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Motor Imagery Classification for Asynchronous
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Abstract— Motor imagery (MI) based brain-computer
interfaces (BCIs) enable the direct control of external
devices through the imagined movements of various body
parts. Unlike previous systems that used fixed-length EEG
trials for MI decoding, asynchronous BCIs aim to detect the
user’s MI without explicit triggers. They are challenging to
implement, because the algorithm needs to first distinguish
between resting-states and MI trials, and then classify the
MI trials into the correct task, all without any triggers. This
paper proposes a sliding window prescreening and classifi-
cation (SWPC) approach for MI-based asynchronous BCIs,
which consists of two modules: a prescreening module to
screen MI trials out of the resting-state, and a classification
module for MI classification. Both modules are trained with
supervised learning followed by self-supervised learning,
which refines the feature extractors. Within-subject and
cross-subject asynchronous MI classifications on four dif-
ferent EEG datasets validated the effectiveness of SWPC,
i.e., it always achieved the highest average classification
accuracy, and outperformed the best state-of-the-art base-
line on each dataset by about 2%.

Index Terms— Brain-computer interface, electroen-
cephalogram, motor imagery, self-supervised learning.

I. INTRODUCTION

NON-INVASIVE electroencephalogram (EEG) based
brain-computer interfaces (BCIs) have made rapid

progress recently [1], [2], [3]. As shown in Fig. 1, a closed-
loop BCI system usually consists of three components: signal
acquisition, signal analysis, and external device control. Signal
analysis further includes signal preprocessing, feature extrac-
tion, and classification. Both traditional classifiers, e.g., linear
discriminant analysis and support vector machine, and deep
learning, e.g., EEGNet [4], have been used.

There are three classical BCI paradigms: motor imagery
(MI), event-related potential, and steady-state visual evoked

Manuscript received 29 October 2023; revised 6 January 2024;
accepted 18 January 2024. Date of publication 22 January 2024;
date of current version 26 January 2024. This work was supported in
part by the Shenzhen Science and Technology Program under Grant
JCYJ20220818103602004 and in part by the Fundamental Research
Funds for Central Universities under Grant 2023BR024. (Corresponding
author: Dongrui Wu.)

The authors are with the Ministry of Education Key Laboratory of
Image Processing and Intelligent Control, School of Artificial Intelligence
and Automation, Huazhong University of Science and Technology,
Wuhan 430074, China, and also with the Shenzhen Huazhong Univer-
sity of Science and Technology Research Institute, Shenzhen 518063,
China (e-mail: drwu09@gmail.com).

Digital Object Identifier 10.1109/TNSRE.2024.3356916

Fig. 1. Flowchart of a closed-loop EEG-based BCI system.

Fig. 2. Illustration of asynchronous MI classification. The user may
switch between resting-state and MI at any unknown time.

potential. The paper focuses on MI, where the user imagines
the movement of various body parts, e.g., left/right hand, both
feet or tongue, to elicit different EEG patterns and hence to
control external devices. It has been used in upper limb robotic
rehabilitation [5], text input [6], wheelchair control [7], etc.

Most existing MI-based BCIs use specific triggers to indi-
cate the start and end of each MI trial, which may be
inconvenient in practice. For example, when an MI-based BCI
is used to navigate a wheelchair, the control commands should
be sent out whenever the user wants, instead of only after some
triggers.

Mason and Birch [8] first proposed the concept of asyn-
chronous BCIs. As shown in Fig. 2, a subject generates control
signals by consciously changing his/her mental state: when the
subject starts MI, the BCI system detects it and completes the
corresponding instruction; otherwise, it keeps still.

Asynchronous MI-based BCIs are challenging to imple-
ment, because the algorithm needs to first distinguish between
resting-states (no MI) and MI trials, and then classify the
MI trials into the correct task, all without any triggers. Very
few studies have appeared in the literature. For example,
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Fig. 3. SWPC for asynchronous MI-based BCIs.

Sugiura et al. [9] adopted a hierarchical hidden Markov
model, and Saa and Cetin [10] proposed conditional random
fields and latent dynamic conditional random fields for EEG
classification in asynchronous BCIs.

This paper proposes a sliding window prescreening and
classification (SWPC) approach for asynchronous MI-based
BCIs, which consists of two modules:

1) Prescreening module, where a classifier with a fixed
window length, trained with both supervised learning
and self-supervised learning (SSL), is used to prescreen
MIs from the resting-state. If the output probability
exceeds a threshold, then the EEG trial is sent to the
next module for classification.

2) Classification module, where a classifier, also trained
with supervised learning and SSL, is used for MI
classification.

Within-subject and cross-subject experiments on four MI
datasets demonstrated the effectiveness of SWPC, particularly
SSL, to refine the feature extractors.

The remainder of this paper is organized as follows.
Section II introduces our proposed SWPC. Section III validates
the performance of SWPC on four MI datasets. Finally,
Section IV draws conclusions and points out future research
directions.

II. METHODOLOGY

This section introduces our proposed SWPC for asyn-
chronous MI-based BCIs. The code is publicly available at
https://github.com/why135724/SWPC.

A. Flowchart of SWPC
Fig. 3 shows the flowchart of our proposed SWPC for

asynchronous MI-based BCIs. It includes two modules:
1) Prescreening module, where an EEGNet [4] classifier

with a fixed window length is trained to screen the MIs
out of the resting-state EEG trials.

2) Classification module, where another EEGNet classifier
is trained to classify the prescreened MI trials.

Fig. 4. Usage of the prescreening probability p̄i.

B. Problem Setting
Two training sets are used in SWPC.
The first training set, Ds

= {(X s
i , ys

i )}
ns
i=1, is used in the

classification module to classify potential MI trials into differ-
ent MI tasks. It consists of ns labeled MI trials X s

i ∈ Rch×ts

and the corresponding labels ys
i , where ch is the number of

EEG channels, and ts the number of time domain samples.
The second training set, D̄s

= {(X̄ s
i , ȳs

i )}
2ns
i=1, is used in the

prescreening module to distinguish MI trials from the resting-
state. It consists of ns labeled MI trials from Ds , and another
ns resting-state trials X̄ s

i ∈ Rch×ts adjacent to the MI trials.
ȳs

i ∈ {0, 1} (0 denotes resting-state, and 1 denotes MI) is the
label of X̄ s

i .
The test data X t

∈ Rch× f l is a long EEG data stream with
f l time domain samples, where usually f l ≫ ts. It does not
include any triggers, so we do not know when an MI trial
starts. The goal is to correctly identify the MI periods and
further classify them into specific MI tasks.

To simplify the problem, we split X t with sliding window
length Lw and step 10 to get nt test trials Dt = {X t

i }
nt
i=1.

Each trial X t
i is then passed to the prescreening module, which

outputs the probability p̄i of X t
i being MI. If p̄i exceeds a

threshold τ , as shown in Fig. 4, then X t
i is further passed

to the classification module. If multiple successive trials have
p̄i ≥ τ , then their corresponding classification probabilities
are averaged as the final output. The predicted label for X i is
denoted as ŷt

i .

C. The Prescreening Module
As shown in Fig. 5, the prescreening module includes first

supervised training and then SSL.
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Fig. 5. Training of the prescreening module.

Supervised training performs binary classification between
MI and resting-states. It trains a feature extractor f̄θ and a
classifier h̄ψ on D̄s , using the cross-entropy loss:

Lsl(h̄ψ , f̄θ ) = −
2ns∑
i=1

ȳs
i log (h̄ψ ( f̄θ (X̄ s

i ))). (1)

Both θ and ψ are updated with gradient descent.
SSL is used to fine-tune the feature extractor f̄θ . It first

constructs 2ns transition trials (negative samples):

X̂ s
i = 0.5(X̄ s

r + X̄ s
m), i = 1, . . . , 2ns (2)

where X̄ s
r and X̄ s

m are randomly selected resting-state trial and
MI trial from D̄s , respectively. Next, it updates the feature
extractor f̄θ and simultaneously another auxiliary feature
extractor f̄φ , on positive samples D̄s and negative samples
D̂s
= {X̂ i }

ns
i=1 using the contrastive loss:

Lssl( f̄θ , f̄φ) = δ · exp

(
−

∑2ns
i=1 | f̄θ (X̄ s

i )− f̄φ(X̂ s
i )|

2

2σ 2

)

− exp

(
−

∑2ns
i=1 | f̄θ (X̄ s

i )− f̄φ(X̄ s
i )|

2

2σ 2

)
,

(3)

where δ = 0.3 is a hyperparameter controlling the contribution
of the negative samples, and σ = 2.0 determines the Gaussian
kernel width. Note that f̄θ and f̄φ are L2-normalized before
entering (3), i.e.,

f̄θ (X̄ s
i )←

f̄θ (X̄ s
i )

∥ f̄θ (X̄ s
i )∥2

, f̄φ(X̂ s
i )←

f̄φ(X̄ s
i )

∥ f̄φ(X̄ s
i )∥2

. (4)

f̄θ in (3) is optimized by gradient descent, whereas f̄φ is
optimized through exponential moving average (EMA):

φn+1
← λ · φn

+ (1− λ) · θn, (5)

where λ = 0.9995.

Fig. 6. Training of the classification module.

For a test EEG trial X t
i , only f̄θ and h̄ψ are used to compute

the prescreening probability p̄i , i.e.,

p̄i = h̄ψ ( f̄θ (X t
i )). (6)

If p̄i exceeds a threshold τ , then the EEG trial is further
passed to the classification module.

D. The Classification Module
As shown in Fig. 6, the training process of the classification

module is similar to that of the prescreening module. It also
consists of two steps: supervised training and SSL.

Supervised training of the classification module remains the
same as supervised training of the prescreening module, except
that the EEG trials are classified into different MI tasks, instead
of MI and resting-state.

SSL is again used to refine the feature extractor fθ . We
replace the construction of negative samples in the pre-
screening module with data augmentation in the classification
module. The following data augmentations are used in this
paper:

1) Adding noise: Uniform noise 0.5U (−δ, δ) is added to
each element of the feature vector, where δ is the
standard deviation of the original feature.

2) Scaling amplitude: Each feature is scaled by 0.75
or 1.25.

3) Masking channels: Randomly set all signals in some
EEG channels to 0.

4) Masking segments: Randomly set some segments of the
EEG signal to 0.

For each trial X s
i , we randomly select two different data

augmentations to get X s
i,1 and X s

i,2. {X s
i,1}

ns
i=1 and {X s

i,2}
ns
i=1 are

then L2-normalized using (4) before computing the following
contrastive loss:

Lssl( fθ , fφ) = − exp

(
−

∑ns
i=1 | fθ (X s

i,1)− fφ(X s
i,2)|

2

2σ 2

)
.

(7)

For an input test trial X t
i , the instantaneous classification

probability is

pi = hψ ( fθ (X t
i )). (8)
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Fig. 7. Illustration of computing p̂i.

TABLE I
SUMMARY OF THE FOUR MI DATASETS

To stabilize the output, we average all successive pi whose
corresponding p̄i exceed τ , i.e.,

p̂i =
1

i − i0

i∑
j=i0

p j , (9)

where i0 is the smallest index that ensures all { p̄ j }
i
j=i0

exceed
the threshold τ . p̂i is the final prediction probability for X t

i .
More specifically, as shown in Fig. 7, the process of com-

puting p̂i is: We pass X t
i ∈ Dt to f̄θ and h̄ψ to get p̄i . If

p̄i < τ , then we classify the corresponding X t
i as resting-

state; otherwise, we further pass X t
i to fθ and hψ to get pi .

p̂i is then averaged by (9) and used to derive ŷt
i .

The pseudo-code of SWPC is given in Algorithm 1.

III. EXPERIMENTS

This section evaluates the performance of our proposed
SWPC on four public MI datasets in both within-subject and
cross-subject classification.

A. Datasets
Four public datasets from BNCI-Horizon,1 summarized in

Table I, were used in our experiments:
1) MI1 was the 001-2014 dataset [11] recorded from 9 sub-

jects. Each session included 6 runs separated by short
breaks. EEG signals were sampled at 250Hz. Only two
classes (left-hand and right-hand) were used.

2) MI2 was also the 001-2014 dataset, but with all four
classes, i.e., left-hand, right-hand, feet, and tongue.

3) MI3 was the 002-2014 dataset [12] recorded from
14 subjects. Each session included 8 runs separated
by short breaks. EEG signals were sampled at 512Hz.

1http://www.bnci-horizon-2020.eu/database/data-sets

Algorithm 1 SWPC for Asynchronous MI-Based BCIs
Require: Training set Ds

= {(X s
i , ys

i )}
ns
i=1;

Training set D̄s = {(X̄ s
i , ȳs

i )}
2ns
i=1;

Maximum number of epochs, max1 and max2;
Ensure: The classification {ŷt

i }
nt
i=1.

1: // Supervised Training of the
Prescreening Module

2: Randomly initialize the feature extractor f̄θ and the clas-
sifier h̄ψ ;

3: for k = 1, . . . , max1 do
4: Pass D̄s to f̄θ and h̄ψ to compute Lsl(h̄ψ , f̄θ ) in (1);
5: Update θ and ψ ;
6: end for
7: // Self-supervised Training of the
Prescreening Module

8: Initialize φ to θ ;
9: Generate X̂ s using (2);

10: for k = 1, . . . , max2 do
11: Pass {X s

i }
2ns
i=1 and {X̂ s

i }
2ns
i=1 to f̄θ and f̄φ to compute

Lssl( f̄θ , f̄φ) in (3);
12: Update θ , and φ using (5);
13: end for
14: // Supervised Training of the

Classification Module
15: Randomly initialize the feature extractor fθ and the

classifier hψ ;
16: for k = 1, . . . , max1 do
17: Pass Ds to fθ and hψ to compute Lsl(hψ , fθ ) in (1);
18: Update θ and ψ ;
19: end for
20: // Self-supervised Training of the

Classification Module
21: Initialize φ to θ ;
22: for k = 1, . . . , max2 do
23: Augment {X s

i }
ns
i=1 twice to get {X s

i,1}
ns
i=1 and {X s

i,2}
ns
i=1;

24: Pass {X s
i,1}

ns
i=1 to fθ and {X s

i,2}
ns
i=1 to fφ , and compute

Lssl( fθ , fφ) in (7);
25: Update θ , and φ using (5);
26: end for
27: // Test Sample Classification
28: Split X t with sliding window length Lw and step size

10 to get Dt = {X t
i }

nt
i=1;

29: Set i0 = 0;
30: for i = 1, . . . , nt do
31: Pass X t

i to f̄θ and h̄ψ to get p̄i ;
32: if p̄i ≥ τ then
33: if i0 == 0 then
34: Set i0 = i ;
35: end if
36: Pass X t

i to fθ and hψ to compute pi ;
37: Compute p̂i using (9);
38: Obtain ŷt

i from p̂i ;
39: else
40: Set ŷt

i as resting-state;
41: Set i0 = 0;
42: end if
43: end for
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TABLE II
ACCS ON MI1 IN WITHIN-SUBJECT CLASSIFICATION

TABLE III
ACCS ON MI2 IN WITHIN-SUBJECT CLASSIFICATION

TABLE IV
ACCS ON MI3 IN WITHIN-SUBJECT CLASSIFICATION

TABLE V
ACCS ON MI4 IN WITHIN-SUBJECT CLASSIFICATION

Only two classes (right-hand and both feet) were used.
Subject 10 was removed, as his/her results were close to
random.

4) MI4 was the 004-2014 dataset [13] recorded from 9 sub-
jects. EEG signals were sampled at 250Hz. Only two
classes (left-hand and right-hand) were used. We deleted
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TABLE VI
ACCS ON MI1 IN CROSS-SUBJECT CLASSIFICATION

TABLE VII
ACCS ON MI2 IN CROSS-SUBJECT CLASSIFICATION

TABLE VIII
ACCS ON MI3 IN CROSS-SUBJECT CLASSIFICATION

the results of the 2nd and 3rd subjects for the same
reason.

Note that Subjects 5 and 6 in MI1, Subject 10 in MI3, and
Subjects 2 and 3 in MI4, were removed because their results
were close to random.

All EEG signals were bandpass-filtered between 8Hz and
30Hz, and then notch-filtered at 50Hz.

B. Performance Evaluation
The classification accuracy (ACC) was used as the perfor-

mance metric. The specific computation details are illustrated
in Fig. 8, where the yellow bar indicates the true MI period:

1) When all sliding windows during the true MI period
have p̄i ≥ τ , p̂i corresponding to the last sliding
window with p̄i ≥ τ is used to evaluate the classification
accuracy.

2) When the true MI period is broken into two or more
intervals, during each of which all p̄i ≥ τ , p̂i corre-
sponding to the last sliding window with p̄i ≥ τ in
the last interval is used to evaluate the classification
accuracy.

3) When no sliding window in the MI period has p̄i ≥ τ ,
the classification is ‘wrong’.

C. Algorithms
SWPC used the EEGNet backbone. Supervised learn-

ing used learning rate 0.0005 and early stopping with
patience 30. SSL used learning rate 0.00005 and 40 training
epochs.

SWPC was compared with the following 11 approaches:
1) Continuous EEG classification (CEC) [14], which uses

CSP and thresholding to identify MIs in EEGs.
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TABLE IX
ACCS ON MI4 IN CROSS-SUBJECT CLASSIFICATION

TABLE X
MI IDENTIFICATION ACCURACIES OF THE PRESCREENING MODULE

TABLE XI
ACCS OF THE CLASSIFICATION MODULE, WHEN THERE ARE TRIGGERS

TABLE XII
ADJUSTED p-VALUES OF PAIRED t -TESTS BETWEEN SWPC AND

OTHER APPROACHES IN WITHIN-SUBJECT CLASSIFICATION

2) Joint training scheme (JTS) [15], which combines the
transitional imagery data (between the resting state and
MI) with the resting state to train a binary classifier.

3) Bootstrap Your Own Latent (BYOL)2 [16].
4) Simple framework for Contrastive Learning of Repre-

sentations (SimCLR)3 [17].
5) Momentum Contrast (MoCo)4 [18].
6) ContraWR5 [19].

2https://github.com/deepmind/deepmind-research/tree/master/byol
3https://github.com/google-research/simclr
4https://github.com/facebookresearch/moco
5https://github.com/ycq091044/ContraWR

TABLE XIII
ADJUSTED p-VALUES OF PAIRED t -TESTS BETWEEN SWPC AND

OTHER APPROACHES IN CROSS-SUBJECT CLASSIFICATION

7) Self-supervised contrastive learning (SSCL) [20], which
was proposed for cross-session MI classification.

8) Ou2022 [21], an SSL approach for MI classification.
9) Model-agnostic meta-learning (MAML) [22], which

learns a good initialization for fast adaptation.
10) Ensemble of averages (EOA) [23], which trains an

ensemble of independent moving average models.
11) Song2022 [24], an event-related desynchronization

detection and false positive rejection algorithm based on
the time-frequency characteristics of MI.

Note that CEC and Song2022 were proposed for asyn-
chronous MI classification, so their original algorithms were
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TABLE XIV
ABLATION STUDY RESULTS IN WITHIN-SUBJECT CLASSIFICATION

TABLE XV
ABLATION STUDY RESULTS IN CROSS-SUBJECT CLASSIFICATION

Fig. 8. Illustration of computing the classification accuracy in testing.

implemented. The other 9 algorithms cannot be directly used
for asynchronous BCIs, so they were embedded into SWPC.
More specifically, BYOL, SimCLR, MoCo, ContraWR, SSCL
and Ou2022 were used to replace the SSL part of SWPC (the
supervised learning part was kept), MAML and EOA were
used to replace the supervised training part of SWPC (the
SSL part was removed), and JTS was only used in supervised
training of the prescreening module.

Both within-subject and cross-subject classifications were
performed. For within-subject experiments, Session 1 was used
for training, and Session 2 (with all triggers removed) of
the same subject for testing. For cross-subject experiments,
Session 2 of a subject was used for testing, and Session
1 from all other subjects were combined for training. 40%
of the training data were reserved as the validation set for
determining the optimal hyperparameters, which were then

applied to all training data to re-train the model. Except for
CEC, which has no randomness, all other algorithms were
repeated five times, and the average is reported.

D. Results
The ACCs and standard deviations (across different

subjects) of different approaches on the four MI datasets in
within-subject classification are shown in Tables II-V,
respectively. The ACCs and standard deviations in
cross-subject classification are shown in Tables VI-IX,
respectively. The best results are marked in bold. Clearly,
our proposed SWPC achieved the best average results on
all four datasets in both within-subject and cross-subject
classifications.

We also studied the effectiveness of SSL to the prescreening
module and the classification module. Table X shows the MI
identification accuracies of the prescreening module, with and
without SSL. Table XI shows the ACCs of the classification
module, assuming there are triggers. Clearly, SSL was always
beneficial to both the prescreening module and the classifica-
tion module.

Paired t-tests were performed to evaluate whether the
performance improvements of SWPC over others were sta-
tistically significant in within-subject and cross-subject clas-
sifications. The results are shown in Tables XII and XIII,
respectively, where p-values smaller than 0.05 are marked with
asterisks. Most of the performance improvements were statis-
tically significant; particularly, in cross-subject classification,
SWPC statistically significantly outperformed each algorithm
on at least three datasets.

E. Ablation Study
Ablation studies were performed to evaluate if SSL in the

prescreening module and the classification module, and the
final averaging, are truly necessary and beneficial. Within-
subject and cross-subject classification results are shown in
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Fig. 9. Change of the classification accuracy w.r.t. the time window
length Lw in (a) within-subject classification; and, (b) cross-subject
classification.

TABLE XVI
ONLINE AND OFFLINE WITHIN-SUBJECT CLASSIFICATION ACCURACIES

Tables XIV and XV, respectively. Clearly, all three compo-
nents were essential to the superior performance of SWPC.

F. Parameter Sensitivity Analysis
This subsection evaluates the sensitivity of SWPC to the

time window length Lw and the prescreening threshold τ . The
results are shown in Figs. 9 and 10, respectively. Lw = 1 and
τ = 0.2 seem to achieve the overall best performance on all
datasets.

G. Offline Classification
All previous subsections considered online classification,

i.e., the test data are available on-the-fly. This subsection
further considers offline classification, where all test EEG data
are available.

In offline classification, SSL on the test set Dt = {X t
i }

nt
i=1

(instead of on the training set Ds in online classification) may
be used to improve the performance. Specifically, we first
conducted SSL in Section II-C on Dt , and then SSL in

Fig. 10. Change of the classification accuracy w.r.t. the prescreening
threshold τ in (a) within-subject classification; and, (b) cross-subject
classification.

TABLE XVII
ONLINE AND OFFLINE CROSS-SUBJECT CLASSIFICATION ACCURACIES

Section II-D on D̂t , which consisted of EEG trials predicted
as MI in Dt . Tables XVI and XVII show the average results
on the four datasets in within-subject and cross-subject clas-
sification, respectively. Offline classification accuracies were
higher than their online counterparts for all approaches in both
scenarios, because SSL on the test data themselves extracted
more tailored features.

IV. CONCLUSION AND FUTURE RESEARCH

Asynchronous MI-based BCIs aim to detect the user’s MI
without explicit triggers. They are challenging to implement,
because the algorithm needs to first distinguish between
resting-states and MI trials, and then classify the MI trials
into the correct task, all without any triggers. This paper
has proposed SWPC for MI-based asynchronous BCIs, which
consists of two modules: a prescreening module to screen MI
trials from the resting-state, and a classification module for
MI classification. Both modules are trained with supervised
learning followed by SSL. Within-subject and cross-subject
asynchronous MI classification on four different EEG datasets



536 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 32, 2024

validated the effectiveness of SWPC, particularly, SSL to
refine the feature extractors.

Our future research directions include:
1) Transfer learning: Transfer learning can further mitigate

cross-subject and cross-session data discrepancies. For
asynchronous BCIs, data alignment [25], source-free
domain adaptation [26], and domain generalization [27]
approaches may be used to further improve performance
and protect user privacy.

2) Test-time adaptation: Test-time adaptation updates the
classifier using online unlabeled data to improve its
performance. Our recent work [28] has demonstrated its
promising performance in synchronous MI-based BCIs,
but how to apply it to asynchronous BCIs requires
further investigation.

3) More BCI paradigms: Only MI was considered in this
paper. It is interesting to study if SWPC can be extended
to other classical BCI paradigms, e.g., event-related
potential and steady-state visual evoked potential.
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