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Resting State EEG Variability and Implications
for Interpreting Clinical Effect Sizes
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Abstract— Resting state electroencephalography
(rsEEG) is widely used to investigate intrinsic
brain activity, with the potential for detecting
neurophysiological abnormalities in clinical conditions
from neurodegenerative disease to developmental
disorders. When interpreting quantitative rsEEG changes,
a key question is: how much deviation from a healthy
normal brain state indicates a clinically significant
change? Here, we build on the existing rsEEG variability
literature by quantifying how this baseline rsEEG range can
be attributed to common but underinvestigated sources of
variability: experiment day, time of day, and pre-recording
exercise level. We found that even within individuals,
frequency band powers and entropy measures can vary
by 7% (sample entropy and relative alpha power) to 28%
(absolute delta power). Absolute and relative delta power
increased significantly after running, while relative theta
power decreased significantly. Relative beta and gamma
power were significantly higher in the afternoon compared
to morning trials. Sample entropy and alpha power were
relatively consistent. The coefficients of variability we
found are similar to some clinical rsEEG effect sizes
identified in prior literature, bringing into question the
clinical significance of these effect sizes. Furthermore,
time of day and activity level accounted for more rsEEG
variability than experiment day, indicating the potential
to reduce variability by controlling for these factors in
repeated-measures studies.

Index Terms— Frequency band power, resting state
electroencephalography (rsEEG), sample entropy, within-
participants variability.

I. INTRODUCTION

ELECTROENCEPHALOGRAM (EEG) recordings
taken during resting state are increasingly applied in
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neuroscience research to study intrinsic brain activity. Resting
state EEG (rsEEG) metrics have demonstrated sensitivity to
the altered neurophysiology in brain diseases and injuries, and
have accordingly been suggested for clinical application [1],
[2], [3]. For example, rsEEG band power analyses have shown
slowing of brain activity (shift towards lower frequency bands)
in psychiatric [4], [5] and neurodegenerative conditions [6],
[7], as well as mild traumatic brain injury [8], [9]. Meanwhile,
rsEEG complexity generally decreases in neurodegenerative,
developmental, and psychiatric disorders, with numerous
reports of decreased entropy in Alzheimer’s Disease (AD),
Autism Spectrum Disorder (ASD), and mood disorders
[10], [11].

Interpreting the clinical significance of quantitative rsEEG
changes depends on the variability in the rsEEG representation
of brain states. Prior to clinical application, we need to
address the question: how much deviation from a healthy
normal brain state indicates a clinically significant change?
It is generally well-established that inter-participant varia-
tions can be substantial, yet intra-participant rsEEG patterns
remain relatively stable [12], especially when the measurement
system is controlled [13]. High test-retest reliability scores
within participants have been found between repeated trials
performed a few minutes apart [14], a few days apart [15],
and several weeks or even months apart [16], [17]. The
theta/beta band power ratio for attention deficit/hyperactivity
disorder (AD/HD) diagnosis has demonstrated reliability over
several days and consistency with the time progression of
established measures of attentional control [18]. The alpha
band, which constitutes the dominant EEG rhythm during
eyes-closed resting state, has also shown low variability and
has thus been the focus of many rsEEG analyses [19].

While the day-to-day variability of rsEEG metrics is rel-
atively well-established, it is known that a number of bio-
chemical, physiological, and behavioral factors can modify
EEG patterns [20], and as rsEEG is moving towards more
ambulatory applications [21], further quantification of poten-
tial variability is required for clinical translation. Circadian
rhythms in alertness and wakefulness have been correlated
with EEG metrics, and these neuroelectric changes are hypoth-
esized to be mediated by time-dependent neurotransmitters
such as melatonin [22]. Shifting from morning to evening
trials has demonstrated increases in alpha power, beta power,
and entropy [23]. The physical stress level of a study partic-
ipant may also be reflected in rsEEG recordings. In healthy
adults, moderate aerobic exercise (e.g., running on a treadmill)
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Fig. 1. Overview of methods. The experimental design (A) consisted of 2 experimental days, 2 times of day, and 3 pre-resting state activity levels,
for a total of 12 trials per participant. We used the Brain Products LiveAmp with active electrodes and the 32-channel ActiCap (B). Clean EEG
signals (C) were obtained through bandpass filtering, ICA, and manual artifact pruning. The scale bar represents 100 µV.

significantly reduced the relative theta power in subsequent
resting state recordings [24]. A similar effect has also been
observed in children with AD/HD, with exercise decreasing
the theta/beta ratio [25]. Our study presents a novel analysis
of the specific contributions of these common variables to an
individual’s overall rsEEG variability.

In this study, we examined the variability in rsEEG power
spectrum metrics and sample entropy over repeated trials on
different days, at different times of day, and after varying levels
of pre-recording physical activity. We hypothesized that the
rsEEG changes due to these factors contribute significantly to
intra-individual variability and that quantifying these contri-
butions can inform clinical interpretations of effect sizes and
potential strategies to control for variability.

II. METHODS

A. Participants
12 healthy young adults (5 female, 7 male) aged 18 to

26 years (mean age of 22.3 ± 2.60 years) participated in the
study. Participants were instructed to carry out daily activities
as normal for the 24 hours before the experiment and were
advised against unusually strenuous exercise or sleeping less
than normal. Consuming alcohol or recreational drugs was not
permitted in the 24 hours before each experiment session.
The human participant protocol for the study was approved
by the University of British Columbia Research Ethics Board
(H20-02313), and informed consent was obtained from all
participants.

B. Experimental Setup
Experiment sessions included measurements across different

days, times of day, and pre-rsEEG activity levels (Figure 1A).

On each experiment day, participants participated in a morning
session (between 10:00am and 12:00pm) and an afternoon
session (between 3:00pm and 5:00pm). Each session consisted
of 5-minute eyes-closed rsEEG measurements after different
activities (3 minutes of sitting, treadmill walking, and treadmill
running, in that order). Overall, we took 12 rsEEG recordings
from each participant (2 days, 2 times, and 3 activities).

To simulate normal exertion levels for the non-stationary
activities, participants each chose comfortable speeds between
2.5 mph to 3.5 mph for walking and between 4.5 to 5.5 mph for
running. After EEG setup and verbal instructions, participants
were provided a set of earplugs with a 29 dB attenuation rating
(3M, Saint Paul, USA) to block ambient noise. During rsEEG
measurements, participants were instructed to sit quietly, relax,
keep their eyes closed, and avoid dwelling on any particular
thought.

C. EEG Instrumentation
EEG was recorded through 32 Ag/AgCl active electrodes

arranged using the International 10-20 system on the actiCAP
slim cap and amplified using the Brain Products LiveAmp
amplifier and SuperVisc conductive gel (Brain Products,
Gliching, Germany) (Figure 1B). Electrode-scalp impedances
were kept below 25 k�. EEG data were recorded at a sampling
rate of 500 Hz and sent via Bluetooth to a PC running the
Brain Products Recorder software for live monitoring. The
FCz electrode was used as the initial recording reference,
and the ground electrode was placed between Fp1 and Fp2.
Resting state recordings were started after visual confirmation
of participant compliance with instructions, cessation of eye
blink artifacts in Fp1 and Fp2, and decreased motion in the
accelerometer channels. 5 minutes of eyes-closed rsEEG were
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then collected, with an additional 10 seconds of buffer before
and after to account for edge artifacts.

D. EEG Pre-Processing

EEG recordings were imported into EEGLAB [26] running
on MATLAB r2022a (Mathworks Inc., Natick, MA). The data
were first re-referenced to the common average reference,
then 1-100Hz bandpass filtered using a 4th-order forward-
backward Butterworth filter. Large and transient multi-channel
artifacts were removed manually, resulting in an average loss
of 5.68s per 300s recording (1.9%). Independent component
analysis (ICA) was performed using the extended infomax
algorithm [27]. The physiological signature (brain, muscle,
eye, heart, line noise, channel noise, or other) of each inde-
pendent component (IC) was determined using the ICLabel
EEGLAB plugin for automatic IC classification. Components
classified as artifacts with greater than 85% confidence were
flagged for removal. These classifications and component
power spectra were used to manually select independent
components with significant artifacts to remove from the data.
The cleaned signal was then reconstructed from the remaining
ICs (Figure 1C).

E. Quantitative EEG Metrics

Whole, processed rsEEG trials were separated into 2-second
epochs to create time series of relative frequency band pow-
ers for each trial. Epochs had a 50% overlap and were
windowed using a Hamming window. The power spectral
density of each epoch was computed using the Fast Fourier
Transform. According to the convention in the literature,
power spectra were reported using a logarithmic (log) scale
(dB) [26], and subsequent variability analyses were performed
on non-transformed values (µV2). Because log-scale anal-
yses could be valuable for comparison with studies using
log-scale, we include them in the Supplementary Materials
(Supplementary Figures 1-3). Frequency bands were defined
as delta (1-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta
(13-22 Hz), and gamma (22-40 Hz) [28]. Frequency band
powers were computed from the area under the power spectral
density, and relative band powers were determined by dividing
each frequency band power by the total spectra power.

For each epoch, we also computed sample entropy with
standard parameter values of m = 2 and r = 0.2. Sample
entropy is estimated as the conditional probability

SE(m, r) = −log
[
Am(r)/Bm(r)

]
, (1)

where Bm(r) is the probability of two vectors of length m
in the time series exhibiting a similar pattern, Am(r) is the
probability of two vectors of length m +1 exhibiting a similar
pattern, and r is the tolerance level for this similarity [29].
Sample entropy quantifies the likelihood of pattern repetition
in a time series as a proxy for complexity. Power spectra
and sample entropy values for whole trials were determined
by averaging across the 2-second epochs and across EEG
channels.

F. Statistical Analysis
We used the coefficient of variability (CV), defined as

the standard deviation normalized by the mean, to quantify
the overall variability of rsEEG metrics for each participant.
CVs were expressed as percentages to facilitate comparisons
with literature effect sizes. A repeated-measures analysis of
variance (ANOVA) was performed to determine the within-
participants effects of experiment day, time of day, and
activity level on rsEEG relative band power and sample
entropy. Response data (band powers and entropy) were log-
transformed to pass the Kolmogorov-Sinai test for normality
prior to performing the ANOVA. A separate analysis was
performed for each rsEEG metric. Post hoc tests corrected
for multiple comparisons using Tukey’s HSD were used to
determine significant contrasts between levels of the fixed
effects. All statistical testing was performed in R.

G. Intra-Trial Variability
Since we noticed non-stationary behavior in the time series

of the power and entropy parameters, we also examined and
quantified this behavior. Time series were first smoothed using
a moving average filter with a window size of 25 points (MAT-
LAB smoothdata function) to reveal global trends. Settling
patterns were considered present if the mean of the initial
5 seconds of recording was either 2 standard deviations above
(downward settling) or below (upward settling) the steady-
state value (mean of the second half of the recording). This
heuristic method provided settling pattern determinations con-
sistent with visual examinations of settling behavior. Settling
time was defined as the time point at which the settling
pattern crossed the time series mean. Correlations between
time series of different metrics were calculated using the
Pearson correlation coefficient.

III. RESULTS

A. Overall Intra-Participant Variability
The shapes of the rsEEG power spectra across trials within

participants were consistent (Figure 2A-L). While the spectra
for each participant demonstrated peaks in both the alpha and
beta frequency bands, the height, width, and center frequencies
of these peaks varied between participants (Figure 2M). The
rsEEG metrics tested in this study showed varying levels of
intra-participant variability (Figure 3). Of the relative band
powers, the least variable metric was relative alpha power
(0.49 ± 0.03, CV = 7%) (Figure 3C, Figure 4A) and the
most variable metric was relative delta power (0.17 ± 0.02,
CV = 13%) (Figure 3A). Of the absolute band powers,
the least variable metric was absolute beta power (4.46 ±

0.59 µV2, CV = 12%) (Figure 3J) and the most variable
metric was absolute delta power (5.69 ± 1.45 µV2, CV =

28%) (Figure 3G). Total absolute power over all frequency
bands (41.87 ± 4.86 µV2, CV = 13%) (Figure 3L) was less
variable than the absolute power in any individual frequency
band, agreeing with the similarities in power spectra size
and shape within participants. Sample entropy had low intra-
participant variability (0.59 ± 0.04, CV = 7%) (Figure 3F).
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Fig. 2. Power spectral densities. Power spectra for single rsEEG trials (navy blue, A-L) were consistent in shape within participants, while average
power spectra over repeated trials (M) varied in shape between participants. Standard deviations are shaded.

B. Effects of Experimental Factors on rsEEG Variability

The experimental factors we examined explained up to
about 20% of the variance in rsEEG metrics (Figure 4B).
Time of day and activity level accounted for more of the
variance than experiment day. The repeated-measures ANOVA
revealed that time of day had a significant effect on relative
beta power (p = 0.001) and relative gamma power (p =

0.001). Across activity levels pre-resting state, main effects
analysis showed a significant difference in relative delta power
(p = 0.003), relative theta power (p < 0.001), absolute delta
power (p < 0.001), and total power (p = 0.002). Neither time
of day nor activity level significantly affected sample entropy
(Figure 5F). Experiment day did not have a significant effect
on any rsEEG metrics (Figure 5A).

Post hoc comparisons for relative beta and relative gamma
power showed an increase in PM sessions for both metrics
(p < 0.001 for both) (Figure 5B). Relative delta power was

higher after running compared to after walking (p = 0.006)
(Figure 5C) and after sitting (p = 0.01) (Figure 5D). Abso-
lute delta power was higher after running compared to both
the walking and sitting conditions (p < 0.001 for both)
(Figure 5C,D). Total power was higher after running compared
to the sitting condition (p = 0.002) (Figure 5D) and after
running compared to after walking (p = 0.04) (Figure 5C).
Theta power responded in an opposite manner to delta and
total power, experiencing a decrease after running compared
to both the walking and sitting conditions (p = 0.004 and
p < 0.001, respectively) (Figure 5C,D). Post hoc testing
revealed no significant differences between the walking and
sitting conditions (Figure 5E). We found no significant inter-
action effects on any of the rsEEG metrics.

C. Intra-Trial rsEEG Variability
We observed that quantitative rsEEG measurements vary

within individuals not only between sessions (time scale of
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Fig. 3. Within-participants variability in rsEEG metrics. The spread of the distribution of measurements for each participant (boxes represent
individual distributions) depended greatly on the participant and the rsEEG metric.

hours to days) but also within trials (time scale of seconds to
minutes). Of the 144 sample entropy time series collected over
all experiment sessions, 87 time series exhibited a decreasing
settling pattern (Figure 6A). The relative band power time
series exhibited fewer settling patterns overall, and these were
mostly found in the alpha (47 of 144) and gamma (69 of 144)
frequency bands. Gamma power settled with similar patterns
as sample entropy (Pearson’s correlation ρavg = 0.80), while

alpha power was negatively correlated with sample entropy
(ρavg = -0.59) (Figure 6B). A mixed-effects logistic regression
revealed no significant effects of experiment day, time of
day, or activity level on the presence of a settling pattern.
However, the number of settling patterns depended signifi-
cantly on the participant (p < 0.001). For sample entropy
trials with settling patterns, the average settling time over all
trials was 85.0 seconds. The difference between the initial
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Fig. 4. Quantification of rsEEG variability. Within-participants coefficients of variability, averaged over all participants, were greatest for absolute
delta, theta, and gamma power, and lowest for relative alpha power and sample entropy (A). Absolute delta power, relative theta power, and relative
beta power had the greatest ANOVA effect sizes (B). Activity level and time of day were the main contributors to this variance.

response and the steady state value was 0.206 (+27.0%) for
sample entropy, −0.280 (−113%) for relative alpha power, and
0.073 (+54.6%) for relative gamma power. Repeated-measures
ANOVA showed that the settling time and settling magnitude
did not depend significantly on the experimental factors.

D. Brain Region Effects on rsEEG Variability
Lastly, we explored how the intra-participant variability in

rsEEG metrics depends on brain region using CV scalp maps
(Figure 7). We observed that variability can be highly local-
ized to certain brain regions, with peripheral brain regions gen-
erally exhibiting higher variability than central brain regions.

IV. DISCUSSION

As rsEEG becomes more common as a research and clinical
tool, understanding the variability in rsEEG measurements due
to healthy normal variations and experimental factors will be
crucial for making meaningful interpretations. We found that
even within individuals, rsEEG metrics can vary by over 25%
from trial to trial, which has implications for how clinically
significant effect sizes for these metrics are determined and
interpreted. We demonstrated that this variability may be
mediated by often overlooked factors such as time of day
and physical activity. Research studies or clinical tests using
rsEEG may need to further control protocols to account for
this sensitivity to normal changes in experimental conditions.

A. Overall EEG Variability: Implications for Interpreting
Clinical Effect Sizes

The variability scores expressed in Figure 4 quantify the
normal spread of within-participants rsEEG measurements.
For a given participant, a rsEEG recording taken at one time
point may lie anywhere within this spread, and can only
be meaningfully assessed to be normal or abnormal after
this variability has been quantified. Here, we quantified the
normal variability for 12 participants, and the average of these
variabilities for each EEG metric can be compared to literature
effect sizes to estimate clinical significance.

For example, in a review of rsEEG band power metrics
in psychiatric disorders, Newson and Thiagarajan summarized
that AD/HD patients exhibited an 11% increase in relative
theta power and a 25% increase in absolute theta power over
healthy controls [30]. We observed an 11% average intra-
participant coefficient of variability (CV) in relative theta
power and a 17% CV for absolute theta power. The effect
sizes in the AD/HD studies fall within or close to the normal
trial-to-trial variability we found, suggesting that the observed
magnitude of effects may be within or near the level expected
for healthy normal variation. The same review found that
studies on absolute gamma power in schizophrenia and relative
gamma power in ASD demonstrated average differences of
45% and 50% between patient and control groups [30]. These
effect sizes are much larger than the 17% absolute gamma
variability and 12% relative gamma variability we found and
are more likely to represent true pathophysiology. Similarly,
Geraedts et al. found relative beta power changes of 19%
(non-dementia Parkinson’s vs. controls) to 52% (dementia
Parkinson’s vs. controls) in a systematic review of rsEEG [31].
Comparing these figures with our observed relative beta vari-
ability of 8%, disease progression may indeed be associated
with increasing effect sizes, and the normal variability we
quantified may aid in interpreting this progression.

Notably, despite the variability in band power metrics,
rsEEG power spectra shapes were surprisingly consistent
within participants. Quantifying the frequency distribution
may be a promising method of analyzing repeated rsEEG
recordings with lower intra-participant variability. This finding
agrees with Levin et al., who used the Fitting Oscillations
and One-Over-F (FOOOF) algorithm to parameterize power
spectrum profiles and demonstrate their within-participants
stability [32]. While the quantification of power spectral shape
is still an emerging analysis method, it has the potential to help
minimize the intra-participant variability in clinical EEG.

Sample entropy was also highly consistent within partic-
ipants, suggesting that for each individual, there may be
underlying dynamics that determine the complexity of their
rsEEG patterns regardless of the external noise introduced by
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Fig. 5. Pairwise differences in rsEEG. Experiment day had no effect on rsEEG (A). Relative beta and gamma powers were significantly higher
in the afternoon compared to the morning (B). Absolute delta power was significantly increased after running, compared to both walking (C) and
sitting (D), whereas relative theta power was significantly decreased. There were no significant differences between walking and sitting (E) or for
sample entropy (F). ∗: p < 0.01 and ∗∗: p < 0.001.

experimental variables. However, because all rsEEG record-
ings were performed in an eyes-closed state, the consistency
in sample entropy may also reflect the inherent order of
the dominant alpha rhythm. Further exploration of sample
entropy in different experimental conditions is required before
application to clinical settings.

The assumption that rsEEG is a stationary signal is crucial
for measuring and interpreting significant changes in brain
activity. However, the within-trial settling patterns we observed
suggest that variability may also exist on smaller time scales.
The lack of a significant effect of experiment day, time of
day, or activity level on the presence of these settling patterns
suggests that they may be an inherent feature of EEG record-
ings. For example, the gradual decrease in sample entropy
and relative gamma power and gradual increase in relative
alpha power could be the neural response to the transition into
calm resting states. We determined the typical time to reach

a “steady state” to be about one minute. This delay should
be accounted for in future resting state studies to ensure that
participants have fully reached the resting neural state before
collecting data.

B. Sources of EEG Variability: Implications for Study
Design

1) Experiment Day: The lack of a significant effect of
experiment day on any rsEEG metrics was consistent with
the existing literature on rsEEG reliability. The consistency
of individual rsEEG from day to day was supported by the
similarity of rsEEG power spectra across trials, regardless of
experimental condition. These results demonstrate that rsEEG
records the unique electrophysiological signature of each
individual’s cortical activity. While time of day and physical
activity may cause small perturbations in this signature, the
underlying mechanics are consistent.
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Fig. 6. Correlations between band power and entropy time series. Relative gamma power correlates positively with sample entropy and relative
alpha power correlates negatively with sample entropy (representative time series, A). These correlations are consistent across almost all rsEEG
trials (B). The average alpha band correlation was ρavg = −0.59 and the average gamma band correlation was ρavg = 0.80.

Fig. 7. Relative band power and sample entropy CV scalp maps. CV distributions depend on the participant and rsEEG metric studied.

2) Time of Day: We anticipated that time of day would
introduce variability into metrics related to alertness and wake-
fulness. Our results showed increased beta and gamma power
in the afternoon compared to the morning. These metrics
are typically associated with higher-level cognitive functions
such as problem-solving and memory retrieval. Participants
could be more cognitively active in the afternoon, or more
restless when going through the second experimental session
of the day. These changes may also indicate an overall shift in
individual power spectra away from lower frequencies, which
is characteristic of a peak in the wakefulness circadian rhythm
commonly observed in the late afternoon [33]. However, mak-
ing conclusions about higher cognitive function from resting

state data can be complicated by the contribution of ocular
and muscle artifact to beta and gamma power [34], [35].
While muscle and ocular artifact removal was performed using
ICLabel, further artifact identification and mitigation may be
explored to determine potential sources of variability in the
beta and gamma bands (e.g., empirical mode decomposition
as described in [36]).

These time-of-day effects suggest that whenever possible,
repeated rsEEG measurements should be conducted at the
same time of day. Because the time-of-day effects may
be mediated by wakefulness, the sleep duration and wake
time before repeated rsEEG measurements should be kept
consistent. Alternatively, baseline changes in rsEEG between
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time points could be taken to account for potential drift.
Dedicated electromyogram (EMG) electrodes placed close to
EEG electrodes most susceptible to muscle artifacts (e.g.,
temporal locations) may also benefit the removal of this noise.

3) Activity Level: The decreased relative theta power post-
running compared to the post-walking and post-sitting con-
ditions is consistent with the existing literature on exercise
and EEG. Combined with the link between decreased theta
power and improved performance on cognitive tasks, the theta
changes we observed may demonstrate a transient effect of
exercise on cognitive alertness. However, we also observed
large increases in relative and absolute delta power, which are
traditionally markers of decreased cortical activation. While
these changes could reflect the onset of fatigue after exercise,
an alternative explanation may involve sweat artifacts. In our
data, these large-amplitude, low-frequency oscillations were
present for most participants for the running condition but
were visually undetectable after the rsEEG data were pro-
cessed using standard EEG artifact removal methods.

While running or other forms of aerobic exercise are not
common in traditional clinical or research settings, under-
standing the rsEEG response in a stressed physical state
can inform study designs for more specific applications. For
example, patients with psychiatric conditions may become
nervous or agitated during rsEEG collection, causing sympa-
thetic responses such as sweating or increased heart rate [37].
RsEEG is also regarded as a potential method of assessing ath-
lete brain condition on the sidelines during contact sports [38],
[39] where the effects of physical activity are highly relevant.
Baseline recordings for participants after different activity
intensities should be taken, when possible, to determine indi-
vidual rsEEG variability. Other physiological measurements,
such as heart rate, breathing rate, and skin conductance, may
be used in tandem with EEG measurements to characterize
physical state.

Increasing the pre-recording activity level from sitting to
walking did not cause statistically significant changes in any
rsEEG metrics, suggesting that they are robust to a low
level of physical activity. This result allows for a tolerance
of movement in clinical settings without affecting rsEEG
readings, and also has implications for the use of rsEEG
in ambulatory settings. At-home rsEEG can be critical for
monitoring diseases that have acute episodes, such as epilepsy
or bipolar disorder [40]. The knowledge that mild, everyday
activity does not interfere with rsEEG readings aids the inter-
pretation of the data. However, because our study was carried
out entirely within a designated experiment room, these results
are valid only for the isolated effects of walking, without
the potential accompanying changes in surroundings. Previous
studies have shown significant EEG effects of walking through
different settings [41]. Neuroelectric responses to movement
may also be different between the healthy young adults in our
study and older or diseased populations.

C. Limitations and Future Directions
Our study participation was limited to healthy young adults.

However, there may be differences in rsEEG variability
between population subsets based on factors such as sex

and age. We did not find any sex differences in variability,
but our sample size was inadequate for making any general
conclusions. Improving the demographic precision of intra-
participant variability measurements will increase their rele-
vance to clinical research, where participants are often sampled
from specific patient groups. While our sample size provided
adequate statistical power, G*Power analysis revealed that a
larger sample size could improve statistical power for rsEEG
metrics with smaller effect sizes (Supplementary Tables 1-2).
The study design could also be improved by expanding the
range of experimental conditions to better understand potential
sources of rsEEG variability. For example, activities may be
performed outside controlled lab settings, where lighting and
temperature can present novel stimuli for rsEEG differences.
Changes in alertness and emotional state, measured using
tools like the Stanford Sleepiness Scale and Self-Assessment
Manikin, may elucidate the effects of continuously changing
mental states on rsEEG measurements. Finally, characteriza-
tion of rsEEG variability can be expanded beyond traditional
quantitative EEG metrics. For example, machine learning
classifiers have been applied to determine pathophysiology in
rsEEG [42], so variability in classification performance across
varying conditions may be clinically important.

Our examination of CV scalp maps revealed that variability
may be concentrated in localized brain regions. The tendency
for certain electrodes (e.g., peripheral ones) to exhibit greater
variability may be related to the dominant EEG rhythms in
those brain regions or their proximity to sources of noise. Our
data suggest that central electrode locations may be optimal
for achieving more consistent rsEEG readings. Statistical tests
segregated by brain region should be incorporated into future
analysis pipelines to quantify region-specific variability.

V. CONCLUSION

Within-participant rsEEG variability can meet or exceed
literature effect sizes for neurological conditions. Routine
variations in experimental conditions, such as physical activity
and time of day, can contribute significantly to this variability.
Future studies should be designed to keep these experimen-
tal conditions consistent or collect reference recordings to
control these effects. Given the effect sizes we found, the
baseline variability within participants should be assessed prior
to interpreting the clinical significance of observed rsEEG
changes. Our quantification of normal rsEEG variability calls
for a critical examination of established research methods and
provides a reference baseline for interpreting clinical results.
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