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Otago Exercises Monitoring for Older Adults
by a Single IMU and Hierarchical Machine

Learning Models
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Walter De Raedt , and Bart Vanrumste , Senior Member, IEEE

Abstract— Otago Exercise Program (OEP) is a rehabilita-
tion program for older adults to improve frailty, sarcopenia,
and balance. Accurate monitoring of patient involvement
in OEP is challenging, as self-reports (diaries) are often
unreliable. The development of wearable sensors and their
use in Human Activity Recognition (HAR) systems has lead
to a revolution in healthcare. However, the use of such
HAR systems for OEP still shows limited performance.
The objective of this study is to build an unobtrusive and
accurate system to monitor OEP for older adults. Data
was collected from 18 older adults wearing a single waist-
mounted Inertial Measurement Unit (IMU). Two datasets
were recorded, one in a laboratory setting, and one at the
homes of the patients. A hierarchical system is proposed
with two stages: 1) using a deep learning model to
recognize whether the patients are performing OEP or
activities of daily life (ADLs) using a 10-minute sliding
window; 2) based on stage 1, using a 6-second sliding
window to recognize the OEP sub-classes. Results showed
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that in stage 1, OEP could be recognized with window-wise
f1-scores over 0.95 and Intersection-over-Union (IoU) f1-
scores over 0.85 for both datasets. In stage 2, for the home
scenario, four activities could be recognized with f1-scores
over 0.8: ankle plantarflexors, abdominal muscles, knee
bends, and sit-to-stand. These results showed the potential
of monitoring the compliance of OEP using a single IMU in
daily life. Also, some OEP sub-classes are possible to be
recognized for further analysis.

Index Terms— Hierarchical activity recognition, Otago
exercise program, inertial sensors, machine learning, deep
learning.

I. INTRODUCTION

OLDER adults suffer from higher fall risk and conse-
quent fall-related injuries. Annually, 24% to 40% of

community-dwelling older persons fall, of which 21% to 45%
fall regularly [1]. Many of these persons need to spend a
long time recovering from injuries. Older adults with certain
diseases such as sarcopenia and obesity could suffer from even
higher fall risk [2]. With the increase of the older population,
this problem increases the costs of healthcare systems [3].

To reduce fall risk, the Otago Exercise Program (OEP) was
developed for older adults. OEP contains a series of balance,
strength, and walking exercises, and it has been proven to
reduce fall risk and mortality for community-dwelling older
adults [4]. There are more than twenty types of exercises (sub-
classes) in the OEP and the participants need to perform these
sub-classes sequentially. Older adults participating in the OEP
are requested to perform the exercises twice or three times
a week within some consecutive weeks and their compliance
with performing OEP is monitored by means of self-reports
(diaries) [5], [6]. However, this is not an accurate method to
assess their involvement in the OEP, since they sometimes
inaccurately remember or report information about their past
experiences. Besides, the diaries only record the duration of
performing the OEP rather than which OEP sub-classes are
performed.

An alternative to the self-reports is to apply wearable
sensors combined with machine learning techniques. Although
Internet-of-Things (IoT) sensors have been widely applied for
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Human Activity Recognition (HAR), their use for recognizing
the OEP has rarely been investigated. In fact, to date, only
two studies have used wearable sensors for this purpose. The
first study [7] applied five sensors to recognize the OEP,
which were not user-friendly for older adults to wear in daily
life. Although the f1-scores for most activities were high, the
recruited subjects only included healthy young adults. Besides,
the study did not try to distinguish between the OEP and
Activities of Daily Life (ADLs). The second study [8] applied
one Inertial Measurement Unit (IMU) on the waist to collect
data from older adults, and two problems were investigated:
1) to distinguish between OEP and ADLs, and 2) to recognize
OEP sub-classes. However, for both tasks, the f1-scores did
not exceed 0.8.

Considering the gaps in the previous studies, this study
investigates OEP recognition for community-dwelling older
adults using a single IMU on the waist. The aim is to build
an offline HAR system for the therapists to analyze their
long-term compliance with OEP. The OEP was recognized
in two stages: 1) using a large sliding window to recognize
the occurrence of OEP and ADLs and 2) using a small sliding
window to recognize OEP sub-classes. The data were collected
in both a lab scenario and home scenarios from older adults
to validate the proposed system. Machine learning and deep
learning models were applied and compared in the two stages
to optimize the recognition performance.

The contributions of this study are:
1) For both lab and home scenarios, a single wearable IMU

was applied to recognize:
a) the OEP from ADLs
b) some sub-classes of OEP

To date, this is the least obtrusive wearable system that
could be applied in daily life.

2) A hierarchical architecture was designed for activity
classification, where a large sliding window was used to
recognize OEP while a following small sliding window
was used to recognize OEP sub-classes.

3) A state-of-the-art deep learning model combining two
different neural network architectures was built to
classify OEP and ADLs with the results outperforming
other models.

4) A new approach for defining OEP sub-classes. Initially,
level 1 OEP sub-classes were labeled and classified.
These sub-classes were further classified into level
2 sub-classes. This approach led to a reduction in the
number of classes used in machine learning models,
resulting in improved classification performance.

The paper is organized as follows: Section II reviews the
state of the art in the field of HAR. Section III introduces
the datasets and the implementation of the proposed system.
Section IV presents the experimental results and section V
discusses the results. Finally, section VI concludes the paper
and proposes future work.

II. RELATED WORKS

In this section, two topics are discussed: the sliding window
techniques and machine learning models that have been used
in HAR systems.

A. Sliding Window

A common pre-processing method for HAR is to segment
the signals into smaller pieces with the same length for feature
extraction [9]. This method is called the sliding window
technique. The size of the applied sliding window is important
for classification results and dependent on the characteristics
of the activities to be recognized. For example, small sizes
such as 2s could be applied to recognize static and periodic
activities (e.g. walking, sitting, etc.) [10]. For these activities,
it is suggested that the window size should cover at least
one cycle of the activities [9]. On the other hand, a sliding
window size of as large as 1 minute could be applied for
activities involving more gestures (e.g. eating) [11]. Since
these activities include many sub-activities, it is harder to
define the appropriate window size. Sometimes the sliding
window is applied with an overlap rate to offer more segments.

B. Machine Learning Models

Traditionally, feature-based machine learning has been used
in HAR systems. For this technique, hand-crafted features
were important to be extracted from the raw signals. Typical
hand-crafted features include time-domain and frequency-
domain features [9]. These features might not capture all
relevant information for classification.

Thanks to the evolution of computational power, deep
learning models have been applied for the representation of
raw signals. With the features extracted from the deep learning
models, the recognition performance increased in many cases
compared with the models based on hand-crafted features [12],
[13]. However, deep learning models normally need more data
for training.

Convolutional neural networks (CNN) could extract neigh-
boring information from adjacent samples by convolutional
layers to be classified by the fully-connected layers.
Recently, such architecture is popular for sensor signals
classification/regression by performing 1-D [14] or 2-D [15]
convolution. Recurrent neural networks (RNN), on the other
hand, extract temporal features from the time series. For HAR
systems, Long Short-Term Memory (LSTM) as a type of RNN
units has also been proven efficient for long time series [16].
Besides, Transformers have also been explored for HAR using
attention mechanism [17], [18]. The mechanism searches for
correlation between features by mapping a query and a set of
keys, which makes it efficient for long-time series recognition.

With the development of CNN and LSTM, a new
architecture called CNN-LSTM was developed for HAR
systems [19], [20]. The features extracted by the convolutional
layers were applied as the input for the LSTM units. Then
the LSTM units further extract the temporal features for
classification. This architecture has been validated for many
datasets with better recognition performance than both CNN
and LSTM [19], [20]. It also outperformed Transformers in
recent research for HAR [18]. Based on this architecture and
Bi-directional-LSTM (BiLSTM) layers, the CNN-BiLSTM
was further developed [21], [22]. This architecture was applied
to learn from both forward and backward time series.
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TABLE I
THE LABELS FROM LEVEL 1 OEP (SIX CLASSES),
LEVEL 2 OEP (15 CLASSES), AND ORIGINAL OEP

In this work, a deep learning architecture was applied to
distinguish OEP and daily activities.

III. METHODOLOGY

A. Data Collection
This study received approval from the Ethics Committee

Research UZ/KU Leuven (S59660 and S60763). Written
informed consent was obtained from all participants prior to
study participation.

In the experiments, community-dwelling older adults (aged
65 and older) performed modified OEP while wearing a
McRoberts MoveMonitor+ (McRoberts B.V., Netherlands)
with a 9-axis IMU inside. To make a user-friendly system,
the subjects were asked to wear the device loosely and
comfortably on the waist, with possible misplacement, and
without any calibration. The OEP is a rehabilitation program
designed to reduce fall risk in older adults. The original
program includes multiple sub-classes that need to be
performed sequentially. The sub-classes are shown in Table I.
Besides, subjects also performed other ADLs. Two datasets
were collected in the study in different scenarios:

1) Dataset 1: Lab: The dataset was collected in the lab.
The subjects performed the OEP and ADLs with instructions
from the researchers certified as OEP leaders. The data of
OEP and ADLs were collected either on two separate days
or consecutively on one day. The ADLs included walking,
walking stairs, sitting, standing, and indoor cycling.

2) Dataset 2: Home: This dataset was collected at home
with videos recorded. With the camera turned on, the subjects
wore the device by themselves and followed a booklet with
instructions to perform OEP. Before and/or after the OEP, the
subjects also randomly performed ADLs at home, out of the
camera view. Therefore, the ADLs were not observed but still
labeled while the subjects were wearing the IMU.

The recruited older adults were (pre-)sarcopenic or non-
sarcopenic (defined by EWGSOP1 [23]). The detailed

TABLE II
SUBJECTS INFORMATION FROM THE TWO DATASETS

information is shown in Table II. The recruited subjects of the
two datasets were different. For both datasets, each OEP sub-
class was recorded and annotated based on videos. Between
the sub-classes, the subjects were not instructed nor monitored.
They could be practicing the exercises, sitting for a rest,
or walking out of the camera view.

B. OEP Exercises Annotation
1) Level 1 OEP: Directly classifying the OEP sub-classes

was difficult for the machine learning models, due to the
relatively small number of training examples and large number
of classes. Therefore, the OEP sub-classes were merged
according to the characteristics of the exercises, in order
to build a hierarchical system, as proposed in [24]. This
technique reduced the number of classes while maintaining
the same number of training examples. As shown in Table I,
some sub-classes were merged as general walking, and some
were merged as general standing. To distinguish from static
standing, general standing also included the exercises that
required irregular trunk movement while standing (e.g. ankle
plantarflexors). As a result, there were six level 1 OEP
exercises.

2) Level 2 OEP: Although there were 26 original OEP sub-
classes as shown in table I [8], a single IMU on the waist
could not distinguish all of them. Since many OEP sub-classes
do not involve trunk movements (e.g. head mobilizer, neck
mobilizer), they were merged as sitting and static standing.
After merging, there were 15 OEP sub-classes to be recognized
as shown in Table I. These sub-classes were called level 2 OEP
(top level). The recognition of level 1 OEP and level 2 OEP
were cascaded to improve performance. The details will be
introduced in section III-C.

3) Transition Activities: During the OEP, the subjects
followed the instructions either from the researchers (dataset
1) or from the booklets (dataset 2). Before each OEP sub-
class, they could be practicing the exercises, sitting for a
rest, or walking out of the camera view. These activities
could not be properly monitored or labeled. Therefore, the
activities between each two OEP sub-classes were annotated
as transition activities. Different from ADLs that happened
outside the whole OEP, transition activities were short
activities happening within the OEP program. These activities
were not included in the training set.

In these annotation steps, if a segment contained multiple
activities, it was labeled as the majority class and removed
when training the models. The duration and number of
segments (by a 6-second window with 50% overlap) are shown
in Table III. The duration of transition activities was observed
longer than OEP in dataset 1, which can be attributed to the
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TABLE III
THE TOTAL DURATION (MINUTES) AND NUMBER OF

SEGMENTS (BY A 6-SECOND WINDOW WITH 50%
OVERLAP) IN THE DATASETS

Fig. 1. An example of recorded acceleration from one subject.

older age and increased need for rest among the subjects. For
dataset 2, walking stairs was not performed because of the
limitation of camera installation.

C. System Overview
An example of collected signals from a single subject is

shown in Fig. 1. The general overview of the two proposed
experiments is shown in Fig. 2. Two stages of classification
were proposed for different activities to be recognized.

1) Stage 1 (OEP Vs. ADLs): Considering the characteristics
of OEP and ADLs, a large sliding window size was applied
to segment the signals. The optimal window size and overlap
rate were identified by comparing performance across window
sizes of 5, 10, and 15 minutes, and overlap rates of 25%, 50%,
75%, and 80%, using a CNN-BiLSTM model. The results
are shown in section IV-A where a 10-minute window with
75% overlap was selected. The segmented signals were then
classified as OEP or ADLs (binary classification).

2) Stage 2 - Level 1 (six Classes of OEP Classification):
The signals were segmented with a smaller sliding window.
The optimal window size and overlap rate were identified
by comparing performance across window sizes of 2, 4, 6,
and 8 seconds, and overlap rates of 25%, 50%, 75%, and
80%, using a Random Forest model. The results are shown
in section IV-B where a 6-second window with 50% overlap
was selected. If the signals were classified as OEP in stage 1,
they were further classified as the six classes of level 1 OEP
as shown in Table I. Otherwise, they kept the ADLs labels as
in stage 1.

3) Stage 2- Level 2 (15 Classes of OEP Classification):
Following the results from level 1 classification, general
walking or general standing were further classified by other
models, whereas the other segments remained the same as
level 1. There were consequently 15 classes in level 2 as shown
in Table I. In level 2, the labels segmented in level 1 were
further classified. Therefore, there were not any segmentation
procedures.

TABLE IV
HAND-CRAFTED FEATURES EXTRACTED FROM THE IMU CHANNELS

D. Pre-Processing
In this study, only the accelerometer (ax , ay , az)

and gyroscope (gx , gy , gz) from the IMU were used
for classification, since they are more widely used than
magnetometers for HAR in health care [9]. Also, adding
a magnetometer did not improve the results by comparing
classification performance.

For noise reduction, the raw signals were low-pass filtered
by a 6-order Butterworth filter with a cut-off frequency of
10Hz. Then the signals were segmented using sliding windows
as explained in III-C (10-minute window with 75% overlap for
stage 1 and 6-second window with 50% overlap for stage 2).

An additional magnitude acceleration channel aM [25], [26]
was extracted according to the formula:

aM =

√
a2

x + a2
y + a2

z , (1)

E. Hand-Crafted Features and Feature Selection
Time-domain and frequency-domain features were extracted

from the seven channels (six original channels and one
magnitude acceleration channel). The types of hand-crafted
features are shown in Table IV. In total, 15 time-domain
features and nine frequency-domain features were extracted
from each channel, all implemented using TSFEL pack-
age [27]. Additionally, the subject information was included as
meta-features, including the age, gender, weight, height, and
health condition (sarcopenia, pre-sarcopenia, or no sarcopenia
defined by EWGSOP1). In [28], it was found that the
subject information had an added value for the recognition
performance.

Considering that some of the OEP exercises had to be
performed with a certain order in the program (e.g. marching
was always at the beginning of the OEP as a warm-up
exercise), a feature named relative start time was extracted
for each segment in stage 2:

frst =
tsseg − tsO E P

teO E P − tsO E P
, (2)

where tsseg denotes the start time of the segment (in stage 2),
tsO E P denotes the predicted start time of the whole OEP, and
teO E P denotes the predicted end time of the whole OEP. From
stage 1, tsO E P and teO E P could be predicted. This feature
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Fig. 2. An overview of the proposed system. NOTE: To better illustrate the process, the ratio of the sliding windows and signals in the figure does
not correspond to the actual size. The post-processing stage is explained in the following sections.

indicates the approximate position of a certain exercise that
occurred in the program.

In summary, 173 and 174 features were extracted for each
segment in stage 1 and stage 2, respectively, since frst was
only extracted in stage 2.

Feature selection was performed by combining neighbor-
hood component analysis and forward selection [30]. After
splitting training and validation sets, a feature set was selected
for each training set, as the details explained in Section III-H.

F. Machine Learning Models
1) Classical Machine Learning: Three classical models

were applied: K-Nearest Neighbors (KNN), Support Vector
Machines (SVM) with Radial Basis Function (RBF) kernel,
and Random Forest (RF). Based on (standardized) hand-
crafted features, these models were widely applied for
HAR [9], [31]. They were applied in both stage 1 and stage 2.
In stage 1, however, they were only applied as baseline models,
since deep learning models were also applied.

2) Deep Learning: Three deep learning models were applied
in stage 1 classification: CNN, Transformer, and CNN-
BiLSTM. They were not involved in stage 2 due to the small
number of training examples. To reduce the computational
cost, the input time series was down-sampled from 100Hz to
20Hz. Therefore, the input size to the models was 12000*6,
where 12000 was the number of samples in 10 minutes and
6 was the number of original IMU channels.

a) CNN: The CNN architecture was introduced in [14].
It included three convolutional layers, each followed by a max-
pooling layer to reduce the number of time samples and a
dropout layer to avoid over-fitting. Then, the extracted features
were flattened and classified by two fully-connected layers.

b) Transformer: The Transformer architecture was pro-
posed by [17]. After normalization and position embedding,
three encoder blocks were applied. Each encoder block
consisted of a multi-head attention layer, a fully-connected
layer, and dropout layers. Then, the classification results were
generated by another fully-connected layer.

c) CNN-BiLSTM: The CNN-BiLSTM model applied two
convolutional layers for local features learning and a
following BiLSTM layer for temporal features learning,
as shown in Fig. 3.

Fig. 3. The architectures of the CNN-BiLSTM model. Each
convolutional layer and LSTM layer was followed by a dropout layer,
which is not shown in the figure. The hyperparameters of were tuned
according to Table V.

Fig. 4. Some selected hyperparameters in each outer loop from CNN-
BiLSTM in stage 1 (dataset 1+ dataset 2).

The deep learning models were built on tensorflow 2.8 and
were trained on a NVIDIA P100 SXM2 GPU. A batch size
of 64 was applied for training. Adam algorithm was used
to optimize the cross-entropy loss function. To reduce the
influence of the imbalanced dataset, all models applied the
“class weight” option to weight the loss function according to
the number of samples for each class.

The hyperparameters were tuned using Hyperband
Search [32]. The search spaces of the hyperparameters for
each model are shown in Table V. Since the input time
series was large in stage 1 (input length= 12000 samples),
the kernel size in the convolutional layers was tuned
in a large search space. Fig. 4 shows some selected
hyperparameters in each outer loop from CNN-BiLSTM in
stage 1. The test and validation of the models are described
in Section III-H.
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TABLE V
THE SEARCH SPACE OF EACH TUNED

HYPERPARAMETER OF THE MODELS

G. Post-Processing
The transition activities and ADLs could be similar to the

OEP sub-classes. For example, sit-to-stand also happened in
transition activities and ADLs. However, only consecutive
sit-to-stand labels should be classified as OEP sub-classes.
To reduce the negative influence of the ADLs and transition
activities in stage 1 and stage 2, post-processing was applied
to improve recognition performance.

To smooth the predicted labels O = {o1, o2, . . . , on},
as a time series, the post-processing algorithm was applied,
as described in Algorithm 1. It took the predicted segments as
input and returned smoothed segments P = {p1, p2, . . . , pn}.
A smoothing window was moving along the time series.
The values of post-processing window lengths were selected
from a range of values (from 10 to 20 minutes for
stage 1, and from 21 to 39 seconds for stage 2) by
comparing classification performance. Finally, the window
length was seven segments (i.e. 17.5 minutes) for stage 1,
and 11 segments (i.e. 33 seconds) for stage 2. The
label was classified as transition activities if the most
adjacent labels were from different classes. The algorithm
could correct some misclassified segments, which is shown
in section IV-A.

Algorithm 1 Post-Processing
INPUT: a time series of the original predicted labels
O = {o1, o2, . . . , on}; k=3 for stage 1 and k=5 for stage 2
OUTPUT: a time series of the post-processed predicted
labels P = {p1, p2, . . . , pn}

Initialize P with the same length as O
for i=k+1, k+2, k+3, . . . , n-k-2, n-k-1, n-k do

pi = the majority class of the sequence {ot ∈ O |

(i − k) ≤ t ≤ (i + k)}

end for

H. Dataset Split
The validation for dataset 1 applied nested Leave-One-

Subject-Out Cross-Validation (LOSOCV). For each outer loop,
the data from one subject was in the test set whereas the rest
was in the training set. For hyperparameters tuning, in each
inner loop, a single subject was excluded from the validation
set. In other words, the best average weighted f1-scores of
all validation sets in the inner loops were obtained. The best
model hyperparameters and the best feature set were then
applied to the test set in the outer loop. The final evaluation
performance was calculated from all test sets.

The validation for dataset 2 was similar to dataset 1. The
only difference is that dataset 1 was also included in the
training set, to further improve the classification performance.

I. Evaluation
1) Window-Wise Evaluation: For each class c, the f1-score

was calculated as:

f 1c = 2 ∗
precisionc ∗ recallc
precisionc + recallc

, (3)

where

precisionc =
T Pc

T Pc + F Pc
, and (4)

recallc =
T Pc

T Pc + F Nc
. (5)

where T Pc, F Pc, and F Nc denote the numbers of true
positive, false positive, and false negative labels.

For overall evaluation in stage 2, weighted f1-score was
calculated from the f1-score and the number of labels of class
c:

weighted f 1 =

∑
c

f 1c ∗ Nc, (6)

where Nc denotes the number of true labels belonging to class
c.

2) Segment-Wise Evaluation: For this evaluation method,
the predicted labels based on the sliding windows were
reconstructed as a time series. A segment was defined as
an aggregation of consecutive labels that belonged to the
same class [33]. Then segmental f1-scores of Intersection over
Union (IoU) were calculated for each class. The IoU matrix
was defined as the ratio of intersection and the union of the
predicted and true segments. After the true and predicted labels
were reconstructed as a time series, a threshold of IoU values
was set. Then, segment-wise true positive (T Pseg), false
positive (F Pseg), and false negative (F Nseg) were defined:

• T Pseg: IoU≥threshold
• F Pseg: IoU<threshold, true segments shorter than

predicted segments
• F Nseg: IoU<threshold, true segments longer than

predicted segments
Fig. 5 illustrates the definition of IoU, TP, FP, and FN. From

these values, segment-wise precision, recall, and f1-scores
could be calculated by formula 3, 4, 5. Compared with the
window-wise evaluation, this method could also evaluate the
over-segmentation error. In this study, the overlaps of 0.5 and
0.75 were applied for stage 1 evaluation.
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Fig. 5. The definition of IoU, TP, FP, and FN. There are eight cases
shown in the figure. In case 4 and case 5, FN or FP depends on
the length of the true and predicted segment. In case 7, if a true
segment is predicted as some smaller segments, FP numbers increase.
In case 8, if some separate true segments are predicted as one
segment, FN numbers increase.

TABLE VI
OEP F1-SCORES USING DIFFERENT SLIDING WINDOW SIZES

(OVERLAPS) IN STAGE 1 USING CNN-BILSTM

Fig. 6. An example of reconstructed time-series of labels.

IV. RESULTS

A. Stage 1 Classification
For both datasets, a 10-minute sliding window was selected

from 5, 10, and 15 minutes, and an overlap rate of 75%
was selected from 25%, 50%, 75%, and 80%, using a
CNN-BiLSTM model. They were hence applied for stage 1
classification. Table VI shows the impacts of some values of
window size and overlap rate.

The window-wise and segment-wise f1-scores of OEP
classified by different machine learning models are shown
in Table. VII. The window-wise f1-scores of the CNN-
BiLSTM architecture were higher than the other models
in both datasets (0.983 and 0.950, respectively). Although
the f1-scores dropped from dataset 1 to dataset 2, such
a drop is smaller using the CNN-BiLSTM models. For
dataset 2, the IoU f1-scores of classical machine learning
models significantly decreased. The IoU f1-scores (75%) of
CNN-BiLSTM were found to be 0.867 and 1.000, respectively,
which outperformed the other models.

An example of the predicted time series of stage 1 is shown
in Fig 6, which shows the impacts of post-processing.

The confusion matrices and receiver operating characteristic
(ROC) curves by the CNN-BiLSTM models are shown in

TABLE VII
THE WINDOW-WISE (F1, PRECISION, RECALL) AND SEGMENT-WISE

(IOU F1) EVALUATION IN STAGE 1 BY DIFFERENT MODELS

AFTER POST-PROCESSING

Fig. 7. Confusion matrices and ROC curves for stage 1 classification
by CNN-BiLSTM after post-processing.

Fig. 8. Boxplots of the f1-scores in stage 1 and weighted f1-scores in
stage 2 for each subject.

Fig. 7. For dataset 1, all the ADLs segments were classified
correctly. On the other hand, nine OEP segments were
classified as ADLs. For dataset 2, seven ADLs segments were
classified as OEP while three OEP segments were classified
as ADLs segments. Fig. 8 shows the boxplot illustrating the
f1-scores for each subject in stage 1. According to the figure,
there were three outliers in total. Apart from this, the f1-scores
among subjects showed low variance.

B. Stage 2 Classification
For both datasets, a 6-second sliding window was selected

from 2, 4, 6, and 8 seconds, and an overlap rate of 50% was
selected from 25%, 50%, 75%, and 80%, using a RF model.
They were hence applied for stage 2 classification. Table VI
shows the impacts of some values of window size and overlap
rate.

As feature selection was performed on each iteration in
LOSOCV, each training set resulted in a different feature set.
The ten most frequently selected features were: Relative start
time, Entropy (ay), Entropy (aM ), Entropy (ax ), Mean (gz),
Centroid (aM ), Median (gx ), Centroid (gx ), Kurtosis (ay),
Centroid (ax ).
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TABLE VIII
WEIGHTED F1-SCORES USING DIFFERENT SLIDING WINDOW

SIZES IN STAGE 2 (WITH 50% OVERLAP) USING RF

TABLE IX
WEIGHTED F1-SCORES IN STAGE 2 BY DIFFERENT MODELS

The weighted f1-scores in stage 2 by different models are
shown in Table IX. For both datasets, RF models obtained
the best weighted f1-scores of 0.743 and 0.798, respectively.
The confusion matrices for both datasets by RF are shown in
Fig. 9. Compared with stage 1, ADLs in stage 2 showed less
confusion because of the further post-processing in stage 2.
On the other hand, the transition activities led to false positive
predictions for most of the classes.

Fig. 10 shows the f1-scores for some activities. As illus-
trated by the light colors, in dataset 2 at home, there
were four activities beyond the threshold of 0.8: ankle
plantarflexors, abdominal muscles, knee bends, and sit-to-
stands. With transition classified as FP, there were three
activities with f1-scores decreased by more than 0.1: sideways
walking, stairs walking, and walking and turn. Fig. 8 shows
the boxplot illustrating the weighted f1-scores for each subject
in stage 2, showing larger variance than stage 1.

V. DISCUSSION

A. Stage 1
This study reported high f1-scores for OEP recognition

in both lab and home environments. In stage 1, a large
sliding window size (10 minutes) was applied to segment
the signals. Compared with the previous study applying a 4-
second window [8], the f1-scores in this study were higher than
0.95 for both datasets. With a small window size, each activity
was segmented individually. However, most individual OEP
activity was almost the same as ADLs. For example, forwards
walking in the OEP was the same as walking in daily life.

A large window size, on the other hand, included multiple
exercises instead of a single one. Therefore, one segment
contained more information. As shown in Fig. 1, each OEP
sub-class took a shorter duration than ADLs. Also, the signals
of OEP showed higher variance than ADLs. Therefore, a large
sliding window could better identify these characteristics. A
10-minute sliding window with 75% overlap resulted in a
delay of 2.5 minutes, which was applicable for offline systems.
In real life, the system could also be applied as a reminder to
perform OEP for older adults.

The annotation of OEP was from the beginning of the first
OEP activity to the end of the last OEP activity. During the
program, the subjects could take a rest on a chair or go to
the bathroom. These behaviors are also expected in real life.
Therefore, the smoothing algorithm was applied to also take

Fig. 9. Confusion matrices for stage 2 classification by RF after post-
processing. The green labels denote general walking and the red labels
denote general standing in level 1. (abbreviations: plan= plantarflexors,
dor= dorsiflexors, mob= mobilizer). There are no FP labels for transition
activities class, because the labels were not in the training set.

non-OEP activities into account and hence, the recognition
performance was improved.

In stage 1, CNN-BiLSTM was proven to be the best
classification model for both datasets. The scenarios using a
large window (long time series) for OEP recognition could
take advantage of CNN-BiLSTM. Similar results were also
reported by a previous study, reporting that CNN-LSTM
outperformed CNN, LSTM, and Transformer for IMU-based
activity recognition [18]. However, deep learning models
require more training examples than classical models. Thus,
the models still encountered overfitting problems due to dataset
size. Although the usage of dropout layers improved this
problem and made the models more efficient than hand-crafted
features, the lack of training examples was still a limitation of
the study.
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Fig. 10. F1-scores of some classes in stage 2 by RF after post-
processing. The light colors illustrates the results with counting the
transition activities.

TABLE X
COMPARISON: OEP F1-SCORES OF THE

PREVIOUS STUDY AND THIS STUDY

The amount of ADLs collection was limited. In dataset 1,
the ADLs included walking, standing, sitting, and cycling.
In dataset 2, the duration of ADLs was no more than two
hours. In real life, ADLs happen much more than OEP.
Therefore, in the future, the methods should be validated
on the dataset with more types and longer duration of
ADLs. Another limitation was that the study did not consider
calibration and misplacement of the sensor, since the older
adults could not comply with these tasks alone. Although it
would result in decreased f1-scores, the system still showed
robustness in generalization according to Fig. 8.

B. Stage 2
The size of the training set was small compared with the

number of OEP classes. To reduce the number of classes for
each model, a hierarchical classification method was applied.
Considering the transition activities between each two OEP
sub-classes, the f1-scores of some sub-classes were decreased
such as sideways walking, walking stairs, walking turn, and
sit-to-stand. These activities could also happen in ADLs.
Therefore, some transition activities were classified as the ones
in OEP sub-classes, although such influence was improved by
post-processing in stage 2. Since the results of stage 2 were
based on the output of stage 1, they showed higher variance
according to Fig. 8.

The f1-scores of knee bends and ankle plantarflexors were
increased in dataset 2. The first reason was that dataset 1 was
also applied for training to test dataset 2. With more training
data, the models were less over-fitting. The second reason
was that the subjects in dataset 2 were younger than in
dataset 1, as shown in Table II. Therefore, the subjects in
dataset 2 performed the exercises with less intra-class variance.

On the other hand, compared to dataset 1, exercises such as
abdominal muscles and sit to stand had decreased f1-scores in
dataset 2. Such a decrease was due to the fact that the subjects
followed the booklet rather than the direct instructions from
the therapists. Therefore, they were unable to adhere to the
instructions effectively.

TABLE XI
COMPARISON: F1-SCORES FOR OEP SUB-CLASSES OF THE

PREVIOUS STUDY (WITH THE WAIST-MOUNTED IMU)
AND THIS STUDY

Because of the lack of training data, deep learning models
were not applied in stage 2, which limited this study. In future
studies, more data will be collected so that deep learning
models can be applied to improve performance.

C. Comparison With Previous Studies
There were only two studies applying wearable sensors for

OEP recognition. The first study applied a waist-mounted IMU
to recognize OEP and ADLs for (sarcopenic) older adults [8].
The study categorized OEP exercises into strength, balance,
and other exercises, without classifying the OEP sub-classes.
The f1-scores for classifying OEP and ADLs of the study are
shown in Table X. The results show that our proposed 10-
minute sliding window and CNN-BiLSTM model obtained
higher f1-scores than the previous study using a 4-second
sliding window and a RF model. Besides the advantages of
the deep learning models, the large sliding window also shows
its ability to capture more information, leading to improved
results.

The second study applied five IMUs on the four limbs and
waist worn by young adults [7]. Since the study categorized
OEP exercises differently, only four classes were comparable
to this study. Also, although the study applied five IMUs, only
the results with the waist-mounted IMU were compared to this
study. Table XI compares the f1-scores of the previous study
and this study. The results showed that the previous study (only
validated on four healthy young subjects) did not obtain f1-
scores over the threshold (0.8, which is a common threshold
value for OEP [8]) for the four classes. On the other hand, our
proposed method obtained higher f1-scores for these classes,
with two of them (knee bends and sit to stand) exceeding
the threshold. Additionally, the previous study did not take
into account the transition activities between OEP sub-classes.
The superior performance of our proposed method may be
attributed to the two-level labeling of OEP sub-classes and
relevant hand-crafted features such as relative start time.

VI. CONCLUSION

This study proposes a hierarchical system to recognize
OEP from a waist-mounted IMU. The system was tested
on the older adults in both lab and home environments.
In stage 1, using the CNN-BiLSTM architecture, the system
could distinguish OEP and ADLs with f1-scores over 0.95.
The results showed the capability of a single IMU to evaluate
the compliance of OEP for older adults with and without
sarcopenia. Besides, the system could distinguish four OEP
sub-classes with f1-scores over 0.8: ankle plantarflexors,
abdominal muscles, knee bends, and sit-to-stand. The results
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showed the potential of monitoring the compliance of OEP
using a single IMU in daily life. Furthermore, the proposed
system demonstrated its capability to recognize and analyze
OEP sub-classes.

In the future, the size of the dataset should be improved,
since the amount of training examples did not support deep
learning models in stage 2. Also, the hyperparameters of
this system could be reduced for better generalization. For
example, end-to-end deep learning models such as temporal
convolutional networks (TCN) [33] could be applied without
post-processing.
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