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Embedded EEG Feature Selection for
Multi-Dimension Emotion Recognition
via Local and Global Label Relevance
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Abstract— Due to the problem of a small amount of
EEG samples and relatively high dimensionality of elec-
troencephalogram (EEG) features, feature selection plays
an essential role in EEG-based emotion recognition.
However, current EEG-based emotion recognition studies
utilize a problem transformation approach to transform
multi-dimension emotional labels into single-dimension
labels, and then implement commonly used single-label
feature selection methods to search feature subsets, which
ignores the relations between different emotional dimen-
sions. To tackle the problem, we propose an efficient
EEG feature selection method for multi-dimension emo-
tion recognition (EFSMDER) via local and global label
relevance. First, to capture the local label correlations,
EFSMDER implements orthogonal regression to map the
original EEG feature space into a low-dimension space.
Then, it employs the global label correlations in the
original multi-dimension emotional label space to effec-
tively construct the label information in the low-dimension
space. With the aid of local and global relevance informa-
tion, EFSMDER can conduct representational EEG feature
subset selection. Three EEG emotional databases with
multi-dimension emotional labels were used for perfor-
mance comparison between EFSMDER and fourteen state-
of-the-art methods, and the EFSMDER method achieves
the best multi-dimension classification accuracies of 86.43,
84.80, and 97.86 percent on the DREAMER, DEAP, and
HDED datasets, respectively.
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I. INTRODUCTION

ELECTROENCEPHALOGRAM (EEG) is a non-trauma
and portable measurement of brain activity and could

rapidly respond to different emotional states [1], [2]. Recently,
due to the high temporal resolution and cost-effectiveness
of EEG, EEG-based emotion recognition attracts extensive
attention in the field of brain-computer interface. To accu-
rately portray different emotional states, various types of
feature extraction approaches have been used to analyze
the non-stationary and nonlinear EEG signals, including
higher-order crossing (HOC) [3], differential entropy (DE) [4],
rational asymmetry (RASM) [5], non-stationary index (NSI)
[6], etc.

With the rapid development of EEG signal acquisition
equipment, the number of electrodes available for emotion
recognition is growing and a mass of EEG features can be
extracted from the plentiful electrodes [7], [8]. Nevertheless,
the associated EEG features are often high-dimensional and
inevitably contain irrelevant, redundant, and noise information,
which can easily deteriorate the emotion recognition perfor-
mance due to the relatively small amount of EEG samples [9],
[10]. To select informative features and remove irrelevant
features from the high-dimensional EEG data, multiple feature
selection approaches have been implemented in the EEG-based
emotion recognition task [11], [12], [13].

According to feature subset evaluation and search mech-
anism, the EEG feature selection methods could be roughly
categorized into three groups: filter, wrapper, and embedded
approaches [14]. The filter methods evaluate the importance
of EEG features in emotion recognition according to the
statistical properties of the EEG data. But these methods
are independent of the learning algorithm and the feature
selection performance is always unsatisfactory [15]. To solve
the problem, multiple studies are dedicated to implementing
wrapper approaches. The wrapper methods adopt the learning
results of a specific classifier as the evaluation index for the
EEG feature subset and can frequently obtain higher predic-
tion performance than the filter methods [14]. However, the
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wrapper methods often require multiple trails and have a large
computational cost [15]. Nowadays, embedded methods have
attracted much attention from researchers as an alternative
strategy for addressing the filter issue. Embedded methods,
incorporating the search for EEG feature subsets into the
optimization problem, can take advantages of both filter and
wrapper approaches [16], such as less computational cost and
better EEG feature selection capability.

To analyze the multi-dimension emotional labels, the
existing EEG-based emotion recognition studies often adopt
the strategy of problem transformation. In other words,
they first transform multi-dimension emotional labels into
single-dimension labels and then implement the existing EEG
feature selection models to deal with the transformed single-
dimension labels, i.e., valence-arousal labels (0,0),(0,1), (1,0),
and (1,1) could be changed into 1, 2, 3, and 4. Nevertheless,
one major shortcoming of the strategy is that it ignores the
label correlations among the EEG emotional data, includ-
ing feature-label relevance (local) and label-label relevance
(global). The local correlations are essential to accurately
construct the statistical model between the EEG features and
multi-dimension emotional labels, and the global correlations
can be utilized to search discriminative information in the
multi-dimension emotional labels.

To address the above issue, we propose a novel embedded
EEG feature selection method for multi-dimension emotion
recognition (EFSMDER). To capture the local label rele-
vance, EFSMDER implements orthogonal regression to map
the original EEG feature space into a low-dimension space.
Then, EFSMDER employs the global label relevance in
the original multi-dimension emotional label space to effec-
tively construct the label information in the low-dimension
space.

Moreover, the main contributions of our work are as follows:

• EEG-based multi-dimension emotion recognition task
is implemented through a multi-label learning strategy,
which is distinguished from the approach of transform-
ing the multi-dimension emotion recognition task into
single-label learning sub-problems adopted by most of
the existing studies. Our strategy is conducive to exploit-
ing effectively the label relevance among the multiple
dimensions.

• A novel embedded EEG feature selection method
is proposed for multi-dimension emotion recognition.
Multi-dimensional affective labels are reconstructed with
global label correlation maximization restriction, which
is instrumental in exploring shared and specific infor-
mation. With the aid of the emotional label correlations
(local and global) and the global feature redundancy,
EFSMDER can select an informative and non-redundant
EEG feature subset for multi-dimension emotion recog-
nition.

• On the basis of the average feature weights acquired
by EFSMDER, the effects of various EEG feature types
in multi-dimension emotion recognition were compared.
The experimental results show that the EEG features
extracted from the time-frequency domain are more

effective representations of multi-dimensional emotion
than those extracted from the time domain and frequency
domain. The discovery may be useful guidance and
largely facilitate the relevant research on EEG emotional
feature extraction.

• Three EEG emotional databases DREAMER, DEAP,
and HDED with various numbers of electrodes (14, 32,
and 90) are utilized to verify the validity of EFSMDER
in the multi-dimension emotion recognition task. The
experimental results demonstrate that the EEG feature
subsets selected by EFSMDER can obtain the best per-
formance on six evaluation metrics in contrast with those
of fourteen state-of-the-art feature selection methods.

The remainder of the article is arranged as follows.
In Section II, the details of the proposed EFSMDER frame-
work are presented. Then, Section III provides an effective
but simple solving algorithm of EFSMDER. The experimental
details are explained in Section IV. The experimental results
are shown and discussed in Section V. The conclusion and
future works are provided in Section VI.

II. THE PROPOSED FRAMEWORK

A. Notations
First of all, notations and definitions are briefly introduced

in this section. Throughout this article, vectors and matrices
are represented by lower-case boldface letters (e.g., a, b, . . . )
and capital letters (e.g., A, B, . . . ), respectively. For an
arbitrary matrix S, the transpose, trace, and vectorization are
represented as ST , tr(S), and vec(S), respectively. si and s. j ,
and si j respectively represent the i th row, the j th column,
and the (i, j) entry of the matrix S. The Frobenius norm
of the matrix S is denoted as ∥S∥F =

√
tr
(
ST S

)
. The

operator ◦ denotes the Hadamard product/entry-wise product.
1n = (1, . . . , 1)T

∈ Rn×1 is a column vector. In denotes an
n × n identity matrix.

Let (X ,Y ) be the multi-dimension emotional data set.
X = [x1, x2, . . . , xd ]

T
∈ Rd×n is the EEG feature

matrix where xd ∈ R1×n . Y =
[

y.1, y.2, . . . , y.k
]

∈

{−1, 1}
n×k is the multi-dimension emotional label matrix

where y.i = {y1i , . . . , yni }
T

∈ {−1, 1}
n×1. Each row and

column of X denote one feature dimension and a sample,
respectively. Each column of Y represents one emotional
dimension.

B. Problem Formulation
To obtain informative and non-redundant feature subsets

for multi-dimension emotion recognition, a novel embed-
ded EEG feature selection method is proposed in this
section. The proposed EFSMDER framework is defined as
follow:

min
W,2,V

F(X, W, 2, V ) + λC(Y, V ) + γ�(2) (1)

where W , 2, and V respectively represent the projection
matrix, the feature weighting matrix, and the latent semantics
of the multiple label information. λ and γ are both tradeoff
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parameters. The terms F , C , and � denote the EEG fea-
ture mapping function, the multi-dimension emotional label
learning function, and the EEG feature redundancy function,
respectively. Firstly, the EEG feature mapping function is
used to capture the local label correlations between EEG fea-
tures and emotional labels. Additionally, the multi-dimension
emotional label learning function is employed to explore
the global emotional label correlations. Finally, the EEG
feature redundancy function is adopted to mine the redundancy
between EEG features from a global view. The definitions of
the terms F , C , and � will be introduced in the following
sections.

C. Exploiting Local Label Correlations
Inspired by our previous works [17], the orthogonal regres-

sion model is employed to preserve more local information in
the projection subspace W . The term F can be formulated as
follow:

F(X, W, 2, V ) =

∥∥∥X T 2W + 1n bT
− V

∥∥∥2

F
+ ηtr

(
V T LV

)
s.t. W T W = Ic, θ

T 1d = 1, θ ≥ 0 (2)

where b ∈ Rc×1 is the bias term and η (η > 0) is a tradeoff
parameter. Different from sparse based feature selection meth-
ods, a feature weighting vector θ ∈ Rd×1 (θ ≥ 0, θT 1d = 1)
is utilized to assess the importance of EEG features in the
multi-dimension emotional recognition task. 2 ∈ Rd×d is a
diagonal matrix with 2i i = θ i . Next, the term Tr

(
V T LV

)
is employed to retain that the local geometry structures are
consistent between the EEG original feature space X and the
low-dimensional space V [18]. L = G − S denotes the graph
Laplacian matrix (L ∈ Rn×n). S denotes the affinity graph of
X , and G denotes a diagonal matrix with Gi i =

∑n
j=1 Si j . The

affinity graph S is computed by a heat kernel. The element Si j
in S is the similarity value of two instances x.i and x. j . Si j
is defined as follow:

Si j

=

 exp

(
−

∥∥x.i − x. j
∥∥2

σ 2

)
x.i ∈ Np

(
x. j
)

or x. j ∈ Np (x.i )

0 otherwise

(3)

where σ and Np
(
x j
)

represent the graph construction param-
eter and the set of Top-P nearest neighbors of the instance x. j .

D. Exploring Global Label Correlations
v.i and v. j in the projection matrix V denote the coefficients

of pairwise labels y.i and y. j . If the pairwise emotional labels
y.i and y. j are strongly similar, their predictions (i.e, v.i
and v. j ) should be similar, and vise versa. To achieve the
goal, the global label information is taken into consideration
during the multi-dimension emotional label learning process.
A regularizer for the coefficient matrix V is defined as:

k∑
i=1

k∑
j=1

Ri jv
T
.i v. j (4)

where Ri j = 1 − Zi j , and the element Zi j in Z denotes
the label relevance between pairwise labels y.i and y. j .
The element Zi j is computed by the cosine similarity to
mine second-order correlation among multi-dimension emo-
tional labels. It is obvious that R is a positive semidefinite
matrix.

Plugging Eq. (4) into ∥Y−V ∥
2
F , and then the C can be

formulated as the following:

C(Y, V ) = ∥Y−V ∥
2
F + β tr

(
RVTV

)
(5)

where β (β > 0) denotes a tradeoff parameter. Eq. (5)
is employed to construct the label information in the
low-dimension space V from a global view of emotional label
correlations.

E. Evaluating Global Feature Redundancy

Furthermore, we define a global feature redundancy matrix
A to assess the correlations among the EEG features. A can
be calculated as follow:

Ai, j =
(
Oi, j

)2
=

(
f T

i f j∥∥ f i
∥∥ ∥∥ f j

∥∥
)2

(6)

where f i ∈ Rn×1 and f j ∈ Rn×1 represent i-th and j-th
centralized features of xi and x j (i, j = 1, 2, . . . , d). f i and
f j are defined as follows:{

f i = H xT
i

f j = H xT
j

(7)

where H = In −
1
n 1n1n

T . Eq. (6) can be reformulated as

O = DFT F D = (F D)T F D (8)

where F = [ f 1, f 2, . . . , f d ]. D is a diagonal matrix
with Di,i =

1
∥ f i∥

(i = 1, 2, . . . , d). Because the matrix
O is positive semi-definite and A = O ◦ O , the global
feature redundancy matrix A is non-negative and posi-
tive semi-definite [19]. Hence, the term � can be defined
as:

�(2) = θT Aθ s.t. θT 1d = 1, θ ≥ 0 (9)

F. The Final Objective Function of EFSMDER

Based on the above discussion, the final objective function
of EFSMDER can be formulated as follows:

min
W,b,2,V

∥∥∥X T 2W + 1n bT
− V

∥∥∥2

F
+ α∥Y−V ∥

2
F

+ ηtr
(

V T LV
)

+ λθT Aθ + β tr
(
RVTV

)
s.t. W T W = Ic, θ

T 1d = 1, θ ≥ 0 (10)

where α, η, λ, and β are tradeoff parameters. The proposed
EFSMDER framework is shown in Fig. 1.
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Fig. 1. The proposed EFSMDER framework consists of the following three sections: (a) evaluating global feature redundancy; (b) exploring global
label correlations; (3)exploiting local label relevance.

III. OPTIMIZATION STRATEGY

Setting the partial derivative of Eq. (10) w.r.t b to zero,
we can obtain b =

1
n

(
V T 1n − W T 2X1n

)
. Substituting the

above expression into Eq. (10), the optimization problem will
become

min
W,2,V

∥∥∥H X T 2W − H V
∥∥∥2

F
+ α∥Y−V ∥

2
F

+ ηtr
(

V T LV
)

+ λθT Aθ + β tr
(
RVTV

)
s.t. W T W = Ic, θ

T 1d = 1, θ ≥ 0 (11)

In Eq. (11), there are three variables (W , 2, and V ) that
need to be solved. The alternative optimization approach is
adapted to obtain solutions for the above variables. A specific
optimization strategy is introduced as follows.

A. Update W
When 2 and V are fixed, Eq. (11) can be briefly written as

min
W T W=Ic

tr
(

W T J W − 2W T M
)

(12)

in which J = 2X H X T 2T and M = 2X H V .
Eq. (12) is the quadratic problem on the Stiefel manifold

(QPSM). To solve the problem, the generalized power iteration
(GPI) method [20] is adopted. More details can be referred
to [20].

B. Update 2

When W and V are fixed, the subproblem that only relates
to 2 in Eq. (11) can be reformulated in the vector form as

min
2

[
tr
(
2X H X T 2W W T

)
+λθT Aθ − tr

(
22X H V W T

)]
s.t. θT 1d = 1, θ ≥ 0 (13)

Eq. (13) can be converted to

min
θ

[
θT
[(

X H X T
)T

◦

(
W W T

)
+ λA

]
θ − θT s

]
s.t. θT 1d = 1, θ ≥ 0 (14)

Eq. (14) can be rewritten as

min
θT 1d=1,θ≥0

θT Qθ − θT s (15)

in which  Q =

(
X H T X T

)
◦

(
W W T

)
+ λA

s = diag
(

2X H V W T
) (16)

The objective function in Eq. (15) is an equality and
inequality constrained optimization problem, which can be
solved by the general augmented Lagrangian multiplier (ALM)
method. Subsequently, Eq. (15) can be changed into

min
θT 1d=1,v≥0,v=θ

θT Qθ − θT s (17)

We now write the augmented lagrangian function of Eq. (15)
as

L (θ , v, µ, δ1, δ2)

= θT Qθ − θT s +
µ

2

∥∥∥∥θ − v +
1
µ

δ1

∥∥∥∥2

F

+
µ

2

(
θT 1d − 1 +

1
µ

δ2

)2

s.t. v ≥ 0 (18)

where v and δ1 are both column vectors, and µ denotes the
Lagrangian multiplier. When v is fixed, Eq. (18) becomes

min
θ

1
2
θT Eθ − θT f (19)
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in which {
E = 2Q + µId + µ1d1T

d

f = µv + µ1d − δ21d − δ1 + s
(20)

We can derive that θ = E−1 f .
With the fixed θ , Eq. (18) can be converted to

min
v≥0

∥∥∥∥v −

(
θ +

1
µ

δ1

)∥∥∥∥2

(21)

Solving Eq. (21), we could get

v = pos
(

θ̂ +
1
µ

δ1

)
(22)

where pos (t) is a function that assigns 0 to each negative
element of t .

C. Update V

When 2 and W are fixed, we take the partial derivative w.r.t
V and set the result to zero, and we have

2
[

H T (V − X T 2W ) + α(V − Y ) + ηLV + βV R
]

= 0

(23)

Eq. (23) can be reformulated as

(H T
+ ηL)V + V (α Ik + β R) = H T X T 2W + αY (24)

Eq. (24) can be formulated as follow

MV + V N = P (25)

where 
M = H T

+ ηL
N = α Ik + β R
P = H T X T 2W + αY

(26)

It can be seen that Eq. (25) is the Sylvester equation.
We employ the lyap function in Matlab to obtain the optimal
solution for the variable V in the Sylvester equation.

Based on the above analysis, the detailed optimization pro-
cedures of Eq. (10) are given in Algorithm 1. The EFSMDER
chooses an alternating optimization strategy to iteratively
update the three variables W , 2, and V until convergence.
The output θ can be utilized to evaluate the importance of
each EEG feature in the multi-dimension emotion recognition
task. Finally, the m discriminative and non-redundant EEG
features with the top rankings in the feature score vector θ

are chosen.

IV. EXPERIMENTAL DETAILS

The experimental details are introduced in this section, such
as EEG databases, feature extraction, experimental setup, and
evaluation metrics.

Algorithm 1 EEG Feature Selection for Multi-Dimension
Emotion Recognition (EFSMDER)

Input: The EEG feature matrix X ∈ Rd×n , the
multi-dimension emotional label matrix Y ∈ Rn×k .
p > 1, θi =

1
d (1 ≤ i ≤ d), v = θ , δ2 = 0, u > 0,

δ1 = (0, 0, . . . , 0)T
∈ Rd×1.

Output: EEG feature score vector θ .
1: Initial 2 ∈ Rd×d satisfying θT 1d = 1, and θ ≥ 0. H =

In −
1
n 1n1n

T . Initial W and V randomly.
2: repeat
3: Calculate J = 2X H X T 2T and M = 2X H V T

4: Update W via GPI.
5: repeat
6: Update Q and s via Eq. (16)
7: Update E by E = 2Q + µId + µ1d1T

d ;
8: Update f by f = µv + µ1d − δ21d − δ1 + s;
9: Update θ by θ = E−1 f ;

10: Update v by v = pos
(
θ +

1
µ
δ1

)
;

11: Update δ1 by δ1 = δ1 + µ (θ − v);
12: Update δ2 by δ2 = δ2 + µ

(
θT 1d − 1

)
;

13: Update µ by µ = pµ;
14: until Convergence;
15: Update 2 via 2 = diag(θ);
16: Update V by solving Eq. (24);
17: until Convergence;
18: return θ for EEG feature selection.

A. Database Description
We conduct extensive experiments to evaluate the valid-

ity and reliability of the proposed EFSMDER method on
three EEG emotional databases, including DREAMER [21],
DEAP [22], and HDED [13]. All the databases adopt the
multi-dimension emotion model to represent human emotions,
i.e. valence-arousal-dominance model.

The DREAMER and DEAP databases respectively adopted
14 and 32 EEG electrodes to simultaneously record EEG
signals during the video stimulation. Hence, both DEAP
and DREAMER are low-density EEG databases. To further
evaluate the ability of the high-density EEG feature selec-
tion, high-density EEG recordings (HDED) were recorded via
a 128-channel HydroCel Geodesic Sensor Net, and HDED
adopted an experimental scheme similar to the SEED database.
To the EEG recordings in the HDED database, since the
90 channels near the center of the brain (Cz electrode) on the
topographical map can basically cover the entire brain area,
we only utilize the corresponding 90 channels to extract the
EEG features. The experimental protocols for constructing the
three databases are described in detail in [13], [21], and [22].
The basic information of the three databases is shown in
Table I.

B. Feature Extraction From EEG Recordings
In this work, the EEG signals were filtered out the noise by a

1-50 Hz band-pass filter. Independent component analysis was
then used to suppress muscular and eye movement artifacts.
It should be noted that an entire trial was treated as a sample
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TABLE I
COMPARISONS AMONG THE THREE EEG DATABASES

for EEG feature extraction. In other words, trials were not
segmented into several segments to increase the sample size
in our experiment.

According to the feature extraction and analysis researches
in the previous literature [12], [23], [24], the following
thirteen kinds of features were extracted for EEG-based multi-
dimension emotion recognition: NSI [6], HOC [3], spectral
entropy [25], shannon entropy [26], C0 complexity [27], DE
[4], absolute power (AP), the absolute power ratio of the beta
band to the theta band(APβ/APθ ) [28], the amplitude of the
Hilbert transform of intrinsic mode functions (AHTIMF), the
instantaneous phase of the Hilbert transform of intrinsic mode
functions (IPHTIMF) [23], differential asymmetry (DASM)
[4], RASM [5], and function connectivity (FC). The detailed
definitions of above features can refer to [3], [4], [23], [25],
[26], [27], and [28].

To extract the three kinds of EEG features in the fre-
quency domain (DE, AP, APβ/APθ ), the original EEG signals
were divided into five bands: delta band (1)-4 Hz), theta
band (4)-8 Hz), alpha band (8)-13 Hz), beta band (13)-30
Hz), and gamma band (30-50 Hz). Due to the advantage
of the autoregressive model in the spectral estimation of
nonstationary signals [29], the autoregressive model was
employed to extract the EEG feature AP. The EEG features
AHTIMF and IPHTIMF, employed to describe dynamical
changes in the non-stationary and nonlinear EEG recordings,
are two commonly used time-frequency features. The intrinsic
mode functions (IMF) were decomposed by the empirical
mode decomposition method [30], and then the AHTIMF and
IPHTIMF are extracted from the IMFs. DASM and RASM
were calculated from the symmetric channels on the left and
right hemispheres. Pearson correlation coefficient was uti-
lized to calculate the functional connectivity between pairwise
electrodes. The number of the above thirteen EEG features
extracted from the three databases is shown in Table II.

C. Experimental Setup
To fully evaluate the performance of EFSMDER in the

emotion recognition task, fourteen state-of-the-art feature
selection methods are compared, including three single-label
filter methods (i.e., ReliefF [31], CMIM [32], and mRMR
[33]), six single-label embedded methods (i.e., FSOR [12],
RFS [34], embedded supervised feature selection (ESFS) [35],
robust and pragmatic multi-class feature selection (RPMFS)
[36], subspace sparsity discriminant feature selection (SDFS)
[37], GRMOR [13]), and five multi-label embedded feature
selection methods (i.e., feature selection method via manifold
regularization (MDFS) [38], multi-label feature selection using

TABLE II
THE DIMENSION OF THE THIRTEEN EEG FEATURES EXTRACTED

FROM THE THREE DATABASES

multi-criteria decision making (MFS-MCDM) [39], global
relevance and redundancy optimization (GRRO) [40], multi-
label graph-based feature selection (MGFS) [41], and shared
common mode between features and labels (SCMFS) [42]).

According to the self-evaluated value of each emotional
dimension, the threshold, classified the EEG instances into
high and low levels, was set to 5. Hence, the 3-dimension
emotional labels were divided into 8 categories. Multi-label
k-nearest neighbor (ML-KNN) [43] is one representative
multi-label learning method and was used as a base classifier
in the multi-dimension emotion recognition task. The number
of nearest neighbors and smooth are respectively set to 10 and
1. KNN and support vector machines (SVM) were adopted
as single-dimension emotion recognition classifiers of each
emotion dimension (i.e. valence, arousal, and dominance).
70% of the subjects were randomly selected as training sets
and then the remaining 30% were treated as test sets. Note that
a cross-subject experiment setting was conducted. To avoid
possible bias, 50 independent realizations were conducted, and
then the average was regarded as the final emotion recognition
results.

D. Performance Metrics
The performance metric accuracy was implemented to

analyze the single-dimension affective computing ability.
Additionally, six performance metrics were employed to com-
pare the multi-dimension emotion recognition performance
and redundant information removal performance from various
aspects, including one feature redundancy evaluation metric
redundancy, two label-based evaluation metrics macro-F1 and
micro-F1, and three evaluation example-based metrics average
precision, coverage, and hamming loss. The definitions of the
six metrics are described in [13] and [38].

V. EXPERIMENTAL RESULTS AND DISCUSSION

A. Performance Comparison in the Single-Dimension
Emotion Recognition

Almost 10% of the original number of all features were
chosen by the above feature selection methods, and then
the results in the single-dimension emotion recognition task
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TABLE III
THE COMPARISONS OF AVERAGE CLASSIFICATION ACCURACY (%) OF KNN ON 3 BENCHMARK DATASETS

TABLE IV
THE COMPARISONS OF AVERAGE CLASSIFICATION ACCURACY (%) OF SVM ON 3 BENCHMARK DATASETS

have been summarized in Table III and Table IV. As shown
in Table III and Table IV, the results of the accumulative
two classifiers (KNN and SVM) exhibited the better emotion
recognition accuracies of the proposed method, in comparison
to the other 14 feature selection methods, which demonstrated
the emotion recognition performance depends on our method
rather than on the combination of feature selection method and
certain classifier model.

Additionally, we compare the single-dimension emotion
recognition results with several recent studies [44], [45], [46],
[47], [48], [49], [50], [51], [52]. Most of the existing studies
used subject-dependent settings and segmented an entire trial
into several windows to increase the number of samples. Since
we conduct a cross-subject experiment setting and regard an
entire trial as a sample, we only compare with the studies
adopting similar experimental settings. The above experimen-
tal settings are more challenging. To the best of our knowledge,
there are few cross-subject studies on emotion recognition
for DREAMER datasets, and HDED is not a public dataset.
Table V shows the accuracy comparison of EFSMDER against
existing studies on the DEAP dataset. As shown in Table V,
EFSMDER achieved a higher accuracy of 67.08% for valence

TABLE V
ACCURACY (%) COMPARISON WITH EXISTING WORKS

ON THE DEAP DATASET

and 66.35% for arousal on the DEAP dataset than existing
studies.

B. Performance Comparison in the Multi-Dimension
Emotion Recognition

For the multi-dimension feature selection model evaluation
on the above three EEG databases, each dimension of the
3-dimension emotional model is divided into two categories
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Fig. 2. Multi-dimension emotion classification performance with different number of selected features on the DREAMER data set: (a) Redundancy;
(b) Coverage; (c) Hamming loss; (d) Average precision; (e) Macro-F1; (f) Micro-F1.

TABLE VI
THE COMPARISONS OF AVERAGE CLASSIFICATION ACCURACY (%) OF

ML-KNN ON 3 BENCHMARK DATASETS

(high/low) and then an 8-class emotion recognition task is
performed. The comparison results of the fifteen algorithms
in terms of the six evaluation metrics are shown in Fig. 2,
Fig. 3, and Fig. 4. For each figure, the horizontal axis denotes
the feature number in the selected EEG feature subsets and
the vertical axis denotes the results of each evaluation metric.
The red line in the above figures represent EFSMDER.

As shown in Fig. 2(a-c), Fig. 3(a-c), and Fig. 4(a-c), the
smaller the value, the better the multi-dimension emotion
recognition performance. Additionally, as shown in Fig. 2(d-f),
Fig. 3(d-f), and Fig. 4(d-f), the larger the value, the better the

TABLE VII
FRIEDMAN TEST RESULTS (15 COMPARING METHODS, 3 DATABASES,

SIGNIFICANCE LEVEL α = 0.05)

multi-dimension emotion recognition performance. Compared
with the values of the other fourteen methods, our proposed
method almost keeps the maximum values with the different
number of selected EEG features, which indicates the optimal
multi-dimension emotion recognition results of the EFSMDER
method. Table VI shows quantitative comparison results of
average classification accuracy. Almost 10% of the original
number of all features were selected by 15 methods, and
then the average multi-dimension classification accuracies
were obtained by ML-KNN. Overall, the results in Fig. 2,
Fig. 3, Fig. 4, and Table VI demonstrate that the selected EEG
feature subsets of the EFSMDER method can obtain the best
performance.

To further analyze the difference in the multi-dimension
emotion recognition results of the fifteen methods, the Fried-
man test is employed. The significance level in the Friedman
test is set to 0.05. Table VII shows the Friedman statistical
significance test results of six evaluation metrics. The results
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Fig. 3. Multi-dimension emotion classification performance with different number of selected features on the DEAP data set: (a) Redundancy;
(b) Coverage; (c) Hamming loss; (d) Average precision; (e) Macro-F1; (f) Micro-F1.

Fig. 4. Multi-dimension emotion classification performance with different number of selected features on the HDED data set: (a) Redundancy;
(b) Coverage; (c) Hamming loss; (d) Average precision; (e) Macro-F1; (f) Micro-F1.

in Table VII indicate that the null hypothesis is rejected
and the multi-dimension emotion recognition performance of

the fifteen methods has a significant difference. To com-
plete the multi-dimension emotion recognition performance
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Fig. 5. The Nemenyi test results (C D = 12.3830, significance level α = 0.05): (a) Redundancy; (b) Coverage; (c) Hamming loss; (d) Average
precision; (e) Macro-F1; (f) Micro-F1.

Fig. 6. The parameter sensitivity (under the varying λ, δ, and β) and convergence of EFSMDER on the DEAP data set.

comparison, the Nemenyi test is adopted as a certain post-hoc
test and the EFSMDER method is chosen as the control
method. For the Nemenyi test, the critical difference (C D),
controlled the family-wise error rate, is computed as follows:

C D = qα

√
nc(nc + 1)

6nd
(27)

where nc and nd represent the number of feature selection
methods and databases. The qα is 3.164 at significance level
α = 0.05. The value of C D is 4.2841 (nc = 15, nd = 3).

Fig. 5 shows the Nemenyi statistical significance test results
of six evaluation metrics. As shown in Fig. 5, the EFSMDER

method ranks 1st among the fifteen methods on all the
evaluation metrics, which demonstrates that the EFSMDER
method can obtain highly competitive multi-dimension emo-
tion recognition performance against other feature selection
methods.

Specifically, we made the following observations.
(1) As shown in Fig. 5, EFSMDER, GRMOR, MDFS,

GRRO, and SCMFS have good performance in terms of the
majority performance metrics. Only the GRMOR method is a
single-label feature selection method. Hence, compared with
converting the multi-label directly into the one-dimension
label, the joint analysis of multi-label conduce to mining the
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Fig. 7. Convergence of the EFSMDER algorithm on the three data sets: (a) DREAMER; (b) DEAP; (c) HDED.

Fig. 8. The importance of different EEG feature types on the multi-dimension emotion recognition task is evaluated based on the feature scores
ranked by the proposed EFSMDER method.

latent semantic information in the multi-dimension emotional
labels, and the latent semantic information is beneficial for
multi-dimension emotion recognition.

(2) From Fig. 2, Fig. 3, and Fig. 4, it can be observed that
the performance of FSOR is worse than that of most feature
selection methods and the GRMOR method have a better
classification performance than the FSOR method, which
indicates the effect of the global redundancy term on redundant
information removal from the original EEG features.

(3) The EEG feature subsets, selected by the proposed
EFSMDER method, consistently yielded a better performance
than the GRMOR in terms of six performance metrics. The
results demonstrate the multi-dimension emotional label learn-
ing function can contribute to improving feature selection
performance and the global relevance in multi-dimension
emotional labels is worth considering.

C. Parameter Sensitivity Analysis and Convergence
Demonstration

To avoid the influence of the value of the tradeoff parameter
α on the item tr

(
RVTV

)
, the value of α is set to 1. Three

parameters λ, β, and η are used to regulate the impacts of
each term. In this section, the parameter sensitivity analysis
for EFSMDER over the three parameters is conducted. The
values of the parameters are all adjusted in the range of
{0.001, 0.01, 0.1, 0.2, 0.4, 0.6, 0.8, 10, 100}. With one param-
eter fixed at 0.1, other parameters are searched in the above
set. Due to space limitations, we only show the parameter
sensitivity results for the DEAP database. The 3-D histograms
in terms of ACR values on the ML-KNN classifier are shown
in Fig. 6. As shown in Fig. 6, the values of ACR keep
nearly unchanged when two parameters are varying, which
demonstrates that the multi-dimension emotion recognition



XU et al.: EMBEDDED EEG FEATURE SELECTION FOR MULTI-DIMENSION EMOTION RECOGNITION 525

Fig. 9. Average feature scores of EEG features extracted from the time
domain, frequency domain, and time-frequency domain.

performance on the DEAP database is not very sensitive to
the balance parameters.

Furthermore, we conduct the convergence speed analysis of
our iterative optimization algorithm. The convergence curves
of the objective value on the three databases are shown in
Fig. 7. The balance parameters λ, β, and η are all fixed at
10. As shown in Fig. 7, the proposed EFSMDER algorithm
converges quickly within a few iterations, which indicates the
effectiveness of our iterative optimization algorithm.

D. Feature Ranking Analysis
Lastly, to analyze the impacts of different kinds of EEG

features on multi-dimension emotion recognition performance,
the average feature weights acquired by EFSMDER are shown
in Fig. 8. It should be noted that a histogram in Fig. 8 denotes
the mean of all the feature weights of a type of EEG feature.
As shown in Fig. 8, the average feature weight values of the
AHTIMF and IPHTIMF are higher than those of other EEG
feature types, which indicates the two EEG feature types have
a greater influence on multi-dimension emotion recognition
performance. It is obvious that the two EEG feature types are
both extracted from the time-frequency domain.

To further compare various EEG feature extracted
approaches, the average feature scores of EEG features
extracted from the time domain, frequency domain, and
time-frequency domain are computed and shown in Fig. 9.
The values of EEG features in time-frequency domain are
the largest, which indicates the advantages of time-frequency
domain analysis for multi-dimension EEG affective com-
puting. According to the surveys [24], [53], most of the
EEG-based emotion researches often adopt the EEG features
in the time domain or frequency domain. Hence, the discovery
may provide a suggestion for future researches on EEG
emotional feature extraction.

VI. CONCLUSION AND FUTURE WORK

Via merging simultaneously local and global label rele-
vance in orthogonal regression, an embedded EEG feature
selection framework is proposed to select discriminative and
non-redundant EEG features for multi-dimension emotion

recognition. To evaluate the performance of EFSMDER in
the multi-dimension emotion recognition task, three EEG
emotional databases are employed and fourteen state-of-the-
art feature selection methods are adopted as comparison
methods. The experimental results of six performance met-
rics demonstrate the effective performance of EFSMDER.
By analyzing the feature weights ranked by the EFSMDER
method, we found that the EEG features extracted from the
time-frequency domain are effective representations of multi-
dimension emotion.

In future work, we will focus on the effects of dif-
ferent time-frequency domain analysis methods on the
multi-dimension emotion recognition task. Next, missing
multi-dimension emotion learning is an interesting research
direction.
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