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Subject-Specific Modeling of EEG-fNIRS
Neurovascular Coupling by Task-Related

Tensor Decomposition
Jianeng Lin , Jiewei Lu, Zhilin Shu, Jianda Han , Member, IEEE, and Ningbo Yu , Member, IEEE

Abstract— Neurovascular coupling (NVC) connects neu-
ral activity with hemodynamics and plays a vital role in
sustaining brain function. Combining electroencephalog-
raphy (EEG) and functional near-infrared spectroscopy
(fNIRS) is a promising way to explore the NVC. How-
ever, the high-order property of EEG data and variability
of hemodynamic response function (HRF) across sub-
jects have not been well considered in existing NVC
studies. In this study, we proposed a novel framework
to enhance the subject-specific parametric modeling of
NVC from simultaneous EEG-fNIRS measurement. Specif-
ically, task-related tensor decomposition of high-order EEG
data was performed to extract the underlying connections
in the temporal-spectral-spatial structures of EEG activ-
ities and identify the most relevant temporal signature
within multiple trials. Subject-specific HRFs were estimated
by parameters optimization of a double gamma function
model. A canonical motor task experiment was designed
to induce neural activity and validate the effectiveness of
the proposed framework. The results indicated that the pro-
posed framework significantly improves the reproducibility
of EEG components and the correlation between the pre-
dicted hemodynamic activities and the real fNIRS signal.
Moreover, the estimated parameters characterized the NVC
differences in the task with two speeds. Therefore, the
proposed framework provides a feasible solution for the
quantitative assessment of the NVC function.

Index Terms— Neurovascular coupling, EEG-fNIRS,
tensor decomposition, task-related component analysis,
hemodynamic response function, subject-specific
optimization.
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I. INTRODUCTION

NEUROVASCULAR coupling (NVC) refers to the close
functional relationship between neuronal activity and

hemodynamic-related changes in the brain [1]. It maintains
adequate blood flow and oxygen supply to the active brain
regions during neuronal activity [2]. NVC plays a critical
role in various physiological processes, including motor and
cognitive functions [3], [4], [5]. The disruptions of NVC could
lead to impaired brain functions and have been associated with
various neurological disorders such as stroke and Alzheimer’s
disease [6], [7]. Therefore, understanding the mechanisms
underlying NVC is crucial for improving our understanding
of brain functions and developing effective diagnostic and
therapeutic methods for neurological disorders.

The simultaneous measurement of electrophysiological
and hemodynamic activities, such as combining electroen-
cephalography (EEG) with functional magnetic resonance
imaging (fMRI), can be used to study NVC [8]. The canonical
approach to quantify NVC in EEG-fMRI studies is to compare
the blood oxygen level dependent (BOLD) time course with
the convolution of the canonical hemodynamic function (HRF)
and EEG feature [9], [10]. The general linear model (GLM)
was used as a standard method to estimate the coupling
strength and identify brain regions showing significant cou-
pling. GLM offers enhanced capabilities in detecting temporal
dynamics and making statistical inference than other methods
like correlation analysis. The alpha rhythm of EEG was found
to be negatively correlated with the BOLD signal of fMRI in
both resting and task states [11], [12].

For the past few years, the combination of EEG with
another non-invasive hemodynamic neuroimaging technique,
functional near-infrared spectroscopy (fNIRS), has become an
attractive technique to investigate NVC. fNIRS measures the
relative change in hemoglobin concentration to infer neural
activity [13]. Compared to EEG-fMRI, EEG-fNIRS is more
flexible, less costly, and free of electromagnetic interfer-
ence [10]. Some studies have been trying to explore NVC
by EEG-fNIRS. Similar to EEG-fMRI, the methods based
on HRF and GLM remain the mainstream approaches for
NVC analysis [3], [14], [15]. However, such approaches still
have limitations in the following aspects. First, most studies
set quite strict constraints in EEG feature extraction, such
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as selecting a portion of interested electrodes and spectral
bands and averaging the results. The predefined selection is
subjective and strongly dependent on prior knowledge. More-
over, such approaches ignore the couplings within and between
different channels or spectral bands, which could be the key to
NVC analysis. Second, most studies used the canonical HRF
for dealing with the time delay nature of hemodynamic signals
in NVC quantification [16]. However, the HRF is known to
vary across individuals and brain regions due to differences in
vascular density, metabolic demand, and vascular tone [17].
The fixed shape and parameters of the canonical HRF imply
several assumptions and could not reflect the subject-specific
NVC. Moreover, most NVC studies assumed that their analysis
methods are effective and lacked a systematic comparison of
the differences in analysis results caused by different EEG
features and transfer functions.

To this end, we proposed a novel framework to enhance
the subject-specific parametric modeling of NVC from simul-
taneous EEG-fNIRS measurement. Specifically, task-related
tensor decomposition of high-order EEG data was performed
to extract the underlying connections in the structures of EEG
activities and identify the most relevant temporal signature
within multiple trials. Subject-specific HRFs were estimated
by parameters optimization of a double gamma function
model. A systematical comparison of different EEG features
and HRFs with quantitative indicators and cross-validation was
performed. The effectiveness of the proposed framework was
verified on the data with 16 healthy participants during the typ-
ical motor tasks. We expected the proposed framework could
provide a feasible way to enhance NVC analysis compared to
the canonical methods.

II. MATERIALS AND METHODS

A. Participants
A prior statistical power analysis was performed using

GPower 3.1.9.4 software to estimate the minimum sample size
required for the statistical test [18]. The significance level (α)
and the power (1 − β) were set as 0.05 and 0.8 [19]. Since
similar previous studies showed tensor decomposition could
significantly enhance the EEG-fMRI analysis, we anticipated
a large effect size of 0.8 using Cohen’s criteria [20], [21],
[22]. Results of the power analysis show that the sample
size needed with this effect size is approximately N = 15 to
detect significant effects. Sixteen young adults (age: 24.5 ±

1.9 years, all males) took part in this experiment. None of the
recruited participants had any neurological diseases or move-
ment impairments. They were right-handedness confirmed by
the Edinburgh Handedness Inventory. Each participant signed
the informed consent before the formal experiment. This study
was approved by the Ethics Committee of Nankai University.

B. Experimental Protocol
The experiment included two sessions, each corresponding

to one task speed. Each session consisted of 15 trials, and
each trial comprised a 10-second task period along with
a subsequent 20-second rest period, as shown in Fig. 1(a).
During the task period, participants were instructed to tap

Fig. 1. The experimental procedures. (a) Experimental paradigm for
the finger tapping tasks. (b) Participants performed the finger tapping
tasks with 1 Hz and 2 Hz frequencies following the instructions from the
screen and metronome.

Fig. 2. The channel arrangement of EEG-fNIRS measurement. Eigh-
teen fNIRS probes (six sources, six long channel detectors, and six
short channel detectors) were placed at the left motor cortex, resulting in
17 long-distance (3 cm) and six short-distance (1 cm) channels. Seven
electrodes were placed at the bilateral motor cortex.

their right index finger following a metronome at 1 or 2 Hz,
as shown in Fig. 1(b). During the rest period, participants were
instructed to look at the center of the screen and keep their
whole body relaxed and reduce movement. The experimental
protocol was realized by a custom program developed by
E-prime 3.0 (Psychology Software Tools, PA, USA).

C. Data Acquisition
The EEG-fNIRS signals were recorded simultaneously by a

customized acquisition cap, as shown in Fig. 2. The synchro-
nization of EEG and fNIRS signals was realized by sending
markers to a trigger box. The scalp EEG signals were recorded
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Fig. 3. Schematic diagram of the complete analysis framework. The bimodal EEG-fNIRS signals were pre-processed first. For EEG data, time-
frequency analysis was performed on EEG data to convert it to tensor format. Shared spectral and spatial components were extracted by coupled
tensor decomposition. The task-related components were obtained from the corresponding temporal components within multiple trials. For fNIRS
data, active channels were identified by GLM. Then, the task-related EEG temporal components were used to fit the averaged active HbO signal.
Subject-specific HRFs were estimated by parameters optimization of a double gamma function model. Finally, the leave-one-out validation and
statistical analysis were conducted to validate the effectiveness of the proposed framework.

with the NeusenW system (Neuracle Inc, China) at 1000 Hz.
Seven EEG electrodes (FC3, C3, CP3, Cz, FC4, C4, CP4)
distributed in the motor cortex were selected and integrated
into the bimodal acquisition cap according to the international
10-20 system. The impedance of each electrode was ensured
to be reduced below 10 k� before the data recording. The
fNIRS signals were recorded by the Nirsmart system (Danyang
Huichuang, China) at 30 Hz. The wavelengths of near-infrared
light were 760 nm and 850 nm. A total of six sources and six
detectors constituted 17 fNIRS long channels, covering the
sensorimotor cortex (SMC) and the premotor cortex (PMC).
The inter-optode distance of long channels was 3 cm. In addi-
tion, six detectors were placed 1 cm away from the sources,
forming six fNIRS short channels to measure the physiological
noise.

D. Proposed Method
1) Data Preprocessing: The schematic diagram of the

complete analysis framework is shown in Fig. 3. EEG prepro-
cessing was performed using a MATLAB toolbox, EEGLAB
(Swartz Center for Computational Neuroscience, USA) [23].
The EEG data were first downsampled to 250 Hz and
filtered from 1-40 Hz. Muscle artifacts were reduced by
the BSS-CCA method [24]. Then, the EEG data were seg-
mented into 20-second epochs (−5 to 15 s) and baseline
corrected.

Time-frequency analysis of EEG data was performed using
the short-time Fourier transform (STFT) with a 0.5 Hz
frequency resolution. The number of time windows of the
20-second data was set to 600, i.e., the temporal resolution
was 30 Hz and was equal to the sampling rate of the fNIRS
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Fig. 4. Illustration of the CPD of the three-dimensional EEG tensor.

signal. Finally, the baseline level of 5 seconds is subtracted
from the calculated result.

The fNIRS signals were preprocessed using the HOMER
3 implemented in MATLAB [25]. First, wavelet filtering was
used to remove the motion artifacts of fNIRS data [26].
The parameter iqr was set to the default value (1.5) to
detect outliers [27]. Then, a Butterworth bandpass filter at
0.01-0.2 Hz was utilized to remove the physiological noises
(e.g., heartbeat and respiration) of fNIRS data. Next, the
modified Beer–Lambert law was employed to convert the
fNIRS data into the relative concentration changes of oxy-
hemoglobin (HbO). The physiological noises measured by the
short fNIRS channels were utilized to create the additional
noise regressors, which were subsequently regressed out from
fNIRS data using the GLM [28]. Finally, the data epochs
were extracted and baseline corrected, consistent with EEG
preprocessing.

2) Tensor Decomposition of EEG Data: EEG signals are
multi-way in nature. For instance, there may be modes
such as group, subject, trial, time, frequency, and channel
in EEG experiments [29]. Tensor decomposition allows for
the simultaneous analysis of multiple dimensions of EEG
data, enabling a more comprehensive understanding of brain
activities [30]. To process EEG data by tensor decomposition,
it is first necessary to perform time-frequency analysis to
convert it into tensor form. In this case, a three-dimensional
tensor X ∈ RI×J×K is commonly used, with one mode
representing time, another representing frequency, and the
last one representing channel, and I , J , and K are their
dimensions for each mode, respectively. Then, the two primary
models could be used for tensor decomposition of EEG data,
including canonical polyadic decomposition (CPD) and Tucker
decomposition (TD) [29]. We chose CPD for further analysis
since it has advantages in the simplicity of component number
selection and the uniqueness of solution compared to TD [30].
Generally, the CPD of the three-dimensional tensor X I×J×K

is defined as:

X =

R∑
r=1

Sr ◦ Fr ◦ Tr (1)

where R indicates the number of components, S, F , and T
indicate the rank-1 spatial, frequency, and time tensors, respec-
tively. An illustration of the CPD of the three-dimensional
EEG tensor can be seen in Fig. 4.

3) Task-Related Tensor Decomposition (TRTD) of EEG Data:
Due to the low signal-to-noise ratio (SNR) of EEG data, multi-
ple trials of the same task are needed to be repeated in an EEG
experiment typically. It forms another important dimension
of EEG tensor, i.e., trials. Analyzing a 4-dimensional tensor

assumed that the spatial, temporal, and spectral information
were consistent among all the trials [31]. This assumption is
difficult to satisfy due to the high variability of EEG data.
Therefore, we proposed the task-related tensor decomposition
(TRTD) to extract the sharing task-related information within
multiple trials of tensors.

The TRTD framework was informed by prior studies using
coupled tensor decomposition for EEG data analysis [31],
[32]. These studies hypothesized that the spectral and spatial
components are shared among different subjects. In our study,
the TRTD was performed within the subjects. In the first
step, we assumed that the spatial and spectral components
are shared among K trials, while there is variability in the
time-domain components. This is a more relaxed assumption
since the individual difference was excluded. In addition,
nonnegative constraints were imposed on spatial and spectral
components to obtain meaningful solutions. The optimization
objective was obtained as follows:

min
K∑

k=1

∥∥∥∥∥X (k)
−

R∑
r=1

Sr ◦ Fr ◦ T (k)
r

∥∥∥∥∥
2

F

s.t. Sr >= 0, Fr >= 0 (2)

where k denotes the trial index, r denotes the component
index, R denotes the number of components, S, F , and T
denote the spatial, frequency, and time components, respec-
tively. The number of components R was set to six, which
was equal to the number of available channels (Cz was used
as the reference). The solving of tensor decomposition was
using the Tensorlab 3.0 implemented in MATLAB [33].

Considering that the data was recorded under the same task
and with the same participant, it was logical to anticipate a
high correlation between the temporal information evoked by
the task across multiple trials. Meanwhile, since the spatial
and spectral components were identical within multiple trials,
the order of components in each trial was fixed, which was
the prerequisite for applying task-related component analysis
(TRCA). To this end, in the second step, the 1*R-dimensional
component filter w was solved by TRCA, and the components
were weighted and summed to extract the most correlated
components among the K trials [34]:

ŵ = arg max
w

wTSw
wTQw

Si j =

K∑
k,l=1
k ̸=l

Cov
(

X (k)
i , X (l)

j

)

Q =

R∑
i, j=1

Cov
(
X i , X j

)
(3)

where X represents the temporal components, R represents
the number of components, K represents the number of trials,
i and j represent the indexes of components, k and l represent
the indexes of trials. The solution of optimization problem
could be obtained as R eigenvectors of the matrix Q−1S [34].

4) Active Channel Selection of fNIRS Data: In this study, the
GLM was utilized to estimate the level of activation for each
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fNIRS channel.

Y = Gβ + E (4)

where Y is the fNIRS signal, β is the channel weights, E is
the error matrix, and G is the design matrix, including the
regressors of a constant and the convolution of the canonical
HRF with the stimulus function. The estimate of weights β̂

were obtained by robust regression, which was achieved by
the robust f i t function in Matlab. T-test was conducted to
identify the channels that rejected the null hypothesis β = 0
(p < 0.05) significantly:

t =
cT β̂√

σ̂ 2cT
(
GT G

)−1 c
(5)

where c is the channel selection vector, σ̂ 2 is the residual sum-
of-squares divided by the degrees of freedom. Three channels
with the highest activation levels (i.e., t values) were selected
and averaged for further analysis.

5) Subject-Specific Neurovascular Coupling Modeling: Due
to the variability of HRF, we aim to build a within-subject
model with subject-specific parameters to enhance the analy-
sis. The model structure is general to all the subjects, but the
model parameters are subject-specific and could be obtained
by subject-specific optimization. The two-gamma functions
model was chosen for parameterizing the HRF due to its phys-
iological accuracy in representing the HRF and widespread
acceptance in both fMRI and fNIRS research [35]:

H RF(t) =
ba1

1 t (a1−1)

0 (a1)
e(−b1t)

−
ba2

2 t (a2−1)

c0 (a2)
e(−b2t) (6)

where t represents the time points, b1 and b2 represent the
dispersion time constants for the peak and undershoot periods,
a1 and a2 represent the peak time and undershoot time, c
represents the ratio of the amplitude of the peak to the under-
shoot, and 0 represents the gamma function. The parameters
of canonical HRF were set as (b1, b2 = 1, a1 = 6, a2 = 16,
c = 6) in NIRS-SPM toolbox [36].

Shape parameters including the time to peak (T T P), the
time to undershoot (T T U ), and the full width at half maxi-
mum of the first and the second gamma function (FW H M1,
FW H M2) could be calculated as [35]:

T T P = a1/b1

T T U = a2/b2

FW H M1 = 2.35
√

a1 − 1/b1

FW H M2 = 2.35
√

a2 − 1/b2 (7)

An illustration of these parameters is shown in Fig. 5. We
proposed constraints on both the argument of the function and
the shape parameters: a1 ∈ [2, 10], a2 ∈ [6, 25], b1 ∈ [0.5, 2],
b2 ∈ [0, 1.5], c ∈ [0, 15]; T T P ∈ [3, 7], T T U ∈ [9, 18],
FW H M1 ∈ [3, 6], and FW H M2 ∈ [7, 11] [35].

In total, the optimization function was proposed as follows:

min
a1,a2,b1,b2,c

K∑
k=1

T∑
t=1

(
yHbO

(k)(t) − H RF(t) ⊗ TE EG(t)
)2

(8)

Fig. 5. Illustration of the parameters of the canonical HRF. TTP/TTU
and FWHM1/2 are the time to peak/undershoot and the full width at half
maximum of the positive phase of the HRF for the first/second gamma
function, respectively.

where K and k indicate the total number and index of
trials. yHbO indicates the real HbO signal. TE EG indi-
cates the task-related temporal components decomposed from
EEG data, and t indicates the time index. The optimiza-
tion was realized by the interior point method using the
optimization toolbox in MATLAB, and the initial points
were chosen as the values of parameters in the canonical
HRF.

E. Performance Evaluation

1) EEG Decomposition: First, we evaluated the repro-
ducibility of the extracted temporal components using the
inter-trial similarity (ITS):

P =
1
K

K∑
k=1

Y (k)

I T S =
1
K

K∑
k=1

corr
(

Y (k), P
)

(9)

where K and k indicate the total number and index of trials.
Second, we computed the mean correlation between the

extracted temporal components and the stimulus function
(Corrsti ) [21]:

Corrsti =
1
K

K∑
k=1

corr
(

Y (k), Stimulus
)

(10)

2) Neurovascular Coupling Modeling: For each participant,
we computed the Pearson’s correlation coefficients (PCC)
and normalized root mean square error (NRMSE) between
the fitted fNIRS signal and the actual fNIRS signal. The
modeling performance was evaluated using leave-one-out
cross-validation. In each iteration of validation, the test data
consisted of one trial while the training data comprised the
remaining data from other trials. The sharing spatial and
spectral components and the components filter were obtained
after performing TRTD with the training data. The test data
was then decomposed by constrained tensor decomposition,
i.e., the spatial and spectral components were constant and the
same as the training data. After decomposition, the temporal
components were filtered by the components filter obtained
from the training data.
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3) Compared Methods: Three typical spatial filtering meth-
ods were chosen for comparison, including channel-averaged
(CA), principle component analysis (PCA), and task-related
component analysis (TRCA). Two spectral filtering meth-
ods were chosen for comparison, including band-averaged
(BA) and Heuristic model (HE). Specifically, for BA, the
time-frequency data of the five canonical bands, including
the delta (1-3 Hz), theta (3-8 Hz), alpha (8-13 Hz), beta
(13-30 Hz), and low gamma (30-40 Hz) bands were averaged
for all frequency points of each band, respectively. For HE,
the combination of each frequency point of the time-frequency
data in one trial was calculated as [37]:

YHE(t) =

√√√√ n f∑
f =1

f 2Y ( f, t) (11)

where f and n f denote the frequency point and the total num-
ber of frequency points. Then, three spatial filtering methods
and two spectral filtering methods were combined in pairs to
form a total of six comparative methods. To keep the brevity
of this paper, the results were only reported in the frequency
band with the best performance for BA-related methods. The
optimized subjective HRF (sHRF) was compared with the
canonical HRF (cHRF) only for the proposed TRTD methods.

4) Statistical Analysis: Shapiro–Wilk tests were utilized to
ensure the normality of the data. Paired t-tests were used to
check whether the differences in the performance indicators
between the proposed TRTD method and the other compared
methods were significant (p < 0.05). Effect sizes (Cohen’s
d) were further calculated for avoiding interference from the
sample size. The critical values of small, medium, and large
effect sizes were defined as 0.2, 0.5, and 0.8, respectively [20].

III. RESULTS

A. Tensor Decomposition of EEG Data
The group-averaged temporal, spectral, and spatial com-

ponents after the TRTD of the EEG data in two FT tasks
are shown in Fig. 6. The Pearson’s correlation coefficient
between the group-averaged components of the FT tasks with
two speeds is 0.963, indicating a high degree of consistency.
The temporal components were highly modulated with the
experimental paradigm, decreasing at the beginning of the task
and gradually returning to baseline levels at the end of the task.
For spectral components, the weight of the alpha band, beta
band, and gamma band were higher compared to the delta and
theta bands. For spatial components, the weight of C3 located
at the left primary motor cortex (M1) was the highest among
all the electrodes.

The ITS and Corrsti of the temporal components decom-
posed by TRTD and compared methods in two FT tasks are
shown in Fig. 7 and Table I. The ITS and Corrsti of TRTD
in both two tasks were significantly higher than the compared
methods, which demonstrated the high reproducibility and
consistency with the experimental paradigm of the TRTD
method.

In summary, the combined qualitative and quantitative out-
comes substantiated the efficacy of the TRTD method in
decomposing the EEG signals.

Fig. 6. Group-averaged temporal, spectral, and spatial components
after the TRTD of the EEG data in two FT tasks. The vertical dashed
lines in temporal components represent the beginning and end of
the task. The vertical dashed lines in spectral components divide five
frequency bands, including the delta, theta, alpha, beta, and low gamma
frequency bands from left to right in sequence.

B. Active Channels Selection of fNIRS Data
Group-level activation maps for the two FT tasks estimated

by GLM are shown in Fig. 8. The channel with the highest
activation was located at the left primary motor cortex (M1)
for both two tasks, and the highest activation level of the 2 Hz
FT task (0.910) was higher than 1 Hz (0.836).

C. Subject-Specific Neurovascular Coupling Modeling
An example of the comparison of the true HbO signal and

the predicted signal fitted by convolving the temporal compo-
nents of EEG and cHRF and sHRF of a typical participant is
shown in Fig. 9. The signal predicted by cHRF had a mismatch
in the time lag and the lasting time with the true HbO signal,
while this mismatch was well compensated by the optimization
of the sHRF. The parameters of sHRF are as follows: a1 =

5.459, a2 = 14.039, b1 = 1.486, b2 = 0.771, c = 1.391.
The difference in these parameters with cHRF indicated the
shorter peak times of the two gamma functions and the lower
undershoot.

The PCC and NRMSE between the true HbO signal and
the predicted signal fitted by the convolution of the sHRF
and the temporal components decomposed by TRTD and
compared methods in two FT tasks are shown in Fig. 10 and
Table II. The PCC and NRMSE of TRTD in both two tasks
all showed significant improvement to the compared methods
except for the NRMSE of the TRCA-BA method in 2 Hz FT.

The PCC and NRMSE between the true HbO signal and
the predicted signal fitted by the convolution of the tempo-
ral components decomposed by TRTD with the cHRF and
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Fig. 7. The ITS and Corrsti of the temporal components decomposed by TRTD and compared methods in two FT tasks. Error bars represent
standard deviation. The asterisks ‘*’, ‘**’, and ‘***’ denote p < 0.05, p < 0.01, and p < 0.001, respectively.

TABLE I
THE ITS AND Corrsti OF THE TEMPORAL COMPONENTS DECOMPOSED BY THE TRTD AND COMPARED METHODS

Fig. 8. Group-level activation maps for the two FT tasks estimated by
GLM.

sHRF in two FT tasks are shown in Fig. 11. The PCC
and NRMSE of TRTD in both two tasks were significantly
improved (increased in PCC and decreased in NRMSE) than
the compared methods. Specifically, the PCC in 1 Hz FT
task (0.710) and 2 Hz FT task (0.725) using sHRF were
significantly higher than cHRF (0.484 and 0.571; p < 0.001,
p < 0.01; Cohen’s d = 1.216, 0.983). The NRMSE in 1 Hz
FT task (0.216) and 2 Hz FT task (0.215) using sHRF were
significantly lower than cHRF (0.293 and 0.270; p < 0.001,
p < 0.001; Cohen’s d = 1.494, 1.234).

The group-averaged optimized HRF parameters are shown
in Table III. The parameter c in the 2 Hz FT task (4.385) was
significantly larger than the 1 Hz task (2.486, p = 0.047),

while a1 decreased in the 2 Hz FT task and the p-value was
at a critical value. The parameter c denotes the ratio between
the amplitudes of the two gamma functions, with a higher
value indicating a reduced undershoot amplitude in the HRF.
The parameter a1 is related to the peak time of the first gamma
function, and the smaller a1 represents the faster rise of the
HRF. The changes in parameters c and a1 indicate that the
NVC strength is stronger in the 2 Hz FT task.

Altogether, these qualitative and quantitative results demon-
strated the effectiveness of the TRTD method combined with
subject-specific optimization of HRF in neurovascular model-
ing compared to other methods.

IV. DISCUSSION

Exploring NVC using EEG-fNIRS is a feasible solution for
various applications due to their good portability, compatibil-
ity, and complementarity. Based on our current knowledge,
this study stands as the first study to systematically model
the EEG-fNIRS NVC and perform a comparison of different
EEG features and HRFs with quantitative indicators and cross-
validation. To achieve this objective, EEG-fNIRS signals were
recorded concurrently during a canonical motor task in neu-
roimaging experiments, i.e., FT tasks with two speeds. A novel
framework was proposed to deal with high-order EEG data and
high variability of hemodynamics.
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Fig. 9. The comparison of the true HbO signal and the predicted signal fitted by convolving the temporal components of EEG and (a) cHRF and
(b) sHRF of a typical participant. The shaded portion of the curve represents the range of standard deviation. (c) the comparison of the cHRF and
sHRF.

Fig. 10. The PCC and NRMSE between the true HbO signal and the predicted signal fitted by the convolution of the subject-specific HRF and the
temporal components decomposed by TRTD and compared methods in two FT tasks. Error bars represent standard deviation. The asterisks ‘*’,
‘**’, and ‘***’ denote p < 0.05, p < 0.01, and p < 0.001, respectively.

TABLE II
THE PCC AND NRMSE BETWEEN THE TRUE HBO SIGNAL AND THE PREDICTED SIGNAL FITTED BY THE TRTD AND COMPARED METHODS

TABLE III
THE GROUP-AVERAGED OPTIMIZED HRF PARAMETERS

Accurate characterization of electrophysiological activity
from the EEG signal in relation to task and functional hemody-
namic data is the prerequisite for EEG-fNIRS NVC analysis.

However, most existing studies used the power fluctuations
in distinct frequency bands averaged across predefined ROI
as model input, which overlooked the underlying correla-
tion between both intra- and inter-dimensions of high-order
EEG data. To this end, we proposed a data-driven anal-
ysis framework, TRTD, to decompose the EEG data and
extract the task-related temporal components. The group-
averaged temporal-spectral-spatial components showed good
interpretability. Specifically, the temporal components were
closely modulated with the experimental paradigm, which
was considered as an indicator of the effectiveness of EEG
decomposition [21]. The spectral components indicated that
the frequency bands with high weights are mainly distributed
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Fig. 11. The PCC and NRMSE between the true HbO signal and the
predicted signal fitted by the convolution of the temporal components
decomposed by TRTD with the cHRF and sHRF in two FT tasks. Error
bars represent standard deviation, and the asterisk ‘*’ denotes p < 0.05.

in the alpha, beta, and gamma bands, which were widely
proven to be related to motor functions in previous stud-
ies [12], [38]. For spatial components, the C3 electrode located
at the left M1 had the highest weight. It was reasonable since
the activation of M1 in the contralateral brain region has
been proven to be a landmark feature during performing FT
tasks [39]. The findings demonstrated that TRTD successfully
detects the neural activity within the 3D EEG tensor without
prior knowledge and effectively addresses the connections
among temporal, spectral, and spatial dimensions. In addition,
the PCC and NRMSE of TRTD in fitting the fNIRS signals
showed significant improvement over the compared methods.
Altogether, we concluded that TRTD promises a powerful
method for the analysis of the EEG data and has the capacity
to offer novel perspectives on the associations between EEG
activity and brain hemodynamics.

Having the capacity to precisely quantify the HRF that links
the underlying neural activity to the evoked hemodynamic
signal is crucial both for exploring the NVC mechanisms
and improving the performance of HRF-based analysis for
fNIRS signals. In addition, the inter-subject variability in
HRF also reinforces the need for its accurate estimation.
However, HRF estimation using unimodal fNIRS signal is
challenging because of the absence of crucial information
regarding the underlying neuronal dynamics. To achieve this
objective, employing concurrent EEG-fNIRS recording is a
prospective strategy since EEG offers a more direct measure-
ment of neural activations. In this study, we optimized the
subject-specific HRF by fitting the convolution of the HRF
with the task-related temporal components decomposed by
TRTD to the real fNIRS signals. A canonical double gamma
function model was used to parameterize the HRF. Constraints
were applied to both independent variables and shape param-
eters to ensure meaningful HRFs. The improvement of the
fitting performance including PCC and NRMSE demonstrated
the effectiveness of the HRF optimization. In addition, the

optimized parameters were demonstrated to have physiological
significance and the ability to distinguish the tasks with two
speeds. The changes in the parameters c and a1 indicated that
the HbO signal is more activated and the NVC strength was
stronger in the 2 Hz task. This is consistent with the GLM
analysis result, which indicates the highest activation level
of the 2 Hz FT task (0.910) was higher than 1 Hz (0.836).
Previous studies also indicated that the faster motor tempo
leads to higher fNIRS activation [40]. These physiological
parameters were promising for the assessment of the NVC
function in patients with neurological disorders such as stroke.

This study has certain limitations. To ensure the signal
quality, we only recruited male subjects, which ignores the
potential gender differences. Several female subjects were
excluded in the preliminary experiment because the fNIRS
signal quality was unstable due to the length and density of
their hair. As a preliminary attempt, we chose the double
gamma function to parameterize the HRF, while its simple
structure and intrinsic properties could not completely cover
the high variability of neuroimaging signals, thus limiting the
performance of the fitting. Future studies will include more
HRF models for in-depth validation, such as the Balloon
model, which can capture the dynamic changes in blood
flow, volume, and oxygenation levels [41]. In addition, this
paper analyzed the EEG-fNIRS NVC from the time domain
perspective, i.e., the coupling between the amplitude changes
of bimodal signals. The coupling of global features including
brain networks will be further studied in our future work.
Due to the lack of the ground-truth NVC, we used leave-
one-out cross validation and designed two task conditions to
examine the effectiveness and reproducibility of the proposed
framework. Future work will attempt to test the framework in
more paradigms. For example, exploring NVC in the occipital
lobe during visual stimulation is a viable approach.

V. CONCLUSION

This paper proposed a new analysis framework to model
the subject-specific neurovascular coupling from bimodal
EEG-fNIRS measurements. Task-related temporal components
were decomposed from the EEG tensor and then fitted to
the active fNIRS signal by subject-specific HRF optimization.
This method was proven to improve the reproducibility of
extracted EEG components and their correlation with both
hemodynamic signals and experimental paradigms. Mean-
while, the optimized HRF showed better fitting performance
compared to the canonical HRF. Together, the proposed
method provides a feasible way to explore the EEG-fNIRS
neurovascular coupling.
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