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Abstract— The functional architecture undergoes alter-
ations during the preclinical phase of Alzheimer’s disease.
Consequently, the primary research focus has shifted
towards identifying Alzheimer’s disease and its early stages
by constructing a functional connectivity network based on
resting-state fMRI data. Recent investigations show that as
Alzheimer’s Disease (AD) progresses, modular tissue and
connections in the core brain areas of AD patients diminish.
Sparse learning methods are powerful tools for understand-
ing Functional Brain Networks (FBNs) with Regions of Inter-
est (ROIs) and a connectivity matrix measuring functional
coherence between them. However, these tools often focus
exclusively on functional connectivity measures, neglect-
ing the brain network’s modularity. Modularity orchestrates
dynamic activities within the FBN to execute intricate cog-
nitive tasks. To provide a comprehensive delineation of
the FBN, we propose a local similarity-constrained low-
rank sparse representation (LSLRSR) method that encodes
modularity information under a manifold-regularized net-
work learning framework and further formulate it as a
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low-rank sparse graph learning problem, which can be
solved by an efficient optimization algorithm. Specifically,
for each modularity structure, the Schatten p-norm reg-
ularizer reduces the reconstruction error and provides
a better approximation of the low-rank constraint. Fur-
thermore, we adopt a manifold-regularized local similarity
prior to infer the intricate relationship between subnetwork
similarity and modularity, guiding the modeling of FBN.
Additionally, the proximal average method approximates
the joint solution’s proximal map, and the resulting noncon-
vex optimization problems are solved using the alternating
direction multiplier method (ADMM). Compared to state-
of-the-art methods for constructing FBNs, our algorithm
generates a more modular FBN. This lays the groundwork
for further research into alterations in brain network modu-
larity resulting from diseases.

Index Terms— Functional brain network, modularity, low
rank, manifold-regularized, subnetwork similarity, sparsity.

I. INTRODUCTION

ALZHEIMER’S disease (AD) is an irreversible neurode-
generative disorder, affecting approximately 47 million

people worldwide, with expectations of the number tripling by
2050 [1], [2], [3]. Alzheimer’s disease is related to changes
in structural and functional connectivity within the brain
regions [4], [5]. One approach to quantify complex brain
interactions is to view the brain as a network of subnetworks
or modules, namely Functional Brain Networks (FBNs). FBNs
constructed from high-dimensional functional magnetic reso-
nance imaging (fMRI) plays a crucial role in AD detection [4],
[5], [6], [7]. Constructing a high-quality Functional Brain
Network (FBN) is challenging due to limited understanding
of the human brain and the presence of significant noise in
observed data.

Despite these challenges, many FBN estimation methods
have been developed in recent years [8], [9], [10]. The
Pearson correlation (PC) coefficient [11], [12] is widely used
to measure the correlation between brain regions. However,
the PC only models the full correlations without excluding
confounding effects from other brain regions, resulting in a
large number of misconnections in the FBN [13], [14], [15].
In contrast, partial correlation methods [16], [17] address the
perturbation of noise by regressing the confounding effects
of other brain regions, and the resulting connections may be
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ill-posed due to the curse of dimensionality. To solve this
problem, the regularization term is typically introduced to
stabilize the statistical estimation when building the FBN [18],
[19], [20], and a method of incorporating a priori information
into the graph learning framework is provided [21], [22]. For
instance, Huang et al. [23] estimated FBN by constructing a
sparse graph using a Gaussian graph model with l1 regulariza-
tion, also known as a graphical lasso (GL). Ryali et al. [24]
developed the sparse partial correlations elastic net penalty
(SPC-EN), which combines l1 and l2 norms to determine the
connections between brain regions. Yu et al. [25] proposed
the strength-weighted sparse group representation (WSGR)
method in which subnetworks with similar connections share
regularization weights. This method cannot differentiate easily
between the patient and control groups. To solve this problem,
Yu et al. [26] used temporal correlation and intersubject
correlation as a priori knowledge to guide group sparse rep-
resentation (GSR)-based network modeling.

Existing FBN estimation methods typically focus solely
on node similarity, neglecting the brain’s modular organi-
zation [27], [28]. It is noteworthy that in recent work,
Varoquaux et al. [29] described an FBN by identifying its
modular structure in a decomposable graphical model. How-
ever, the modular structure identified by the greedy algorithm
depends on the initial graph and is prone to local optimization.
To solve this problem, Qiao et al. [30] formulated FBN
estimation as a sparse low-rank graph learning problem. How-
ever, this method ignores the complex relationship between
subnetwork similarity and modular structure. Research has
shown that there is a close relationship between subnet-
work similarity and modularity in brain networks [31], [32].
Specifically, regions within the same module show higher
subnetwork similarity, while those in different modules show
lower similarity levels.

Studies show that incorporating standardized prior biolog-
ical and physiological knowledge of the brain [33] enhances
FBN modeling. We guided modular FBN modeling through
prior subnetwork similarity and completed FBN coding under
the manifold-regularized framework. The proximal average
method simplifies the algorithm, offering valuable insights
into the brain’s structure, organization, and implications for
understanding function and pathology. The main contributions
of this study are threefold:

(1) More modular FBNs were generated by combining the
manifold regularization learning method and introducing the
similarity prior of sub networks for structuring networks.

(2) Local popular regularization constraints enable the
model to better capture local patterns and features in the data,
reduce the sensitivity of the model to noisy data, and make
the model more robust and stable.

(3)We have developed a learning framework based on
LSLRSR for the use of RS-fMRI data for automatic brain
disease identification. Finally, we validate our method using
different RS-fMRI datasets.

The rest of this paper is organized as follows. In Section II,
we introduce the related work. In Section III, we first introduce
material and data preprocessing methods. Then, our proposed
method and optimization model are introduced. In Section IV,

we describe the experimental setup and evaluate our proposed
method through AD recognition experiments. At the end of
this section, we also discuss our findings and work prospects.
In Section V, we summarize the paper.

II. RELATED WORK

A. Matrix-Regularized Network Learning Framework
Studies show that the trade-off between fitting data effi-

ciently and encoding biological or physical prior knowledge
can be formulated using a regularized framework, extensively
studied in statistics and machine learning [24], [34], [35].
Based on previous studies, Qiao et al. [30] formulated a
matrix-regularized network learning framework as follows:

min
Z

f (X, Z) + λR(Z) s.t. Z ∈ 1∗ (1)

where X = [x1, x2, · · · , xn] ∈ Rm×n is the mean time series
of the i th subject, n is the number of ROIs in each subjects,
the matrix Z encodes the strength of connections between
different brain regions or ROIs. The regularization term λR(Z)

is designed to incorporate prior knowledge about the brain’s
functional or structural properties. This regularization can
encourage specific patterns of connectivity or sparsity in the
network, which might be informed by biological or physical
insights. 1 is a set of additional constraints on the network.
FBN has modules in the network in which the nodes are
densely connected within groups and in which the connections
between these groups are sparse. Therefore, Qiao et al. [30]
proposed a regularization framework based on modular prior
knowledge, defined as follows:

min
Zi

∥X − XZ∥
2
F + λ∥Z∥1 + β∥Z∥∗ (2)

where λ and β are regularization balance parameters,
∥X−XZ∥

2
F is the data-fitting term, ∥Z∥1 measures the sparsity

of the network, and ∥Z∥∗ represents modular modeling with
Mate ∥Z∥1.

III. MATERIAL AND METHOD

The pipeline of the proposed LSLRSR framework (see
Fig. 1) is as follows: (1) First, the Data Processing Assistant
for Resting-State fMRI (DPARSF) is applied to preprocess raw
fMRI data and extract the signals of the brain region of interest
(ROIs) according to the AAL template [36]; (2) Second, the
FBN is constructed by the proposed LSLRSR method. (3)
Last, the most discriminative features are selected by t test,
and SVM is used for final classification.

A total of 219 right-handed subjects participated in the
study, including 67 AD patients, 64 MCI (Mild Cognitive
Impairment (MCI) is a transitional stage between normal age-
related cognitive decline and more serious conditions such
as dementia. Individuals with MCI may experience notice-
able cognitive changes but generally maintain their ability to
perform daily activities.) patients and 88 HCs. The protocol
was approved by the Medical Research Ethics Committee and
consent was obtained in accordance with the Declaration of
Helsinki.

All participants underwent a complete physical and neu-
ropsychological assessment, including the mini-mental state
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Fig. 1. Illustration of the proposed LSLRSR method.

examination (MMSE) and clinical dementia rating (CDR). The
AD and MCI patients met the new research criteria for possible
or probable AD and MCI, respectively [37].

The controls met the following criteria: (a) no visual loss
or hearing loss, as well as other neurological deficiencies; (b)
no stroke, depression or epilepsy, and no other neurological
or psychiatric disorders; (c) no abnormal findings on routine
brain MRI; (d) no cognition or memory complaints; and (e) a
CDR score of 0.

A. fMRI Acquisition
he resting-state fMRI data were acquired axially using echo-

planar imaging (EPI) with the following parameters: repetition
time (TR) / echo time (TE) / flip angle (FA) / field of view
(FOV)= 2000 ms/40 ms/90◦/24 cm, image matrix = 64 ×

64, slice number = 33, thickness = 3 mm, gap = 1 mm, band
width = 2232 Hz/ pixel.

B. Data Preprocessing
fMRI data processing was performed using DPARSF

(http//rfmri.org/DPARSF) [36]. The procedure included the
following: (1) The first 10 volumes were removed. (2) Slice
timing and head motion correction was performed; subjects
with maximum head movements > 2 mm in translation
or > 2◦ in rotation were excluded; (3) The realigned volumes
were spatially normalized in the MNI space using the T1
template, and the functional images were resampled into a
voxel size of 3×3×3 mm3; (4) The data were smoothed with
a Gaussian filter of 4-mm FWHM to reduce noise and residual
differences in gyral anatomy; (5) Regressing out the Friston-24
parameters, their first time-derivatives, and global, WM, and
CSF signals; (6) Time band-pass filtering (0.01 − 0.08 Hz)
was performed to reduce the effects of low-frequency drift
and highfrequency physiological noise.

C. Proposed Method
The community structure of brain networks is portrayed as

a hierarchy of modules, each comprising densely connected
regional nodes. The similarity between brain subnetworks
supports the modular structure, implying similar regions
or modules may exist across individuals. However, current
FBN modeling methods often overlook this inter-subnetwork
similarity.

Exploring the link between subnetwork similarity and mod-
ularity enhances our understanding of brain function, cognitive
processes, and disease progression. In many cases, a sub-
network is seen as a distinct structure within the network.
When a subnetwork shares similarities with others, it forms
an autonomous module. Quantifying subnetwork similarity
involves measuring and transforming the distance between
them into a similarity score. Incorporating prior knowledge
provides effective guidance for modeling FBNs.

P(PC)
i j =

(xi − x̄i )
T (x j − x̄ j

)√
(xi − x̄i )

T (xi − x̄i )

√(
x j − x̄ j

)T (x j − x̄ j
) (3)

where P(PC)
i j ∈ P(PC) represents the Pearson correlation

between two-time series xi and x j refer to the time series data
from two distinct brain regions. P(PC)

=
[

p1, p2, · · · , pl
]

∈

Rn×n is the FBN based on Pearson correlation. i and j =

(1, 2, · · · , n) indicate the respective nodes in a brain network.

C = exp

(∥∥pi − p j
∥∥2

−2σ 2

)
(4)

where pi and p j ∈ P(PC) is the i-th and j-th column
in P(PC) that represent the correlation vectors between the
corresponding ROI and all other ROIs, C represents a measure
of similarity or connection strength between pi and p j , in the
functional brain network(F B N )P(PC)

i j .
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Previous research has shown a strong correlation between
the similarity of subnetworks and their modularity [38], [39].
Taking inspiration from recent developments in manifold
learning, we have integrated a locality-constrained factor into
our approach, which explicitly considers the similarity among
subnetworks within functional brain networks (FBNs). The
majority of manifold learning algorithms [40], [41] employ
the concept of local invariance. In essence, if two subnet-
works share similar topological features, a significant weight
is assigned between these two subnetworks. Following the
approach outlined in [42], we utilize the following local
constraints to reveal the similarity among subnetworks:

∥C ⊗ Z∥0 (5)

where ⊗ denotes the Hadamard product, and the C local
similarity constraint.

Existing studies describe modularity by combining low-rank
with sparse representation. Modularity imposes stronger con-
straints on network structure compared to sparsity, as modular-
ity implies sparsity. Integrating brain sparsity and modularity
priors aids in estimating more reasonable brain networks. The
similarity between brain modules reflects the brain’s separation
and integration, while the similarity of sub-networks within
modules indicates module density. Introducing similarity pri-
ors to the brain network helps represent the brain more
realistically. Combining formulas (2) and (5), we can express
the FBN estimation model as:

min
Zi

∥X − XZ∥
2
F + λ∥C ⊗ Z∥0 + β∥Z∥∗ (6)

where ∥0∥0 is L0-norm, and ∥ · ∥∗ is trace norm. However,
because the kernel norm is used to approximate the opti-
mization model without considering the suppression of the
extremely large singular values of the reconstructed data, there
can be outliers in the eigenvalues. The Schatten-p [43], [44]
norm can suppress singular values to a smaller range and is
more able to approximate the rank. Thus, (6) becomes:

min
Z

∥X − XZ∥
2
F + λ∥C ⊗ Z∥0 + β∥Z∥S0 diag(Z) = 0 (7)

where diag(Z) = 0 is the constraint that is used to avoid
the trivial solution of representing a data point as a linear
combination of itself, and ∥ ∗ ∥S0 is the Schatten-0 norm. The
Schatten-0 norm exhibits more robustness to noise and outliers
and can better learn similarities between data [45], [46].

D. Optimization Algorithm
To solve Z , we need to introduce a new variable to decom-

pose the original problem into solving two variables J and Z .
This leads us to solve the following equation:

min
J,Z

1
2
∥X − J Z∥

2
F + λ∥C ⊗ Z∥0 + β∥Z∥S0

s.t. J = Z − diag(Z) (8)

the augmented lagrangian function of (8) is:

Lµ(J, Z , 3) =
1
2
∥X − XJ∥

2
F + λ∥C ⊗ Z∥0 + β∥Z∥S0

+
µ

2
∥J − Z + diag(Z)∥2

F

+ ⟨3, J − Z + diag(Z)⟩ (9)

where µ is the penalty parameter and 3 is the Lagrange
multiplier. After that, we calculate the unknown variables by
fixing the remaining variables.

Step 1. Update J k+1, Assuming that variable Z k+1,
µk+1, 3k+1 is known, variable J can be solved by minimizing
the following problem:

J k+1
=

[
XTX + µk

]−1 [
XTX + µk Z k

− 3k
]

(10)

Step 2. Update Z k+1, assuming that variable J k+1, µk+1, and
3k+1 is known, the following problem can be solved:

min
zi

λ∥C ⊗ Z∥0 + β∥Z∥S0 +
µk

2

∥∥∥∥J k+1
+

3k

µk − Z
∥∥∥∥2

F
(11)

when λ = 0 the (11) can be expressed:

Pµ
g = min

Zi
β∥Z∥S0 +

µk

2

∥∥∥∥J k+1
+

3k

µk − Z
∥∥∥∥2

F
(12)

where Pµ
g is the proximal operator of ∥Z∥S0. Let U6V T

denote the SVD of
(
J k+1

+
3k

µk

)
. So the solution of (11) can

be expressed:

Zk+1
= U H

(
6;

β

µk

)
V T (13)

when β = 0 proximal map can be expressed:

Pµ
f = min

Z
λ∥C ⊗ Z∥0 +

µk

2

∥∥∥∥J k+1
+

3k

µk − Z
∥∥∥∥2

F
(14)

where Pµ
g is the proximal operator of ∥C ⊗ Z∥0, the

hard thresholding operator H applied entry-wise to matrix(
J k+1

+
3k

µk

)
. Introducing proximal averaging [47] in recent

work allows us to efficiently solve the problem in (11) when
λ ̸= 0 and β ̸= 0 resolved proximal map by averaging low-
rank and sparse regularizer for proximal mapping Pµ

i f +g
:

Pµ
f +g ≈ λPµ

f + β Pµ
g (15)

where λ + β = 1.
Step3: Update Lagrange Multiplier 3k+1 and µk+1. Assum-

ing that variable J k+1, Z k+1, and µk are known, the following
problem can be solved:

3k+1
= 3k

+ µk
(

J k+1
− Z k+1

)
(16)

µk+1
= min

(
ρµk, µmax

)
(17)

when the difference of J in two adjacent iterations is less than
the predefined threshold, the iteration process is terminated,
and ρ > 1 is the step size for adaptive changes in µ.

E. Constructing Low Rank Non-Negative Sparse Graphs
Given a BOLD signal matrix X through Section 2.3, we can

optimize the coefficient matrix Z∗

i . The sparse constraint
ensures that each region of interest is associated with only
a few brain regions, so the graph from Z∗

i is naturally sparse.
The low-rank time constraint can ensure that the coefficients of
samples from the same subspace are highly correlated and fall
into the same cluster, so Z∗

i can capture the global correlation
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Algorithm 1 Locally Constrained Low-Rank Sparse Repre-
sentation by ADMM Optimization
Input: ROI mean time series X, {λ, β} > 0, λ + β = 1
Output: low rank non-negative sparse graphs
1: Initialize: {J, Z , 3} = 0, µ(0) > 0
2: Compute XTX
3: while not converged do
4: Update J k+1 by (10)
5: Normalize columns of J to unit to l2-norm
6: Calculate rank regularized proximal map Pµ

g by (12)
7: Calcultte sparsity regularized proximal map Pµ

f by(14)
8: Update Z k+1

= Pµ
f +g defined in (15,12,14)

9: Update 3k+1 by (16)
10: Update µk+1 by (17)
11: end while
12: Calculate graph weight matrix W by (18),(19),(20)

(i.e., cluster) of all the data. In fact, due to data noise, the Z∗

i
is usually dense and small. So we can normalize the Z∗

i and
set a threshold to control its sparsity:

Z∗

i = Z∗

i /
∥∥Z∗

i
∥∥

2 | (18)

Ẑ∗

l =

{
0 if Z∗

i < 0
Z∗

i if Z∗

i > 0
(19)

after (19) we can obtain Ẑ∗

l . Then we can define the graph
weight matrix W as:

W =

Ẑ∗

l +

(
Ẑ∗

l

)T

2
(20)

The main steps of the proposed algorithm are summarized
in Algorithm 1.

F. Feature Selection and Classification
We employ the simplest feature selection method (t test,

p value = 0.05) and the most popular support vector machine
(SVM) [48] classifier (in our linear kernel with default param-
eter C = 1) in the experiment.

Due to the limited data available, the FBN estimation
methods involved were tested using a ten-fold cross-validation
approach. Specifically, all samples are divided into ten parts,
leaving only one part for testing, while the remaining parts are
used for selecting features and training classifiers. Finally, the
classification performance of different methods is evaluated
by a set of commonly used quantitative metrics, including
accuracy (Acc), sensitivity (Sen) and specificity (Spe). Addi-
tionally, the area under the ROC curve (AUC) is also adopted
to measure the MCI and AD classification performance [49].

IV. RESULT

A. Dataset
To validate the generative performance of the proposed

method, LSLRSR is applied to AD diagnosis and eyes
open/close cognition tasks.

There were 219 participants, including 67 patients with AD
(36 males), 64 MCI patients (24 males), and 88 (39 males)

in the normal control group. Demographic characteristics are
detailed in the paper [50].

To further verify the robustness of our algorithm, we con-
ducted classification experiments on another dataset. The
eyes open/close dataset was downloaded from the public
dataset “Beijing Eyes Open Eyes Closed Study”. fMRI data
were recorded during eyes open (EO) and eyes closed (EC)
states [51].

B. Experiments Set

In this paper, we verify the robustness of our algorithm
through two different sets of experiments. (1) In the
first set of experiments, we use the AD dataset to com-
pare the results of different algorithms. We identify the
optimal parameters by comparing all parameters in the
algorithm using a linear search in the following range:
[0.01, 0.025, 0.05, 0.075, 0.10, 0.25, 0.50, 0.75, 0.99]. (2) In
the second set of experiments, we use the dataset pro-
vided by [51], and the parameter settings in the comparison
algorithm are consistent with [51].

We used different methods to estimate the FBN based on
the real AD dataset and the brain state dataset provided in
the BrainNetClass tool [51]. We will briefly introduce the six
methods below:

• Pearson’s Correlation (PC) [51]: Network Construction
using Pearson’s Correlation of regional mean BOLD signals.

• Sparse Representation (SR) [51]: network construction
using sparse representation.

• Weighted Sparse Representation (WSR) [25]: The original
connection strength and its group structure are optimized by
the connection strength weighted sparse group constraint to
construct the functional connection network.

• Weighted Sparse Group Representation (WSGR) [52]: The
constraint based on group structure is introduced to integrate
link strength and group structure information to build the
functional connection network.

• Strength and similarity guided GSR (SSGSR) [26]: This
method employs integration of single functional connectivity
(FC) information and introduces GSR-based network construc-
tion framework.

• Sparse Low-rank Representation (SLR) [30]: This method
employs FC network construction using estimation schemes by
encoding prior modularity in the form of matrix regularizer.

• Functional Brain Network Estimation with Human-
Guided Modularity Representation (FBNMR) [32]:FC network
construction is performed using an estimation scheme by
encoding both prior modular topology and expert domain
knowledge.

• Functional Brain Network Estimation With Time Series
Self-Scrubbing (FBNSS) [31]: The method employs FC net-
work construction using an estimation scheme by introducing
a latent variable as an indicator of the data quality.

Thus, we set parameter λ by a linear search in the range
of [0.01, 0.025, 0.05, 0.075, 0.10, 0.25, 0.50, 0.75, 0.99]. We
performed a validation analysis of the method. After obtaining
the FC of all participants, we used them to identify MCI and
AD from the NC.



LI et al.: ESTIMATING FUNCTIONAL BRAIN NETWORKS BY LOW-RANK REPRESENTATION 689

Fig. 2. The adjacency matrices of the estimated FC by PC, SR, WSR,
WSGR, SSGSR, SLR, FBNMR, FBNSS and LSLRSR. Note that all
weights are normalized to the interval −1 to 1 for convenience of
comparison between different methods. for convenience of comparison
between different methods.

C. FBN Estimation
The representative FBNs of NCs as estimated by eight

different methods are presented in Fig. 2. For the convenience
of observation, all weights are normalized into the interval[
−1 1

]
. This figure demonstrates that the FBNs based on PC

and the other methods have different topological structures,
and the FBNs based on SR, WSR, WSGR, SSGSR, SLR,
FBNMR, FBNSS and LSLRSR have similar topological prop-
erties. The reason why PC and other algorithms have different
topologies is that they use different data fitting functions. SLR
and our proposed method (LSLRSR) share similar topological
properties. Among these methods, SLR, FBNMR, FBNSS and
other methods show a clear modular structure. Unlike SLR,
FBNMR and FBNSS, our algorithm shows a tighter internal
modular structure due to the introduction of local similarity
functions. ground connection. Unlike from SLR, LSLRSR-
based methods preserve sub-network features with similar
topological properties due to local similarity prior knowledge.

In addition, to quantitatively evaluate modularity, we used
Newman’s spectral algorithm [53] to calculate the modularity
scores Q of different constructed brain networks.

Q = 1/(2m)
∑

i j

(
Zi j − ki k j/(2m)

)
δ
(
L i , L j

)
(21)

where m is the total number of edges in the network, Z is
the adjacency matrix corresponding to the network, Zi j = 1
means that there is an edge between node i and node j , and ki
is the degree of node i , and L i is the label that node i belongs
to a certain community.

It is worth noting that negative edge weights are invalid for
the Newman algorithm, and we deleted all edge weights less
than 0 [30], [53]. In addition, all parameters in this experiment
are the optimal parameters in the training process (that is, the
classification accuracy is the highest). Fig. 3. presents the box-
plots of the modularity scores for several different methods.
As shown in the figure, our method retains the most modular

Fig. 3. Modularity scores of networks constructed by different methods.
The red line within each box represents the sample median. The upper
and lower edges of each box represent the upper and lower quartiles,
respectively. The “+” is outliers.

structure under the optimal parameters (when the classification
accuracy is the highest) compared with several other methods.
At the same time, there are significant differences between
the highest and lowest modularity scores of different nodes.
Due to the use of the S0 norm as a constraint, our algorithm
reduces the occurrence of outliers relative to SLR.

In the data, our method outperforms several alternatives,
maintaining a prominent modular structure, especially under
optimal parameters when classification accuracy is at its peak.
Notably, there is a significant contrast in modularity scores
among different nodes. Incorporating the S0 norm as a con-
straint helps our algorithm reduce outliers compared to the
SLR approach.

The PC-based method, being fully connected, exhibits a
higher modular structure than other methods (excluding ours).
Unlike conventional approaches, our algorithm achieves a
richer abundance of FBN modular structures. This success
is attributed to the integration of local similarity constraints,
guiding the modeling of the functional connectivity network.
This results in enhanced cohesion within each module’s
connections, while interconnections between distinct modules
become more sparse.

D. Classification Results

For each method employed in network modeling, feature
vectors are constructed by connecting the upper triangular
elements of each subject’s network representation. To clarify,
the dimensionality of these feature vectors is determined as
follows. Subsequently, we apply two-sample t-tests with a
significance level of p < 0.05 (uncorrected) during the feature
selection process in order to reduce redundancy. Table II and
Figure 4 present the classification performance of various
methods for queues related to Alzheimer’s Disease (AD) and
queues associated with (EO/EC). We employed Z-scores to
compute the variances between distinct algorithms, and the
outcomes are displayed in Table I.
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Fig. 4. Results (%) of nine different methods in MCI vs. NC, MCI vs. AD, AD vs. NC, EO vs. EC classification.

TABLE I
RESULTS SHOW SIGNIFICANT DIFFERENCES BETWEEN EIGHT DIFFERENT METHODS AND LSLRSR ACROSS VARIOUS CLASSIFICATION TASKS

TABLE II
RESULTS (%) OF NINE DIFFERENT METHODS IN AD VS. MCI VS.

NC CLASSIFICATION

The proposed method, LSLRSR, outperforms other model-
ing methods across all performance indicators. Specifically,

in MCI/NC classification, LSLRSR achieves an improve-
ment of approximately 17% (up to 92.70%) compared to
Pearson’s modeling method, a 2% improvement compared
to SLR, and approximately 7% improvement compared to
other sparse representation-based modeling methods. Signif-
icance tests (p-values) indicate that PC, SR, WSR, WSGR,
and SSGSR exhibit significant performance differences (p <
0.05), while SLR, FBNMR, and FBNSS show no significant
difference (p > 0.05).

In MCI/AD classification, LSLRSR maintains signifi-
cant advantages compared to other methods, with an 18%
improvement over PC, 3% over SLR, and 6% over sparse
representation methods. Sensitivity (96.37%) is significantly
higher than specificity (90.23%). Significant performance dif-
ferences (p < 0.05) are observed for PC, SR, WSR, and
SSGSR, while SLR and FBNMR suggest possible differences
(p = 0.21 and 0.05, respectively), and FBNSS exhibits a
significant difference (p = 0.02).
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In AD/NC classification, LSLRSR achieves an accuracy
of 98.71%, an 18% improvement over the PC method and
approximately 6% over sparse representation methods. All
methods, except SLR, show significant performance differ-
ences (p < 0.05), while SLR suggests a potential difference
(p = 0.01).

For EO/EC classification (as shown in Fig. 4), LSLRSR
achieves better performance, reaching 82.98%. Compared to
other methods, it shows a 13% improvement over the PC-based
method, 40% over SLR, and 35% over SR and WSR. WSGR
shows a 22% improvement, and SSGR demonstrates a 6%
improvement. Significance tests indicate potential differences
for PC and SR (p = 0.02 and < 0.05, respectively), while
WSR, WSGR, SSGSR, SLR, FBNMR, and FBNSS show
significant differences (p < 0.05).

Across a myriad of classification endeavors and diverse
datasets, our innovative algorithm has triumphantly secured
its position at the helm of performance. Previous research
underscores a noteworthy phenomenon: the intricate modu-
lar transformations that the functional brain network (FBN)
of patients afflicted with Alzheimer’s disease (AD) under-
goes. Our findings cast light on an intriguing possibility—by
introducing localized similarity constraints, we gain a more
intricate representation of the cerebral landscape, thus cul-
tivating a decidedly modular brain network. This advance
simultaneously establishes a bedrock for unceasing explo-
ration into the evolutionary trajectory of brain network
modularization amidst the intricate tapestry of AD’s patho-
logical progression. Our proposed algorithm has demonstrated
remarkable performance across various classification tasks and
datasets. Previous research has highlighted a significant shift in
the modular structure of patients’ Functional Brain Networks
(FBN) during the progression of Alzheimer’s Disease (AD).
We findings show that introducing the S0 norm leads to
the creation of smoother modular brain networks, effectively
reducing the occurrence of abnormal values in brain mod-
ularity. Simultaneously, the incorporation of local similarity
constraints proves to be a valuable guide for modeling modular
brain networks. This approach results in sparser connec-
tions between brain modules and denser connections within
modules. Enhancing modularity within the brain network
contributes to our deeper understanding of the brain. Further-
more, our classification results underscore the effectiveness
of modular brain networks in enhancing our comprehension
and recognition of diseases and various brain states. These
outcomes also serve as a foundational stepping stone for future
investigations into the evolving modularity of brain networks
during the pathological progression of AD.

E. Parameter and Noise Sensitivity
In this experiment, we have two parameters, the balance

parameter λ and β (controls the sparsity of functional con-
nectivity). Since λ + β = 1 in our algorithm (see Section II
for details), we can only look at the sensitivity of λ. To verify
the effect of different parameters on the accuracy, we take the
value of the parameter within a certain range to see the effect
of different parameters on our experimental results. Fig. 7
presents the results of two different parameters.

Fig. 7 presents the effect of parameter λ on the accuracy
of the two classification and triple classification experiments.
It can be seen from the figure that when parameter λ is taken as
0.01 and 0.25, the accuracy of different classifications reaches
the maximum. In the process of parameter λ change, the trend
of accuracy change is not obvious.

To verify the sensitivity of our algorithm to noise, we con-
ducted experiments on binary classification tasks. We added
10DB of Gaussian white noise to the BOLD signal and
compared the accuracy of all algorithms.

The experimental results for the binary classification task
are depicted in the figure. From these results, it is evident
that (1) as the level of noise intensity rises, the accuracy
of all algorithms decreases to varying degrees. It’s apparent
that the presence of feature noise in the samples signifi-
cantly impacts the classifier’s classification performance. (2)
Based on Figure 5, it’s apparent that the traditional PC-based
functional connectivity method is particularly susceptible to
noise, resulting in a notable accuracy decrease of 53.08%.
Compared to methods based on SR, WSR, WSGR, SSGSR,
SLR, FBNMR, and FBNSS, these methods are not sensitive to
noise, so their classification accuracy is better than traditional
methods. The proposed LSLRSR algorithm achieved the best
classification performance. The LSLRSR algorithm introduces
the lowest rank constraint of S0 norm, which weakens the
“influence” of larger singular values in the objective function,
and weakens the influence of Outlier in the data on the
signal. In addition, combining local constraints of manifold
learning enables the LSLRSR algorithm to mine the geometric
structure of samples in low dimensional space through low
rank learning, maximizing the preservation of the modular
structure of the brain network. Therefore, the intra class
similarity and inter class differences of the data are more
prominent, which enables the LSLRSR algorithm to achieve
good classification performance in the presence of noise.

F. Complexity Analysis
We now investigate the computational cost of the LSLRSR

and report the running time of different methods in AD
vs. NC classification in Table III. As can be observed from
Table III, the overall running time of our method is reasonable
and acceptable in practical applications. However, the pro-
posed LSLRSR requires more running time than PC, SR, and
WSR because of the time spent computing the local similarity
of the brain network. In our future work, we will optimize the
algorithm to reduce the time complexity.

G. Compared With State-of-the-Art Methods
In addition to the above experimental analysis, we also

compare the performance of our proposed LSLRSR method
with that of several recent state-of-the-art studies, which are
also performed on AD diagnosis (see Table IV). A brief intro-
duction to these latest technologies is as follows. Ma et al. [54]
introduced the Riemannian manifold model to extract global
features for the diagnosis of ADd. Hu et al. [55] proposed a
multi-band fusion model to estimate brain networks. These
constructed brain networks were then subjected to graph
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Fig. 5. Influence of noise on LSLRSR in classification tasks.

TABLE III
RESULTS (S) OF NINE DIFFERENT METHODS IN AD VS. MCI VS. NC CLASSIFICATION

Fig. 6. The most discriminative features selected by the best accuracy
of AD identification (i.e., AD vs. MCI vs. NC classification) and ASD
identification tasks based on AAL template respectively. Note that, each
arc shows the selected feature between two ROIs, where the color is
randomly allocated only for a better visualization, and the thickness of
each arc indicates its discriminative power that is inversely proportional
to the corresponding the p − value.

theoretical analysis to differentiate MCI individuals from NC
subjects. Wang et al. [56] proposed a distribution-guided

network threshold learning (DNTL) method for FC net-
work analysis to identify brain diseases through rs-fMRI.
Zhang et al. [57] A multi-view feature learning method
based on multi-map FC network to improve MCI diagnosis.
Xue et al. [58] introduced a latent variable to control the
volume sequence, thereby encoding the time dependence and
sequential information of the signal into the estimated BFN.
Zhang et al. [59] developed a multi-scale time series kernel-
based learning model based on Jensen-Shannon divergence for
brain disease diagnosis. Among all these compared methods,
our method achieves the best classification performance with
higher ACC, AUC, and SPE.

Table IV presents a comprehensive overview of the com-
parison conducted between our proposed methodology and six
state-of-the-art (SOTA) approaches. The results of this compar-
ative analysis indicate that our method attains the highest level
of accuracy, reaching an impressive 98.18%, 95.42%, 92.70%,
84.19% in the classification of AD/NC,AD/MCI,MCI/NC
and AD/MCI/NC. Furthermore, in contrast to various deep
learning algorithms, our approach effectively identifies the
specific brain regions and connections that are associated
with diseases, rendering it more interpretable. Consequently,
our method exhibits significant potential for facilitating
clinical applications, particularly in the early detection
of Alzheimer’s disease-related brain functional connectivity
dysfunction.

H. Discriminative Features
Using the optimal network parameters, as shown in Fig.6,

we use the LSLRSR method to build a feature-connected
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Fig. 7. Influence of λ and β on LSLRSR in four classification tasks, i.e., AD vs. MCI, AD vs. NC, and MCI vs. NC and AD vs. MCI vs.
NC classification.

TABLE IV
RESULTS OF COMPARED WITH STATE-OF-THE-ART METHODS

network and use the t test method to rank all features.
We choose the 34 significant frequently occurring values
(p value < 0.05). The thickness of each arc in Figure 5 repre-
sents the discriminative power of the corresponding connection
(rather than its actual connection strength). We found some
of these biological links to AD recognition. Specifically,
the middle temporal gyrus, hippocampus, parahippocampus,
medial and accessory cingulate gyrus, thalamus, medial supe-
rior frontal gyrus, supramarginal gyrus, and inferior temporal
gyrus have strong discriminative ability, which is consistent
with similar pathological studies of MCI [60], [61], [62].

The default network is related to high-level cognitive func-
tions such as self-awareness, memory, emotional processing,
and psychological exploration [63]. Existing studies have
found that changes in the default network connection pattern
can be observed in AD and MCI [64]. A large number of stud-
ies have shown that the hippocampus in the early stage of AD
is very sensitive to pathological onset [65], [66]. Alzheimer’s
patients may have abnormalities in memory, object recognition
or information evaluation [67], because of the structure of the
posterior cingulate gyrus., functional and metabolic abnormal
changes [68], [69].

In addition to the DMN, there are other selected brain region
connections shown to be important in AD diagnosis. Connec-
tivity abnormalities have also been observed in the olfactory
cortex of AD patients [70], and abnormal olfactory function
has become a biomarker for AD and its early diagnosis [71].

At the same time, the inferior temporal gyrus is affected in AD
patients [72], and its multimodal association area and high-
level brain functions such as speech fluency will also undergo
significant changes [73].

V. CONCLUSION

In this study, we propose a new FBN modeling method
called LSLRSR, which utilizes prior similarity between sub-
networks to guide functional brain network modeling and
generate a more modular FBN. We introduce the Schatten-
0 norm, which enhances the robustness of the FBN to the
effects of signal noises and outliers and is better at cap-
turing the modular structure in brain networks than sparse
representation-based graphs. Experimental results demonstrate
that the network constructed by our algorithm can retain more
prior biological knowledge. Finally, we use the constructed
feature connection network for MCI recognition, and even
with a simple feature selection and classification pipeline,
we can achieve an encouraging accuracy rate of 94.71% for
MCI and 98.70% for AD, the three-category result reached
82%, meanwhile, the EO/ while the EO/EC result reached
82.98%
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