Convolution Layer: It can learn broader
neighborhood relations by aggregating feature representations
of neighbors at different distances as illustrated in Fig. 2.
Specifically, given a graph Gm

n , let i-th layer’s node feature be
(Xm

n )i
∈R|V m

n |×di , where |V m
n | is the number of nodes and di

is the feature dimension at i-th layer. In our proposed GCN
model, the graph convolution operator is revised as

(Xm
n )(i+1)

= ∥
0≤k≤K

σ(( Ãm
n )k(Xm

n )iW i
k) (1)

Here, Ãm
n = (D̃m

n )−
1
2 (Am

n + I )(D̃m
n )−

1
2 is a symmetrically nor-

malized adjacency matrix with self-connections, where D̃m
n is

the degree matrix of (Am
n + I ). k ∈ {1, 2, . . . , K} is the number

of orders (i.e., steps) for the node to reach its neighbors. ( Ãm
n )k

represents k-order adjacency matrix computed by multiplying
Ãm

n by k times; and when k = 0, ( Ãm
n )k is the identity

matrix. W i
k ∈ Rdi×di+1 is the weight parameter matrix, σ is

the ReLU activation function, ∥ means column-wise concate-
nation. Given a toy example with K = 2 in Fig. 2, the feature
representation of the given node is updated by aggregating
information from itself (( Ãm

n )0), 1-order neighboring nodes
(( Ãm

n )1) and 2-order neighboring nodes (( Ãm
n )2) with column-

wise concatenation. This method can extract effective features
while keeping the graph structure unchanged. It is worth noting
that, given the potential topological differences in the brain
connectivity at different spatial scales, we allow for the use of
different K values for FCNs with different resolutions.

2) Pooling Layer: After obtaining representation of each
graph, we aggregated node features via the pooling layer and
generated the final feature vector f m

n for Gm
n . Specifically,

given feature matrix Xm
n of subject n at scale m, f m

n is
computed as follows

f m
n = p(Xm

n ) =
1

|Vm
n |

|Vm
n |∑

v=1

(xv)
m
n (2)

where (xv)
m
n represents the feature representation of node v of

subject n at scale m.
3) Inter-Scale Contrast Constraint: Considering the potential

information redundancy of FCs among different spatial scales,
we designed an inter-scale contrastive loss L inter to improve
the within-subject across-scale similarity of graph features
during the learning process. To this end, we treated feature

Fig. 2. Toy example of multi-order graph convolution layer with
K = 2. In this figure, gray rectangle represents the input feature
matrix, blue ones represent information from node itself, and yellow and
green ones denotes connection from 1-order and 2-order neighbors,
respectively.

representations of multi-scale FCNs from one subject as
positive pairs, while those from different subjects as negative
pairs, and formatted L inter as follows:

L inter =

M−1∑
m=1

max
(

Dist
(

f m
n , f m+1

n

)
− Dist

(
f m
n , f m

s
)
+ δ, 0

)
(3)

where Dist function measures Euclidean distance between two
vectors and δ is the margin parameter.

(
f m
n , f m+1

n
)

is the
positive pair, representing the features learned from scale m
and m + 1 of the same subject n;

(
f m
n , f m

s
)

is the negative
pair, representing the features learned from same spatial scale
m of the subjects n and s and n ̸= s. Equation (3) learns
the correlation between multi-scale feature representations of
subjects by minimizing the distance between positive pair
representations and maximizing the distance between negative
pair representations.

C. Adaptive Feature Fusion
After feature learning, we introduced an attention block

to fuse features from multiple scales. This block was imple-
mented by weight connection method with two steps. Given
the subject n, let multi-scale feature representations be fn ={

f 1
n , f 2

n , . . . , f M
n

}
(M = 3). We first obtain the vetor θn

of scale-wise by global average pooling. Formally, the m-th
element of θn is calculated by:

θm
n = hAvg

(
f m
n

)
(4)

where hAvg means global average pooling. We then assessed
the contribution weight ϕn of features with

ϕn = g (θn) = δ (Qσ (Wθn)) (5)

where W and Q are trainable parameter, σ is ReLU function,
and δ is sigmoid function. Finally, we concatenated multi-scale
weighted features to generate joint features zn of subject n as

zn =

{
ϕ1

n f 1
n , ϕ2

n f 2
n , . . . , ϕM

n f M
n

}
(6)
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D. Behavior Score Estimation
Based on the learned joint features zn , we estimated behav-

ior score with fully connected layer as

Ŷ = znU, (7)

where U represents a trainable parameter. Finally, two super-
vised loss terms were used for the behavior prediction over all
training subjects defined as

L total = αL inter + LMAE (8)

The first term is inter-scale contrastive loss defined in
Equation (3). The second term measures the accuracy of the
prediction model formatted as

LMAE =
1
N

N∑
i=1

E
(
yi , ŷi

)
, (9)

where E represents the absolute error between the real and
predicted behavior scores and N is the number of training
samples. α is a hyperparameter used to balance contributions
of two loss terms.

V. IMPLEMENTATION

A. Model Settings and Evaluation Metric
In this paper, we implemented MSFC-MO-GCN based on

Tensorflow using the Python language. The model consists
of two multi-order graph convolutional layers, with 96 and
12 filters respectively, as well as a 12-channel pooling layer
and a 1-channel fully connected layer. We used Adam as the
optimizer with a learning rate of 0.005, and applied L2 regu-
larization of 0.0005 to control overfitting and noise in imaging
data. The network was trained on 805 subjects using Adam
optimizer, with a 5-fold cross-validation strategy, a batch size
of 16, and 70 iterations. Specifically, we randomly divided the
805 subjects into 5 folds and used internal cross-validation
to determine the model’s hyperparameters. We then evaluated
the model’s performance on the test set by calculating the
Pearson correlation between predicted and actual scores of
behaviors. To ensure the stability of the results, we repeated
the 5-fold cross-validation 5 times for each experiment, and
used the average result from the 25 folds as the final prediction
accuracy. All experiments were accelerated on an Nvidia
RTX 2080 GPU.

B. Compared Methods
Eight popular FC-based behavior prediction models were

used for comparison in this paper, including kernel regression
method [54], FNN [55], BrainNetCNN [56], GCNN [11], GAT
[57], SAGPool [58], Meta-RegGNN [59], and BC-GCN-SE
[60].

1) Kernel Regression Method: it is the conventional machine
learning based individual behavior prediction model. This
method first calculates the similarity between subjects based
on FCs, and then predicts the behavior score of the test subject
by taking the weighted average of the behavioral measures of
all training subjects. Ridge regression is adopted in this model.

2) FNN: it belongs to a class of feedforward neural net-
works. This method treats FCN as a vector and adopts several
fully connected layers to achieve behavior score prediction.

3) BrainNetCNN: it is a specially designed deep neural
network for brain connectivity network. It takes in FCN
directly as input and outputs behavior prediction score, which
consists of four types of layers: Edge-to-Edge (E2E) layer,
Edge-to-Node (E2N) layer, Node-to-Graph (N2G) layer and a
final fully connected layer.

4) GCNN: it is the most conventional GCN method. It takes
in vectorized FCNs of all subjects as input and outputs
behavior scores of all subjects. The graph in this model is
not brain network but individual similarity matrix.

5) GAT: it is a classic attention-based GCN model that
leverages an attention mechanism to assess the influence of
adjacent nodes in a graph, facilitating dynamic feature learning
tailored to each node’s network context. It processes FCN of
subjects to predict behavioral scores.

6) SAGPool: it employs a self-attention mechanism for
dynamic downsampling of graphs, selectively focusing on
nodes most important to the task, and thus enhances efficiency
and effectiveness in GNN processing. It takes in FCN of each
subject as input and generates behavior prediction scores.

7) Meta-RegGNN: it is a meta-learning regression GNN
model specifically designed for FC-based behavior prediction.
It inputs FCN of subjects and outputs behavior prediction
scores.

8) BC-GCN-SE: it is an edge-based graph path convolution
method that adeptly aggregates information across different
paths, making it suitable for densely connected brain graphs.
The model includes Graph Path Convolution, Edge Pooling,
and Node Pooling layers and processes FCN of subjects to
produce behavior prediction scores.

We implemented kernel regression method using the Matlab
platform, and constructed seven deep learning methods based
on Tensorflow using Python language. The model settings and
training methods were the same as those for MSFC-MO-GCN.
The difference is that the comparative methods uses LMAE as
the loss function, adopts the single-scale FCN as input, and
has different settings of layers and units, as summarized in
Table I. All methods chose FCN with 500 ROIs as the input
for model training as this network scale achieves the highest
behavioral prediction accuracy.

VI. RESULTS AND DISCUSSION

In this section, we first present the analysis results of
the relationship between FCs and behaviors at different spa-
tial scales. We then conduct a comprehensive evaluation of
the proposed individual behavior prediction model, including
the parameter analysis, comparison with four conventional
methods, and ablation experiments. Finally, we discuss the
importance of functional subsystems in behavior prediction to
achieve interpretability of the features in the model.

A. Comparison of FC-Behavior Relationship Between
Different Scales

Fig. 3 presents the results of brain-behavior relationships at
the system level across three spatial scales. The comparison
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Fig. 3. Different CSs of intra- and inter-system connections with five behavior metrics at three spatial scales, including (a) endurance, (b) cognitive
flexibility, (c) episodic memory, (d) story difficulty level and (e) fluid intelligence. Networks 1-7 and 8-14 represent the seven functional subsystems
in the left and right hemispheres, respectively. Only the upper triangle of the connectivity matrix is presented since the matrix is symmetric.

TABLE I
PARAMETER SETTINGS OF COMPARATIVE METHODS

of each column in Fig. 3 reveals significant differences in the
correlation between FC and behavior across various scales.
This finding validates our previous hypothesis: the human
brain has a hierarchical structure, with brain-behavior relation-
ships varying across different spatial scales, highlighting the
significance of employing multi-scale functional connectivity
(FC) in behavior prediction. We also noted that the differences
between 100 ROIs and 500 ROIs are generally more significant
than those between 500 ROIs and 1000 ROIs, especially in
tasks related to cognitive flexibility, episodic memory, and
fluid intelligence. This result implies that as spatial resolution
increases, the connectivity information from different scales
of functional networks might overlap, leading to redundancy.
This highlights the necessity for incorporating inter-scale
contrast learning in multi-scale FC-based behavior prediction
models.

Moreover, by comparing each row in Fig. 3, we observed
significant variations in the patterns of FC-behavior relation-
ships across various behavioral tasks. For example, as shown
in Fig. 3b, in the cognitive flexibility task at ROI = 500, both
intra- and inter-system CS values are high in LIM system,
while the similar result is not observed in the other four cog-
nitive tasks. This implies a potential involvement of the LIM
system in the brain’s cognitive flexibility processing. These
observations highlight the limitations of traditional machine

learning methods, which often depend on expert-driven feature
extraction in behavior prediction, and underscore the signifi-
cance of leveraging deep learning techniques for automated
feature extraction.

B. Parameter Analysis
There are two hyper-parameters in MSFC-MO-GCN that

may affect the accuracy of individaul behavior prediction.
One is α in the loss function, which controls the contribution
of inter-scale contrastive constraints, and the other is the
maximum order K in the multi-order graph convolution layer.
In this subsection, we used the method of controlling variables
to evaluate the impact of these two parameters on the predic-
tion results. Similar to the previous experiments, the average
Pearson correlation coefficient in 25 test folds was used as the
evaluation metric. Since different scale FCNs can use different
K values, in this paper, K = (KFCN-100, KFCN-500, KFCN-1000),
representing the maximum order of graph convolution under
three spatial scales of ROI = 100, ROI = 500, and ROI =

1000, respectively.
1) Parameter α: In this experiment, we fixed the K to

five different combinations, i.e., {2, 2, 1}, {3, 1, 1}, {2,
1, 1}, {1, 1, 1}, and {3, 1, 1}. For each combination,
we varied α within the range of {0, 0.01, 0.1, 1, 10} and
calculated the prediction accuracy of MSFC-MO-GCN for
each setting, as shown in Fig. 4. We can observe that the
performance of MSFC-MO-GCN is significantly affected by
the parameter α, exhibiting a general trend of increasing
first and then decreasing. Specifically, the correlation value
increases rapidly from 0 to 0.01, fluctuates slightly between
0.01 and 1 (first decreasing then increasing generally), and
then sharply decreases from 1 to 10. These results of MSFC-
MO-GCN performance varies as α demonstrate the necessity
of introducing inter-scale contrastive constraints. Furthermore,
the relatively smooth curve from 0.01 to 1 compared to other
ranges indicates that the LMAE loss plays a more important
role than L Inter in the feature learning process. The significant
drop in performance from 1 to 10 suggests that highly similar
FCN features across various scales of the same subject may
lead to feature redundancy, which subsequently results in
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Fig. 4. Parameter analysis results of parameter α. The line in different
color represents different settings of K, where the blue one represents
{2, 2, 1}, gray line represents {3, 1, 1}, green line represents {2, 1, 1},
orange line represents {1, 1, 1} and yellow one represents {1, 3, 1}.

Fig. 5. Parameter analysis of the number of orders K. The settings
of K were varied from 1 to 3 at each spatial scale, thus generating
27 combinations.

decreased model performance. In the subsequent experiments,
α was set to 1.

2) Parameter K: In this experiment, we fixed α to 1, and
varied the maximum accessible order of GCN K at each
scale from 1 to 3. As a result, 27 combinations (3×3×3) of
FCNs were generated across three spatial scales (i.e., ROI =

100, 500 and 1000). For each combination, we evaluated
the individual behavioral prediction performance of MSFC-
MO-GCN, and presented the results as bar charts in Fig. 5.
We observe that the individual behavioral prediction ability of
MSFC-MO-GCN is significantly influenced by the parameter
K , demonstrating the necessity of using multi-order connec-
tion information in the graph convolution process. Through
further analysis, we find that the top three performing GCN
models have K values of {2, 2, 1}, {3, 1, 1}, and {3, 3, 1},
while the three worst performing models have K values of
{3, 3, 3}, {1, 3, 2}, and {2, 3, 3}. We compare these two
sets of parameter settings and are amazed to discover that
the smaller FC networks use larger K values, whereas the
larger-scale FC networks use smaller K values, having more
potential to achieve the superior model accuracy in predicting
behavior. This may be because each node in the smaller
scale FCN contains larger brain regions, greatly increasing
the probability of the transmission of multi-order connection
information between nodes. In the following experiments,
K was set to {2, 2, 1}.

C. Comparison With Other Methods
We compared the performance of our proposed method

with kernel regression method, FNN, BrainNetCNN, GCNN,

GAT, SAGPool, Meta-RegGNN, and BC-GCN-SE. The imple-
mentation details and parameter setting of all methods were
illustrated in Section V. In MSFC-MO-GCN, α = 1 and K =

{2, 2, 1}. Similarly, the average of 25 folds was thus used as
the final prediction accuracy. Table II. provides the comparison
results between different models in predicting five types of
human behaviors.

As shown in Table II, we can see that our proposed method
significantly outperforms other comparative methods. This not
only confirms the superiority of our approach but also indicates
that extracting multi-scale and multi-order FC information can
yield a more comprehensive representation of brain connectiv-
ity, thereby enhancing the accuracy of behavioral predictions.
Among the eight comparative methods, SAGPool performed
best in the endurance and cognitive flexibility prediction tasks,
BC-GCN-SE had the highest accuracy in predicting episodic
memory and fluid intelligence, and meta-RegGNN excelled in
the story difficulty level task. In contrast, GCNN performed
worst in all behavioral prediction tasks, possibly because it
extracts features and calculates behavioral scores based on
individual similarities rather than FC information. Moreover,
we found that traditional kernel regression methods performed
comparably to FNN, BrainNetCNN, and GAT, for example,
in predicting endurance, cognitive flexibility, episodic memory,
and fluid intelligence. This may be because the sample size in
this study was insufficient to fully meet the training require-
ments of deep learning methods. Furthermore, this result
implies that existing deep learning methods cannot effectively
and comprehensively extract FC feature information.

From the differences in the model’s results on different
behavior prediction tasks, we found that the behavioral predic-
tion stability of MSFC-MO-GCN is significantly higher than
that of other compared methods. For example, FNN has much
lower prediction accuracy on cognitive flexibility and episodic
memory than the other two behaviors; the kernel regression
model has significantly lower prediction accuracy on episodic
memory than the other behaviors. This result suggests that, our
proposed model has better task generalization ability than the
other methods, which may be due to the richer FC information
used in the MSFC-MO-GCN model, making it easier to extract
features related to various human behaviors.

D. Ablation Study
To demonstrate the effectiveness of introducing multi-scale

FCs, multi-order graph convolution, and inter-scale contrast
constraint, we designed three baseline models for comparison
with MSFC-MO-GCN in fluid intelligence prediction task. The
average of Pearson’s correlation coefficient on 25 folds was
used as the behavioral prediction evaluation index.

1) Baseline 1 (Single-Scale FCs + Multi-Order Graph Con-
volution): The model takes in single-scale FCNs as input and
uses multi-order graph convolution to learn the corresponding
feature representation. At each scale of FCN, we evaluated the
model performance with K equals to 1, 2 and 3, respectively.

2) Baseline 2 (Multi-Scale FCs + 1-Order Graph Convolu-
tion + Inter-Scale Contrast Constraint): It takes in multi-scale
FCNs as input and uses traditional graph convolution method
(i.e., 1-order graph convolution) for the feature learning.
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TABLE II
COMPARISON OF BEHAVIORAL PREDICTION PERFORMANCE

Inter-scale contrast constraint was also added in this model.
In this experiment, α was set to 1, and K was set to
{1, 1, 1}.

3) Baseline 3 (Multi-Scale FCs + Multi-Order Graph Con-
volution): It takes in multi-scale FCNs as input and uses
multi-order graph convolution as convolutional layer, but
removes inter-scale contrast constraint during feature learning.
We set α to 1, and reported the best prediction result with
K = {2, 2, 1}.

The comparison results were presented in Table III. It can be
seen that the prediction accuracy of the three baseline models
is lower than that of MSFC-MO-GCN, indicating that each
proposed strategy contributes to improving the model’s pre-
dictive ability. Further comparison reveals that the abilities of
baseline model 2 and 3 are both superior to baseline model 1,
suggesting that the introduction of multi-scale FC has the
greatest contribution to improving the predictive performance
of individual behavior. More interestingly, by comparing the
prediction accuracies based on FCs at three different scales
in baseline model 1, we found that the medium-sized FCN
(ROI = 500) is more likely to achieve better performance. This
may be because small-scale FCNs cannot obtain detailed func-
tional interactions between brain regions, while large-scale
FCNs are prone to false connections introduced by imaging
noise.

E. Importance of Functional Connectivity
In this subsection, we discussed the importance of FC for

MSFC-MO-GCN in each behavior prediction task. In this
paper, we used occlusion importance (OI) [61] as the eval-
uation metric. Specifically, given the FC to be evaluated,
we estimated its OI by computing the absolute difference of
the predicted behavior scores based on FCNs before and after
removing this edge. To reduce computational complexity, the
FC was classified into seven functional subsystems, i.e., VIS,
SM, ATT, SAL, LIM, FP, and DMN, and the importance of
FCs within each subsystem was calculated for each behavior
prediction task. We computed the OI value based on test results
on 25 folds.

Fig. 6 provides a detailed display of the OI results for
various functional subsystems across five different behav-
ioral prediction tasks. In this analysis, we observed that

TABLE III
COMPARISON RESULTS OF MSFC-MO-GCN WITH

THREE BASELINE MODELS

the influential functional connections impacting behavior are
distributed across distinct functional subsystems in different
tasks. For example, in endurance prediction tasks related to
physical activity, the sensorimotor (SM) system, closely tied
to movement control and bodily coordination, exhibited the
highest OI values, aligning with expectations [62]. In cognitive
flexibility tasks, systems requiring heightened attention and
information processing, such as the ATT [63], FP [64], and
DMN [65], played equally crucial roles. Conversely, in fluid
intelligence task, the differences among the seven functional
subsystems were minimal, reflecting the broad brain area
involvement these tasks demand [66]. These findings suggest
that the execution of higher-level cognitive functions tend
to depend on more complex and extensive neural networks.
From endurance to fluid intelligence, there is an apparent
increase in the number of functional subsystems involved in
task processing.

Additionally, our analysis also found that the DMN con-
sistently demonstrated relatively high OI values across all
five behavioral tasks. This could be attributed to the fact that
brain regions within the DMN, such as the prefrontal cortex,
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Fig. 6. Importance evaluation results of FCs for each behavior
prediction.

anterior cingulate cortex, and posterior cingulate cortex, serve
as key hubs for information transmission and integration dur-
ing various behavioral and cognitive activities. This discovery
underscores the widespread importance of the DMN across
different types of behavioral and cognitive tasks and its critical
role in understanding how the brain coordinates and executes
complex tasks.

VII. CONCLUSION

This paper proposes a multi-order graph conventional net-
work model for individual behavior prediction based on
multi-scale functional connectivity and GCN, named as
MSFC-MO-GCN. In this model, we consider the hierarchical
structure of brain system and uses FCs from multiple spatial
scales for brain connectivity representation learning. We also
designs multi-order graph convolution layer to extract informa-
tion from far-distance functional interactions to enrich feature
set learned from nodal connections. By introducing these
two strategies, our newly proposed GCN model has larger
ability to learn the brain-behavior relationship representation.
Experimental results on a publicly available dataset from
human connection project show that MSFC-MO-GCN exhibits
better performance compared to competing methods.
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