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Graph Neural Network-Based EEG
Classification: A Survey

Dominik Klepl , Min Wu , Senior Member, IEEE, and Fei He , Senior Member, IEEE

Abstract— Graph neural networks (GNN) are increas-
ingly used to classify EEG for tasks such as emotion
recognition, motor imagery and neurological diseases
and disorders. A wide range of methods have been
proposed to design GNN-based classifiers. Therefore, there
is a need for a systematic review and categorisation of
these approaches. We exhaustively search the published
literature on this topic and derive several categories for
comparison. These categories highlight the similarities
and differences among the methods. The results suggest
a prevalence of spectral graph convolutional layers over
spatial. Additionally, we identify standard forms of node
features, with the most popular being the raw EEG signal
and differential entropy. Our results summarise the emerg-
ing trends in GNN-based approaches for EEG classification.
Finally, we discuss several promising research directions,
such as exploring the potential of transfer learning methods
and appropriate modelling of cross-frequency interactions.

Index Terms— Graph neural network, classification, EEG,
neuroscience, deep learning.

I. INTRODUCTION

ELECTROENCEPHALOGRAPHY (EEG) is a non-
invasive technique used for recording electrical brain

activity with a wide range of applications in cognitive
neuroscience [1], clinical diagnosis [2], [3], and brain-
computer interfaces [4], [5]. However, analysing EEG signals
poses several challenges, including a low signal-to-noise
ratio, non-stationarity resulting from brain dynamics, and the
multivariate nature of the signals [6], [7]. In this review,
we focus on the classification of EEG, such as emotion
recognition, motor imagery recognition or neurological
disorders and diseases.

Traditional feature extraction methods for EEG clas-
sification, such as common spatial patterns [6], wavelet
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transform [8], and Hilbert-Huang transform [9], have
been commonly employed. These methods aim to extract
meaningful features from EEG signals [10], [11], with key
features like power spectral density (PSD) [7] to characterise
brain states. However, relying on such manually defined
features to train machine learning classifiers has several
limitations. Subjectivity and biases in feature selection, along
with time-consuming engineering and selection processes,
limit scalability and generalisation [7], [12]. Automated
feature extraction methods are needed to overcome these
limitations, improve efficiency, reduce bias, and enhance
classifier adaptability to different EEG datasets.

Deep learning architectures, such as convolutional neural
networks (CNN) and long short-term memory (LSTM)
networks, have also been explored for EEG analysis [13],
[14]. However, they face challenges in effectively capturing
the spatial dependencies between electrodes and handling the
temporal dynamics of EEG signals [7]. Modelling the complex
sequential and spatial relationships in EEG data is crucial for
more accurate classification and analysis.

Network neuroscience offers an alternative approach to
EEG modelling by framing the signals as a graph. The
brain exhibits a complex network structure, with neurons
forming connections and communicating with each other [15].
Analysing EEG data as a graph enables the study of net-
work properties, including functional connectivity, providing
insights into brain function and dysfunction [12], [16],
[17]. Graph-based analysis facilitates the examination of
network features, node importance, community structure, and
information flow, offering insights into brain organisation and
dynamics. Such graph-theory-based features were shown to
be powerful predictive features for EEG classification [12],
[17], [18], [19], [20], [21], [22]. However, these features
have the same limitations as manually defined features
based on traditional EEG analysis methods introduced
above.

Graph neural networks (GNN) emerge as a powerful
tool for modelling neurophysiological data [23], such as
EEG, within the network neuroscience framework [7],
[24]. GNNs are specifically designed to operate on graph-
structured data. They can effectively leverage the spatial
structure within EEG data to extract features, uncover patterns
and make predictions based on the complex interactions
between different electrodes. Designing GNN models for
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EEG classification will likely improve classification tasks and
potentially uncover new insights in neuroscience.

Motivated by the potential of GNNs and an increasing
number of recent papers proposing GNN for various
EEG classification tasks, there is an urgent need for a
comprehensive review of GNN models for EEG classification.
The main contributions of this paper include:

• Identifying emerging trends of GNN models tailored for
EEG classification.

• Reviewing popular graph convolutional layers and their
applicability to EEG data.

• Providing a unified overview of node feature and brain
graph structure definitions in the context of EEG analysis.

• Examining techniques for transforming sets of node
feature embeddings into a single graph embedding for
graph classification tasks.

By addressing these essential aspects, this review paper
will provide a comprehensive and in-depth analysis of the
application of GNN models for EEG classification. The
findings and insights gained from this review will serve as a
resource to navigate this emerging field and identify promising
future research directions.

II. OVERVIEW OF GRAPH NEURAL NETWORKS

Graphs are widely used to capture complex relationships
and dependencies in various domains, such as social networks,
biological networks, and knowledge graphs. The problem of
graph classification, which aims to assign a label to an entire
graph, has gained attention in recent years. GNNs offer a
promising solution to this problem by extending the concept
of convolution from Euclidean inputs to graph-structured data.
GNNs have been successfully applied in a wide range of
fields, such as biology [23], bioinformatics [25], network
neuroscience [26], chemistry [27], [28], drug design and
discovery [29], [30], natural language processing [31], [32],
recommendation systems [33], [34], traffic prediction [35],
[36] and finance [37].

In graph classification problems, the input is a set of graphs,
each with its own set of nodes, edges, and node features. Let
G = (V, E, H) denote a featured graph, where V represents
the set of nodes, E represents the set of edges connecting the
nodes, and H represents the V × D matrix of D-dimensional
node features. In the case of EEG, the EEG channels are the
nodes, and edges represent structural or functional connectivity
between pairs of nodes. Each graph G is associated with a
label y, indicating its class. The goal is to learn a function
f (G) → y that can predict the class label y given an input
graph G. A general structure of a GNN model for EEG
classification is presented in Fig 1.

Compared to other deep learning models, GNNs offer
several advantages. First, GNNs were specifically designed for
graph-structured inputs. This means that GNNs can adapt to
irregularly structured inputs, i.e. graphs with varying numbers
of nodes, compared to traditional deep learning, such as CNN,
that require fixed-size inputs. Next, GNNs can simultaneously
learn information from node features and the graph structure
by accepting two inputs: node feature matrix and graph

structure. Such simultaneous integration is not possible with
traditional deep learning methods.

Multiple types of GNNs have been well introduced in [38],
[39]. In this survey, we briefly introduce the two main branches
of GNNs, namely, spatial and spectral GNNs (Fig. 2). Other
types of GNNs, such as attention GNNs [40], recurrent
GNNs [41], and graph transformers [42], can be viewed as
special cases of spatial GNNs, and thus we will not provide
detailed discussion in this survey. Both spatial and spectral
GNNs aim to extend the convolution mechanism to graph
data. For a detailed review of their similarities and differences,
see [43]. Moreover, for a comparison of different GNNs in
terms of computational complexity, see [38].

Spatial GNNs aggregate information from neighbouring
nodes, similar to traditional convolution applied to image
data aggregating information from adjacent pixels. Stacking
multiple spatial GNN layers leads to information aggregation
from various scales going from local to global patterns being
captured in early and later layers, respectively. In contrast,
spectral GNNs perform information aggregation in the graph
frequency domain, with low-frequency and high-frequency
components capturing global and local patterns, respectively.
However, both approaches learn to capture local and global
patterns within the graph, i.e. high and low-frequency
information in the spectral domain. The advantage of spectral
GNNs is their connection to graph signal processing, allowing
for interpretation from the perspective of graph filters.
However, spectral GNNs do not generalise well to large
graphs since they depend on the eigendecomposition of graph
Laplacian. In contrast, spatial GNNs can be applied to large
graphs since they perform only local message-passing. On the
other hand, spatial GNNs may be challenging to interpret
and prone to overfitting because of over-smoothing, where
embeddings of all nodes become similar.

A. Spatial GNNs
Spatial GNNs directly operate on the graph structure via the

adjacency matrix operator. Given a set of nodes and associated
features, spatial GNNs perform neighbourhood aggregation
to derive node embeddings. This process is referred to as
message passing. Intuitively, nodes connected by edges should
have similar node embeddings, i.e. local node similarity.
Message passing implements this idea by updating node
embeddings with aggregated information collected from the
node’s neighbourhood. Formally, the node update equation in
l th layer of spatial GNN with L layers is defined as follows:

h(l+1)
i = σ

W (l)
1 h(l)

i +

∑
j∈N (vi )

W (l)
2 h(l)

j e j i

 , (1)

where hi is the node embedding vector, or when l = 1, this
is the input node feature vector, σ is the activation function,∑

is the aggregation function, N (vi ) is the neighbourhood
of node vi , W ∈ Rd1×d2 is a learnable parameter matrix
projecting node embeddings from input dimension d1 to
hidden dimension d2 and e j i is the edge weight (e j i = 1 for
unweighted graphs).
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Fig. 1. General architecture of a GNN model for classification of EEG. (A) The input to the model consists of node features and a possibly learnable
brain graph structure. (B) Optionally, the node features can undergo pre-processing via a neural network. (C) Next, the node features are passed to
a block of graph convolutional layers, where node embeddings are learned. (D) Then, a node pooling module can be utilised to coarsen the graph.
Node pooling may contain learnable parameters as well. (E) Finally, the set of node embeddings forms a graph embedding, which can be used to
predict the outcome.

A single spatial GNN layer aggregates information from the
1-hop neighbourhood. Thus, to increase the reception field of
the model, L spatial GNN layers can be stacked to aggregate
information from up to L-hop neighbourhoods. A disadvantage
of spatial GNNs is the difficulty of training deep models with
many layers. With an increasing number of layers, the node
embeddings become increasingly smooth, i.e. variance among
embeddings of all nodes decreases. This happens when the
messages already contain aggregated information from the
whole graph; continual message passing of such saturated
messages leads to oversmoothing, i.e., all node embeddings
becoming essentially identical.

B. Spectral GNNs
Spectral GNNs can also be applied to EEG classification

tasks by leveraging the spectral domain analysis of graph-
structured data. The EEG graph is transformed into the spectral
domain using the Graph Fourier Transform (GFT) and Graph
Signal Processing (GSP) techniques. For a detailed review of
spectral GNN methods, please refer to [44].

The graph spectrum is defined as the eigendecomposition
of the graph Laplacian matrix. The GFT is then defined
as Ĥ = UT H, its inverse as H = UĤ, where U is the
orthonormal matrix of eigenvectors of the graph Laplacian L
and H ∈ RN×D is the matrix of node feature vectors with
N and D being the number of nodes and dimensionality of
node features, respectively. The graph Laplacian is defined as
L = D − A, but often the normalised version is preferred:
L̂ = I−D−1/2AD−1/2 (A and D are the adjacency and degree
matrices, respectively).

Spectral GNN is then typically defined as the convolution
(∗) of a signal defined on graph H and a spatial kernel
g in the spectral domain, thus becoming an element-wise
multiplication (⊙):

H ∗ g = U
((

UT H
)

⊙

(
UT g

))
. (2)

Generally, UT g is defined as a learnable diagonal matrix
G = diag(g1, . . . , gV ) spectral filter [44].

However, the full spectral graph convolution can be
computationally expensive. A popular approximation is the
Chebyshev GNN (ChebConv) [45], which performs localised
spectral filtering on the graph. The node embedding update
equation of a ChebConv is defined as:

H ∗ g ≈

K∑
i=1

2i Ti (L̂′), (3)

where 2 ∈ RK×d×d are learnable parameters, Ti (L̂′) =

2Ti−1(L̂′) − Ti−2(L̂′), T1(L̂′) = H, T2(L̂′) = L̂′H, and
L̂′ =

2L̂
λmax

− I (λmax is the largest eigenvalue of L̂, often
approximated as λmax = 2). The K parameter controls the
size of the Chebyshev filter.

However, spectral GNNs are limited to input graphs with
a fixed number of nodes. This is because of the explicit use
of the graph Laplacian. This is in contrast to spatial GNNs,
which do not rely on explicitly materialising the adjacency
matrix.

III. SURVEY RESULTS

This survey is based on a review of 63 articles. These
articles were selected by title and abstract screening from
a search on Google Scholar and ScienceDirect queried on
November 1st, 2022. The search query for collecting the
articles was defined as: (“Graph neural network” OR “Graph
convolutional network”) AND (“Electroencephalography” OR
“EEG”). Both peer-reviewed articles and preprints were
included. All types of EEG classification tasks were included.
We summarise the various types of EEG classification tasks
identified in the surveyed papers in Fig 3. The most common
classification tasks are emotion recognition, epilepsy diagnosis
and detection and motor imagery. However, the type of
classification task should have a relatively minor effect on the
GNN architecture design. Thus, we do not analyse and discuss
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Fig. 2. Illustration of core mechanisms of spatial and spectral GNNs. A) An undirected featured graph is given as an example input graph with
node features shown as node labels and colours. B) Spatial GNNs operate in the graph domain directly using message passing to update node
embeddings. 1) Messages, i.e. transformed node features or embeddings, are sent along edges. For simplicity, we show only one direction of the
flow of messages. 2) The collected messages at each node are aggregated using a permutation-invariant function and are fused with the original
node embedding to form an updated node embedding. Thus, one spatial GNN layer results in node embeddings containing information about the
1-hop neighbourhood of a given node. Thus, L layers are required for node embeddings to access the information from the L-hop neighbourhood.
C) In contrast, spectral GNNs operate in the graph spectral domain. 1) Node features are treated as signals on top of a graph and are deconstructed
into graph frequencies given by the eigendecomposition of the graph Laplacian. Graph frequencies can be interpreted as variations of the signals. 2)
The contribution of each graph frequency is weighted by the set of learnable kernels G that effectively function as graph filters. 3) Node embeddings
are then obtained by aggregating the filtered graph frequencies and transforming them back to the spatial graph domain. Thus, full spectral GNNs
can access information from N-hop neighbourhoods where N is the number of nodes of a given graph. However, in practice, approximations such
as Chebyshev graph convolution restrict this to the chosen hop size.

this in detail. Instead, we survey the various GNN-based
methods for EEG classification, intending to systematically
categorise the types of GNN modules and identify emerging
trends in this field independent of the specific classification
task.

In the remaining portion of this paper, we report the
categories of comparisons we identified in the surveyed papers.
These are based on the different modules of the proposed
GNN-based models. Specifically, these are:

• Definition of brain graph structure
• Type of node features
• Type of graph convolutional layer
• Node feature preprocessing
• Node pooling mechanisms
• Formation of graph embedding from the set of node

embeddings

The following sections will provide further details on these
categories, and the paper will conclude by discussing trends
and proposing plausible directions for future research.

IV. DEFINITION OF BRAIN GRAPH STRUCTURE

The first part of the input to a GNN model is the brain
graph structure inferred from the EEG data itself (Fig. 1A).
We summarise the methods for defining the brain graphs
in Table I. These methods can be generally categorised as
learnable or pre-defined.

An alternative categorisation of the brain graph structures
is the functional (FC) and the “structural” connectivity (SC).
Generally, SC graphs are pre-defined, whereas FC graphs can
be both pre-defined and learnable. SC in the classical sense of
physical connections between brain regions is not possible to
obtain using EEG signals since these are recorded at the scalp
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TABLE I
OVERVIEW OF METHODS FOR OBTAINING THE BRAIN GRAPH STRUCTURE

TABLE II
OVERVIEW OF METHODS IN DEFINING THE INPUT NODE FEATURES

Fig. 3. Classification tasks presented in the current EEG-GNN
literature.

surface. Instead, we use the term to describe methods that
construct brain graphs based on the physical distance between
EEG electrodes. In contrast, FC refers to pairwise statistical
relationships between EEG signals.

SC graph is pre-defined such that electrodes are connected
by an edge in the following way:

ei j =

{
1 or 1/di j , if di j ≤ t
0, otherwise

, (4)

where ei j is the edge weight connecting nodes i and j , di j
is a measure of distance between EEG electrodes, and t is a
manually defined threshold controlling the graph sparsity.

Such an approach offers several advantages. First, the SC
graph is insensitive to any noise effects of EEG recording
since it is independent of the actual signals. Second, all
data samples share an identical graph structure, provided the
same EEG montage was utilised during the recording. This

offers explainability advantages when combined with spectral
GNN since the graph frequency components defined by the
eigenvectors of graph Laplacian are fixed. On the other hand,
the SC graph is limited to short-range relationships. Thus,
it might not accurately represent the underlying brain network.
Some papers propose to overcome this limitation by manually
inserting global [53], [56], [57], [58], [62] or inter-hemispheric
edges [46], [54], [87].

In contrast, an FC graph can be obtained from either
classical FC measures (FC measure in Table I or learnable
methods (e.g. feature concatenation/distance and attention
methods in Table I). We refer to all of these methods as FC
because they all measure the degree of interaction between
two nodes, thus falling within the traditional definition of FC.
Unlike SC, the FC graph is unique for each data sample and
can contain both short- and long-range edges. On the other
hand, since it is derived directly from EEG signals, it might
be sensitive to noise.

Learnable FC based on node feature distance or feature
concatenation are generally computed as:

ei j = θ1(|hi − h j |) and (5)
ei j = θ2(hi ∥ h j ), (6)

respectively, where θ1(·) and θ2(·) are neural networks with
input-output dimensions of R : d → 1 and R : 2 ×

d → 1, respectively; | · | denotes absolute value; ∥ denotes
concatenation and hi is the node feature/embedding of node i .
We discuss the attention-based graphs together with the types
of graph convolutional layers in Section VI and thus skip these
methods in this section.

Special cases of brain graph definition are the shared-
mask methods. These methods defined a matrix of learnable
parameters with the same shape as the adjacency matrix of
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TABLE III
OVERVIEW OF NODE FEATURE PRE-PROCESSING

BEFORE GNN LAYERS

the input graphs that acts as a mask/filter by multiplying it
with the adjacency matrix. This learnable matrix is a part of
the model. Thus, the same mask is applied to all input graphs.
However, a shared mask limits the size of the input graphs, i.e.
the number of nodes must remain fixed so that the adjacency
matrix can be multiplied with the shared mask.

In the current stage, which method should be preferred
for brain graph classification tasks is unclear. Some authors
attempt to avoid this issue by combining multiple methods.
However, we instead suggest that the researchers carefully
consider each of the presented methods in the context of the
given classification task, as each method poses its unique set
of strengths and weaknesses.

V. NODE FEATURE DEFINITIONS

The second part of the input to a GNN model is the node
feature matrix (Fig. 1A). We summarise the various definitions
of node features in Table II. We categorise these definitions
based on which domain they are computed, i.e. time, frequency
and graph domains.

The time-domain methods are the most commonly used in
the current literature. In particular, these are the differential
entropy (DE) and raw signal methods. The popularity of DE
is given by the fact that many of the open EEG datasets include
this feature, such as the SEED [108] emotion recognition
dataset. DE describes the complexity of a continuous variable
and is defined as:

DE(X) = −

∫
X

f (x)log( f (x)) dx (7)

where X is a random continuous variable and f (x) is the
probability density function.

Many papers define the node feature as the raw EEG
signal. However, the raw signal can be too long for a
GNN to process effectively. Thus, it is often coupled
with node feature pre-processing module and spatio-temporal
GNNs (See V-A and VI, respectively) to either reduce the
dimensionality or to extract the temporal patterns contained
within the signal effectively. An alternative to the raw signal
node feature is descriptive statistics, such as mean, median or
standard deviation.

Frequency-domain node features are usually defined as
the Fourier frequency components obtained by the Fourier
transform or PSD. Both of these methods aim to quantify

the strength of various frequency components within the EEG
signal. An advantage of these representations is their relatively
low dimensionality compared to the raw signal described
previously.

Finally, graph-theoretical features can be utilised to describe
the nodes, e.g. mean node weight [65] and betweenness
centrality [65], [73]. A severe limitation of this method is that
the graph structure needs to be defined prior to node feature
extraction. Thus, this node feature type is incompatible with
learnable brain graph methods.

A. Node Feature Preprocessing
An optional next step after node features construction is

some kind of node feature pre-processing module (NFP)
(Fig. 1B). We summarise the types of NFPs in Table III.

Most of the NFPs are integrated within the GNN
architecture, thus allowing the model to be trained in an
end-to-end manner. The exceptions are methods that utilise
a pre-trained feature extraction neural network implemented
as a bidirectional LSTM [76] or a CNN [64].

The surveyed NFPs are all based on a neural network.
In most cases, these are variants of a CNN and a multilayer
perceptron (MLP). These modules aim to (1) reduce the
dimensionality of the node features and (2) enhance the node
features, including potentially suppressing noise or redundant
information.

VI. TYPE OF GRAPH CONVOLUTIONAL LAYER

A core part of a GNN model are the graph convolutional
layers (GCN) (Fig. 1C). We summarise the utilised types of
GCNs in Table IV. We further categorise them based on the
type of GNN as introduced in Section II, i.e. spatial, spectral.
Additionally, we add the temporal category, which is not a type
of standalone GCN layer but must be combined with spatial
or spectral GCN.

Interestingly, ChebConv is used in the majority of the
surveyed papers (counting both ChebConv and spectral spatio-
temporal GNN in Table IV). Since EEG typically uses
128 electrodes in high-density montages, the size of the
brain graphs is relatively small. In such cases, even a full
spectral GNN would not be too computationally expensive for
EEG classification. Therefore, it remains unclear why many
authors opt for the ChebConv approximation of spectral GNN.
We speculate that the influence of classical signal processing
tools in EEG analysis might also serve as a sufficient argument
for using spectral GNNs for EEG classification.

On the other hand, the other half of the surveyed
papers experiment with a wide range of spatial GNNs. The
(simplified) GCN is a popular method amongst these, which
is equivalent to a 1st-order ChebConv (K = 1). A special case
of spatial GNN is the graph attention network (GAT). GAT
allows for adjusting the graph by re-weighting the edges using
an attention mechanism. Generally, the attention mechanism
for computing the new softmax-normalised edge weight ei j is
defined as follows:

ei, j =
exp

(
σ

(
w⊤

[Whi ∥ Wh j ]
))∑

k∈N (i) exp
(
σ

(
w⊤[Whi ∥ Whk]

)) , (8)
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TABLE IV
OVERVIEW OF GRAPH CONVOLUTIONAL LAYERS

TABLE V
OVERVIEW OF NODE POOLING MECHANISMS

where w and W are the learnable parameters of the model, σ is
an activation function, h is the node feature vector/embedding,
and N (i) is the set of nodes connected to node i . The resulting
edge weights can then be passed to Equation 1.

Next, the spatio-temporal GNNs were tested for EEG
classification in several instances. A spatio-temporal block
consists of one GCN layer and one 1D-CNN applied
temporally. This structure allows the model to extract both
spatial (i.e. graph) and temporal patterns. There are both
spatial and spectral variants of spatio-temporal GNN, and there
is no indication as to which one should be preferred as no
comparative study exists to date.

Finally, several papers adopt multi-branch architectures.
These methods utilise multiple GCN layers applied in parallel
to allow the model to focus on various aspects (also views)
of the input graph. An example of such a model utilises two-
branch GNN to learn from both FC- and SC-based brain graph
structure [63]. Alternatively, the individual frequency bands of
EEG signals can be used to construct various graph views [85].

VII. NODE POOLING MECHANISMS

In some instances, reducing the number of nodes in the
graph might be desirable. This can be achieved with a node
pooling module (Fig. 1D). We summarise the node pooling
modules utilised in the surveyed papers in Table V.

There are both learnable and non-learnable node pooling
modules in the literature. Please see the corresponding papers
for a detailed description of these methods (Table V). Node
pooling modules remain a relatively unexplored topic in the
EEG-GNN classification models. Node pooling can (1) remove

redundant nodes, (2) reduce the size of the graph embedding in
a setting where the concatenation of node embeddings forms
it, and (3) aid in the explainability of the model by identifying
node importance with respect to the classification task.

VIII. FROM NODE EMBEDDINGS TO GRAPH EMBEDDING

The output of the graph convolutions is a set of learned
node embeddings. Node embeddings in this form are suitable
for tasks such as node classification and link prediction.
However, for graph classification, the set of node features
needs to be transformed into a unified graph representation
(Fig. 1E). We summarise the methods for this transformation
in Table VI.

The most straightforward method to form a graph
embedding is to simply concatenate the node features. This
approach poses a few limitations. First, the resulting graph
embedding grows with the number of nodes. Thus, the
classification layer requires a large number of parameters.
Second, all input graphs need to have the same number of
nodes, limiting the model’s generalisation to other datasets.
Finally, such an approach is likely to include redundant or
duplicated information in the graph embedding since GNN
produces node embeddings by aggregating information from
neighbouring nodes.

A readout function is one of the methods to form a
graph embedding that addresses these issues. A readout
forms the embedding by passing the node features through
a permutation-invariant function. A general definition of a
readout to obtain graph embedding of a graph Gi from a set
of V node embeddings H = [h1, . . . , hV ] is given by:

Gi =

V∑
k=1

hk, (9)

where
∑

can be any permutation-invariant function. In the
surveyed papers, these functions were sum, average and
maximum. A few papers also experiment with attention-
weighted sum to attenuate the role of unimportant nodes
within the graph embedding [88]. An interesting alternative
is to apply CNN-style average or maximum pooling
node-wise [105].
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TABLE VI
OVERVIEW OF METHODS FOR THE FORMATION OF GRAPH EMBEDDING FROM A SET OF NODE EMBEDDINGS

Alternatively, researchers explored various neural network
models to obtain graph embeddings, such as CNN [52], [69],
[78], (bi-)LSTM [51], [83], [84], [99], [100], transformer [89]
and capsule networks [73]. Additionally, graph pooling
methods, such as DiffPool [109], SAGPool [110], iPool [111],
TAP [112] and HierCorrPool [113] can be used for this
purpose.

IX. DISCUSSION

Despite most of the surveyed papers being relatively recent,
a wide range of GNN-based methods has already been
proposed to classify EEG signals in a diverse set of tasks,
such as emotion recognition, brain-computer interfaces, and
psychological and neurodegenerative disorders and diseases
(Fig 3). This recent rise in the popularity of GNN models for
EEG might be attributed to (1) the development of new GNN
methods and (2) advances in network neuroscience inspired
an extension of this framework to deep learning. GNNs offer
unique advantages over other deep learning methods. This is
mainly the possibility of modelling multivariate time series and
interactions among them with a single GNN model, which is
not possible with CNN or recurrent networks. Additionally,
patterns learned by GNNs can readily be interpreted in the
context of network neuroscience, thus enabling a wide range
of avenues for model explainability.

This survey categorises the proposed GNN models in terms
of their inputs and modules. Specifically, these are brain
graph structure, node features and their preprocessing, GCN
layers, node pooling mechanisms, and formation of graph
embeddings. This categorisation allows us to provide a quick
and simple overview of the different methods presented in the
EEG-GNN literature, appreciate the current state of the art in
this field and identify promising future directions.

A. Limitations of Surveyed Papers
Surprisingly, we have identified the least variety and

innovation in the category of GCN layers (Table IV).
A significant proportion of the surveyed papers utilise either
ChebConv or “vanilla” spatial GCN. This might be due to the
relative novelty of the EEG-GNN field, and thus, many papers
explore other areas of model design, such as node features
and brain graph definitions. A few papers seem to successfully

experiment with more complex types of GCN layers [47], [50],
[91] and multi-branch architectures [58], [63], [80], [92], [97],
[100].

A major limitation of most surveyed papers is the lack of
generalisability to external datasets that might use a different
number of EEG signals. This is caused by (1) the use of
ChebConv and (2) forming graph embedding by node feature
concatenation [47], [55], [56], [57], [58], [59], [60], [64], [66],
[67], [70], [74], [77], [80], [81], [86], [87], [90], [91], [92],
[93], [98], [100], [101], [102], [104]. (1) can be addressed
by utilising spatial GCN layers as suggested above, and (2)
can be solved by using a readout function or a suitable node
pooling mechanism, which coarsens the graph to a fixed
number of nodes. Additionally, there is a general lack of
transfer learning experiments for EEG-GNN models, which
might be a promising direction for future research.

Finally, we have identified an interesting gap in EEG-GNN
research: the lack of utilising frequency band information in
a more complex way. A few papers train separate models for
each frequency band in isolation [46], [47], [65]. Alternatively,
they propose concatenating the graph embeddings generated
from the frequency-band-GNN branches [52], [87], [101].

B. Future Directions

Several promising directions can be identified in the
rapidly evolving landscape of EEG-GNN research. First,
a comprehensive comparison of the various GCN layers (e.g.
spatial GNN, ChebConv, GAT and graph transformer) with
respect to their influence on classification performance should
be carried out to address this crucial design question in a
systematic manner.

Second, enhancing the generalisability of models by
addressing issues related to the varying number of EEG
signals/electrodes and exploring transfer learning approaches
can open new avenues for research. For instance, pre-trained
GNN models on cheap-to-obtain large datasets, such as
open databases for emotion recognition or BCI applications,
would allow the application of complex GNN architectures
to problems with limited data availability due to the high
costs or small populations (e.g. clinical data, rare diseases and
disorders). Focusing on these issues would likely improve the
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generalisability of the models when evaluated on a diverse set
of EEG datasets and different classification tasks.

Lastly, the rich frequency information of EEG signals
should be explored more. For instance, we suggest a
plausible utility of integrating cross-frequency coupling (CFC)
approaches into EEG-GNN models. There is growing evidence
in the literature concerning the advanced brain functions (e.g.
learning, memory) enabled by CFC [114]. Thus, integrating
findings from neuroscience research into the EEG-GNN design
promises both performance and explainability gains.

C. Limitations of Our Survey
It is worth noting that this paper does not follow a

systematic review methodology; therefore, we do not assert
that our findings are exhaustive. Instead, our objective is
to offer a succinct and cohesive overview of the current
research on EEG-GNN models to facilitate the development of
innovative approaches and assist researchers new to this field.

One of the major parts of EEG-GNN models we omit
in this survey is the model explainability. We suggest that
a survey paper is not well suited for comprehensively
covering this aspect of research. Instead, we suggest a
comparative experimental study to be better suited to explore
the various explainability options of GNN explainability.
However, to maintain the comprehensiveness of this survey,
we list the papers that report the use of certain methods of
model explainability: [24], [50], [55], [89], [105], [106].

X. CONCLUSION

In conclusion, this survey examined the current research on
EEG-GNN models for classifying EEG signals. Various GNN-
based methods have been proposed for tasks such as emotion
recognition, brain-computer interfaces, and psychological
and neurodegenerative disorders. The surveyed papers were
categorised based on inputs and modules, including brain
graph structure, node features, GCN layers, node pooling
mechanisms, and graph embeddings.

GNNs offer a unique method for analysing and classifying
EEG in the graph domain, thus allowing the exploitation of
complex spatial information in brain networks that other neural
networks do not. Additionally, GNNs can be easily extended
with CNN and recurrent network-based modules at various
stages of the GNN architecture, such as for node feature
pre-processing, node embedding post-processing and graph
embedding formation.

However, limitations and areas for improvement were
identified. There is a lack of variety and innovation in GCN
layers, with many papers utilising ChebConv or “simple”
spatial GCN without clear justification. Generalisability to
external datasets with varying numbers of EEG electrodes is
limited. Transfer learning experiments and integration of cross-
frequency coupling approaches are potential future research to
enhance the performance and explainability of GNN.
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