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Abstract— This paper leverages the OpenSim physics-
based simulation environment for the forward dynamic
simulation of an osseointegrated transfemoral amputee
musculoskeletal model, wearing a generic prosthesis.
A deep reinforcement learning architecture, which com-
bines the proximal policy optimization algorithm with
imitation learning, is designed to enable the model to walk
by using three different observation states. The first is a
complete state that includes the agent’s kinematics, ground
reaction forces, and muscle data; the second is a reduced
state that only includes the kinematics and ground reaction
forces; the third is an augmented state that combines the
kinematics and ground reaction forces with a prediction
of the muscle data generated by a fully-connected feed-
forward neural network. The empirical results demonstrate
that the model trained with the augmented observation
state can achieve walking patterns with rewards and gait
symmetry ratings comparable to those of the model trained
with the complete observation state, while there are no
symmetric walking patterns when using the reduced obser-
vation state. This paper shows the importance of including
muscle data in a deep reinforcement learning architec-
ture for the forward dynamic simulation of musculoskeletal
models of transfemoral amputees.

Index Terms— Deep reinforcement learning, computer
simulation, prosthetics.

I. INTRODUCTION

COMPUTER simulations, of either finite element mod-
els or musculoskeletal models, provide a valuable tool

for studying how impaired gaits manifest among individ-
uals with transfemoral (above-knee) amputations [1], [2],
as well as for understanding how prosthetic devices can
affect walking patterns and enhance users’ mobility [3].
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More specifically, inverse dynamic simulations have proven
instrumental in analyzing the biomechanics of the gait of
transfemoral amputees [4], diagnosis [5], rehabilitation [6].
Conversely, forward dynamic simulations represent a more
complex task, as they require to modulate the activation or
deactivation of specific muscle groups in order to generate
desired patterns throughout the gait cycle in close cooperation
with the control of a prosthesis [7].

Inspired by the idea that humans learn to walk by interact-
ing with the surrounding environment, Deep Reinforcement
Learning (DRL) has the potential of being successfully used
for performing forward dynamic simulations of physics-based
musculoskeletal models [8], [9]. The knowledge developed by
a human model (i.e., the simulated agent) from experiencing
the surrounding environment (which includes a prosthetic
device, in case of individuals with a transfemoral amputation)
helps to find a policy that, while maximizing a predefined
reward, computes the muscles’ activation/deactivation and the
forces/torques at the prosthetic joints. As a result, the learned
policy will make the agent walk [8], [10].

In the current literature, DRL has showcased progress in
solving simulated control problems for simple humanoids and
bipedal robots [11], [12], [13], [14]. However, the utilization of
DRL in simulations of physics-based musculoskeletal models
has remained limited. In [15], a hierarchical structure of policy
networks is introduced, where the skeletal part learns the
kinematics and dynamics through a Markov decision process,
while, subsequently, the muscular part learns the muscle acti-
vations through quadratic programming. In our previous work,
a DRL architecture was proposed that combines Proximal
Policy Optimization (PPO) [16] with imitation learning [17]
for normal walking of healthy and impaired human muscu-
loskeletal models [8], and for ramp/stair ascending of a healthy
musculoskeletal model [9].

Building upon our previous work, this study proposes
a novel DRL architecture to teach a transfemoral amputee
musculoskeletal model, wearing a generic prosthesis, to walk.
As shown in Figure 1, the agent in the open-source sim-
ulation environment OpenSim (NIH National Center for
Simulation in Rehabilitation Research, Stanford, CA, USA,
www.opensim.stanford.edu) is trained by a deep neural
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Fig. 1. The DRL architecture with the three different implementations
of the observation state: complete (kinematics, ground reaction forces,
and muscle data), reduced (kinematics and ground reaction forces), and
augmented observation state (kinematics, ground reaction forces, and a
prediction of the muscle data by means of a neural network). The reward
of the DRL architecture is computed on an objective function and on
imitation learning.

network that receives the agent’s observation state and com-
putes an action (i.e., the muscle forces and the torques of
the actuators of the prosthesis). The deep neural network
also receives, as an input, a reward which is computed on
the agent’s kinematics and the agent’s action according to an
objective function and imitation data. Three distinct implemen-
tations of the DRL architecture are developed and compared.
The key differentiating factor among these implementations
lies in the utilization of three different observation states
for the musculoskeletal model. The first is a complete state
that includes the agent’s kinematics, ground reaction forces
(GRFs), and muscle data (force, length, velocity), as done in
the current literature [8], [9], [15]. The second is a reduced
state that only includes the kinematics and GRFs; this choice
was made to exclude muscle data, which can be difficult to
measure and process in real scenarios, but that can be derived
from the simulation [18]. The third is an augmented state that
includes the kinematics, GRFs, and a prediction of the muscle
data, generated by a feed-forward neural network that uses
only the kinematics and the GRFs.

Empirical results show that the transfemoral amputee
musculoskeletal model, trained with the proposed DRL archi-
tecture with the augmented observation state, achieves walking
patterns with rewards and gait symmetry ratings comparable to
those of the model trained with the complete observation state,
while there are no symmetric walking patterns when using the
reduced observation state. These results highlight the impor-
tance of integrating muscle data into the DRL architecture
and, in scenarios where such data are not readily accessible
via sensors, leveraging artificial intelligence methods for pre-
dicting muscle data becomes crucial. This finding represents a
significant leap forward in the realm of eventually exploiting

TABLE I
DEGREES OF FREEDOM AND RANGE OF MOTION OF THE

OSSEOINTEGRATED TRANSFEMORAL AMPUTEE MODEL GAIT1415+2

TABLE II
PRIMARY FUNCTIONS OF THE 15 MUSCLES AND

2 ACTUATORS OF THE MODEL

physics-based simulations of musculoskeletal models and deep
reinforcement learning for the control of prosthetic limbs in
individuals with transfemoral amputations.

II. THE MUSCULOSKELETAL MODEL

The transfemoral amputee model used in this study has
been derived from the OpenSim 4.2 lower-extremity muscu-
loskeletal model gait1422 of a healthy subject. Specifically,
seven musculotendon units were removed from the amputated
(left) leg, and a generic bone-anchored transfemoral prosthesis
(with one ideal actuator at the knee joint and one at the ankle
joint) was added. This model, named gait1415+2, is a
simplified abstraction of the model presented in our previous
work [2], and has been developed to perform forward dynamic
simulations by means of computationally-demanding artificial
intelligence methods [19].

The model has 14 degrees of freedom (DOFs), 15 mus-
culotendon units, and 2 actuators. Table I summarizes the
14 DOFs (6 for the pelvis, 2 for each hip joint, 1 for
each knee joint, 1 for each ankle joint), and their range of
motion. The lumbar extension is locked to −5◦, while the hip
rotation is locked to 0◦ (as in the gait1422 model). Table II
summarizes the 15 musculotendon units and the 2 actuators at
the knee and ankle joints, together with their primary function.
The musculotendon units are modeled as Hill-type muscles
with a non-linear first-order dynamics between excitation
and activation [20]. The muscle activations, which can range
between 0% and 100%, generate a muscle force as a function
of the muscle physical properties. The 2 ideal actuators are
modelled as OpenSim activation coordinate actuators, which
produce a generalized force with a first-order linear activation
dynamics.
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A. The Imitation Data-Set
The imitation data-set used in this study is an experimen-

tal public data-set that has been collected on 83 typically
developing children by measuring the three-dimensional lower
extremity joint kinematics, joint kinetics, surface electromyo-
graphic, and spatio-temporal data [21]. The data-set contains
the means and the ±1 standard deviations of all subjects over
one gait cycle at speeds ranging from very slow to slow, fast,
and very fast with respect to the free speed. It should be noted
that this data-set required no scaling because the mean values
match the dimensions of the gait1415+2 model. However,
the data were processed to guarantee a symmetric gait pattern
for the hip, knee, and ankle joints [8].

III. DEEP REINFORCEMENT LEARNING ARCHITECTURE

This Section details the DRL architecture (Figure 1) that
is proposed in this study to teach the agent (osseointegrated
transfemoral amputee model) to perform a human-like gait.
It is important to note that the proposed DRL method is general
and could be applied, with the necessary adaptations, to a
different physics-based musculoskeletal model.

A. Proximal Policy Optimization
The DRL architecture relies on a feed-forward artificial

neural network, hereafter called policy network, with four
layers: one input layer (i.e., the agents’ observed state), two
hidden layers, and an output layer (i.e., the agent’s action) [8].

To teach the agent to walk, the policy network is trained
with PPO [16]. Let rt (θ) be the ratio between the probabilities
of the new and old policy, i.e.:

rt (θ) =
πθ (at |st )

πθold (at |st )

where θ and θold are the new and the old parameters, πθ is the
policy corresponding to the parameters θ , at and st the action
and the state vectors at the time-step t , respectively. PPO uses
the following objective function:

LC L I P (θ) = E
[
min(rt (θ) Ât , clip(rt (θ), 1 − ϵ, 1 + ϵ) Ât )

]
where E is the expected value, Ât is the advantage estimation,
i.e., the difference between the expected and the real reward
from an action, and ϵ is the clip value. If the probability ratio
falls outside the range [(1 − ϵ), · · · , (1 + ϵ)], the advantage
function is clipped to prevent too large policy updates.

1) Hyperparameter - Iterations: The first hyperparameter
to select in the course of training the neural network is
the amount of learning iterations to perform. In this study,
a PPO training iteration is characterized by the optimization
performed on 15360 simulation timesteps (i.e., the simulated
agent’s state at 10 ms intervals), using a batch size of 512 [8].

Figure 2 shows the episodic reward and episodic timesteps
during the training of the policy network, as well as the
average episodic reward and average episodic timesteps per
iteration. From Figure 2c, it can be observed that there is
a steep increase in the average episodic reward obtained in
the first ∼500 iterations of the training. This is also reflected
in the steady increase in the total episodic rewards obtained

Fig. 2. Rewards and timesteps per episode and iteration. (top) Rewards
and duration per episode. (bottom) Average episodic reward and aver-
age episode duration during each training iteration.

in the first ∼39000 episodes of the simulation (Figure 2a)
and in the number of timesteps (Figures 2b and 2d). After
∼39000 episodes, there is no improvement in the total
timesteps. This is expected as the maximum number of
timesteps is bounded by the size of the imitation data (1050).
In the episodic reward and episodic timesteps (Figures 2a
and 2b), after the steep learning phase, there is a noticeable
variance, which is expected due to the random initialization
of the agent during each episode of training. Reward values
ranging from ∼20 to 400 can be observed as well as timesteps
values from ∼20 to 1050. This is due to the exploration by the
learning algorithm even after finding a solution that completes
the learning task. The stochastic exploratory actions try to
find an even better solution but, as it can be observed in
Figure 2c, a better solution cannot be reliably found as there
is no increasing trend in the learning curve for the realized
reward per iteration even after 2500 iterations. On the contrary,
there is a slightly decreasing trend in both the average rewards
and timesteps per iteration after the first 700 iterations. This is
likely due to the learning algorithm trying to further maximize
its immediate rewards at a detriment to the robustness, hence
showing early signs of overfitting to the imitation data. There-
fore, 700 is chosen as the number of iterations to perform
the training of the agent, namely the number of iterations for
which a high average episodic reward and timesteps have been
obtained.

2) Hyperparameter - Hidden Units: Different policy net-
works were trained using different numbers of hidden units,
as shown in Table III. The policy network was trained for
700 iterations, and the rewards for 50 episodes were aver-
aged. The policy network with 228 hidden units resulted in
the highest average reward, and chosen for the final DRL
architecture [8].

3) Hyperparameter - Prediction Categories: Table IV shows
the average reward per episode for different numbers of
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TABLE III
AVERAGE EPISODE REWARD AND TRAINING DURATION FOR THE

DIFFERENT NUMBER OF HIDDEN UNITS IN THE POLICY NETWORK.
THE EPISODE REWARDS ARE AVERAGED OVER 50 EPISODES

AFTER 700 ITERATIONS OF PPO

TABLE IV
AVERAGE EPISODE REWARD AND TRAINING DURATION FOR THE

DIFFERENT NUMBER OF PREDICTION CATEGORIES FOR TRAINING

WITH PPO. THE EPISODE REWARDS ARE AVERAGED

OVER 50 EPISODES AFTER 700 ITERATIONS OF PPO

TABLE V
HYPERPARAMETERS USED FOR THE TRAINING OF THE

DRL ARCHITECTURE

prediction categories, as discretization of the action space.
The policy network was trained for 700 iterations, and the
rewards for 50 episodes were averaged. A policy network with
5 prediction categories had the best performance, and chosen
in the final DRL architecture [8].

Table V summarizes the chosen final hyperparameters of
the PPO implementation.

B. Observation State
The policy network is trained with three different obser-

vation states, which means that the input layer of the neural
network has three different dimensions, as detailed hereafter.

TABLE VI
COMBINATION OF HYPERPARAMETERS USED TO DESIGN THE MUSCLE

PREDICTION NETWORK

1) Complete Observation State: The first observation state
is a complete state, which includes the agent’s kinematics,
GRFs, and muscle data [8]. In this case the dimension of
the input layer of the policy network is 91. The 46 states
for the kinematics and GRFs are: 6 positions and 6 veloc-
ities of the pelvis, 4 positions and 4 velocities of the hips,
2 positions and 2 velocities of the knees, 2 positions and
2 velocities of the ankles, 6 GRFs for the feet, 6 actuation
data (force, velocity, control, power, activation, actuation from
the OpenSim activation coordinate actuator), of the knee and
6 for the ankle. The 45 states for the muscle data are the
3 data (fiber force, fiber length, fiber velocity) for each one of
the agent’s 15 muscles.

2) Reduced Observation State: The second observation
state is a reduced state, which includes only the agent’s
kinematics and the GRFs. In this case the dimension of the
input layer of the policy network is 46, which has decreased
by removing the muscle data.

3) Augmented Observation State: The third observation
state is an augmented state, which includes the agent’s kine-
matics, the GRFs, and a prediction of the muscle data. In this
case the dimension of the input layer of the policy network is
91, as for the complete observation.

To predict the muscle data, the reduced observation state
is fed to a pre-trained fully-connected feed-forward artificial
neural network, called muscle prediction network. Table VI
summarizes the hyperparameters that have been compared to
select the best performing network. Two million observation
steps have been collected using random initialization and
action sampling for the agent in the overall DRL architecture.
The collected two million time-steps of data have been split
into 90% training and 10% testing [10]. The hyperparameter
selection was done on the training split by using every combi-
nation of hyperparameter values in Table VI. The best model
on cross-validation is then tested on the remaining 10% of the
data split to give a non-biased performance estimate. By using
a 5-fold cross-validation loss (mean and absolute error), it was
observed that a fully-connected network with 3 hidden layers,
256 hidden units, batch normalization, drop-out, and ReLU
activation had the best performance with a mean absolute
error of 0.11. The final network, chosen for the model data
prediction, is shown in Figure 3. This network has an average
mean absolute error of 0.082 N on the prediction of the
normalized 15 muscle forces, a 0.018 m mean absolute error
for the prediction of the normalized length of the muscles,
and a 0.228 m/s mean absolute error for the prediction of the
muscles’ velocities.
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Fig. 3. Muscle prediction network. The green blocks are the fully-
connected layers (indicating the number of units); the yellow blocks are
the batch normalization; the blue blocks are the drop-out regularization.

C. Action State
The dimension of the output layer of the policy network

is 17, which corresponds to the agent’s 15 muscles and the
2 actuators of the prosthesis. The action performed by the
agent is bounded by laws of physics in OpenSim.

D. Reward
This study uses the reward function rt = 0.1 · rgoal,t +

0.9 · rimitation,t − pt , which consists of a goal reward rgoal,t ,
an imitation reward rimitation,t , and a penalty term pt . At each
timestep t , the instantaneous reward rt is computed for a given
state st , action at , and consequent state st+1. The weights were
chosen so the agent learns a human-like gait quicker.

1) Goal Reward: The goal reward at timestep t creates
an incentive for the agent to move in a continuous straight
direction. The goal reward rgoal,t = e−(px +py+pz) is obtained
by computing the error p between the actual and desired values
of the pelvis’ coordinates pelvis_x, pelvis_y, pelvis_z.

2) Imitation Reward: The imitation reward rimitation,t at
timestep t is issued to create an incentive for the agent to
mimic the kinematics provided by the imitation data. The
imitation reward is given by rimitation,t = 0.9 · rposi tion,t +

0.1 ·rveloci ty,t . The imitation position reward rposi tion,t and the
imitation velocity reward rveloci ty,t are obtained by comparing
the position and velocity of the different joints of the agent
(hip_flexion, hip_adduction, knee_angle, ankle_angle of both
legs) at timestep t with that of the imitation data. The weights
were chosen so the agent learns a human-like gait quicker.

3) Penalty: The penalty pt at timestep t encourages the
agent to find an energy-efficient manner of solving the opti-
mization task by penalizing the action (the agent’s 11 muscles
and prosthesis’ 2 actuators) at each timestep, thereby, limiting
the reward obtained for actions with high activation values.

E. Performance Criteria
The performance of the agent is evaluated with respect to

the average episodic reward of the DRL architecture over
50 episodes of simulations, and with respect to the symmetry
of the gait over 50 gait cycles, which is analyzed by using
three different metrics as explained hereafter.

1) RMSE: It is given by
√∑T

t=1(xob,t − xim,t )2/T , where
xob,t and xim,t are the observed state and the imitation data at
time t , respectively. This metric has the advantage of being in
the same unit as the observed state, but it is not normalized.

2) Symmetry Angle: It quantifies the gait symmetry [22],
and is given by [45◦

− atan(Xa/Xu)]/90◦
· 100%, where Xa

and Xu are the two angles to compare. A symmetry angle of
0% indicates perfect symmetry, while 100% indicates that the
angles are equal but opposite in magnitude.

TABLE VII
AVERAGE EPISODIC REWARD FOR THE DIFFERENT NUMBER OF

PREDICTION CATEGORIES AND OBSERVATION SPACE TYPES. THE

REWARDS ARE AVERAGED OVER 50 EPISODES

AFTER 700 ITERATIONS OF PPO

3) Trend Symmetry: It is a metric to evaluate the joint angle
symmetry using two time series of joint angle data [23]. The
trend symmetry ranges from 0 to 1, where 0 indicates a perfect
symmetry. This metric is important in this study because the
RMSE and symmetry angle neglect the temporal information
in the gait waveforms. To compute the trend symmetry,
eigenvectors are used to compare time-normalized gait cycle
data. The trend symmetry uses the principal eigenvector to
analyze the variance of the distribution of the points formed
by the pair of waveforms to be compared, and it provides a
measure of symmetry that is not affected by the difference in
magnitude between the two waveforms. In addition, the trend
symmetry computes the symmetry of two waveforms using
the entire waveforms.

IV. RESULTS

A. Average Episodic Reward With Different Observation
States

This Section compares the emerging rewards when using
the complete, reduced, and augmented observation spaces.
The DRL architecture has been trained for 700 iterations of
PPO, using different numbers of prediction categories, and the
average reward over 50 episodes is computed, as reported in
Table VII. The most average episodic reward is obtained with
the complete observation state with 5 prediction categories
(198.7), while with the augmented observation state it is 190.9.

B. Forward Dynamics
This Section reports the results of the forward dynamics

simulation (hip, knee, and ankle angles) during the gait cycle,
when the three different observations states are used.

1) Complete Observation: Figure 4 shows the instantaneous
and average hip, knee, and ankle joints angles for both legs of
the agent during 50 gait cycles when a complete observation
state is used. Figures 4a and 4b show high symmetry between
the hips. There is a little variance in the emerging pattern,
meaning that the agent exhibits a natural walking pattern
without much deviation during the gait. Similarly for the knees
in Figures 4c and 4d, a few deviations are observed with a
peak at about 20% and 40% of the gait cycle. Moreover, it can
be observed that there is a very high symmetry between the
intact and the prosthetic knee, resulting in a natural walking
pattern. There is, however, much less symmetry between the
intact and the prosthetic ankle; while the intact ankle generates
a healthy ankle angle during the gait cycle, that is not the
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Fig. 4. Angles of the hips, knees, and ankles during the gait cycle using
the complete state observation. The policy network has 228 hidden units
and 5 prediction categories, and was trained for 700 iterations of PPO.

case for the prosthetic ankle, for which there is also a more
prominent variation in the emerging patterns.

2) Reduced Observation: Figure 5 shows the instantaneous
and average hip, knee, and ankle joints angles for both legs
of the agent during 50 gait cycles when a reduced observation
state is used. Figures 5a and 5c show that the hip and knee
of the prosthetic leg have a clear pattern, but with a much
higher variance when compared to the hip and knee of the
policy network trained with the complete observation state.
Figure 5e shows that there is not a clear trend in the prosthetic
ankle of the agent during the gait cycle. This is, however,
similar to the results obtained for the policy network trained
with the complete observation state (see Figure 4e). Also for
the intact joints (hip, knee, ankle) of the agent, there is a high
variation during the gait cycle (Figures 5b, 5d, and 5f). This is,
however, very different from the clear pattern observed when
using the complete observation (see Figure 4, right). The DRL
architecture with a reduced observation state does not learn a
policy that streamlines the actions performed by the agent to
fit a particular gait pattern. Rather, it learns a policy robust
enough to perform locomotion but at a cost of human-like
movement and decreased similarity to the imitation data.

3) Augmented Observation: Figure 6 shows the instanta-
neous and average hip, knee, and ankle joints angles for both
legs of the agent during 50 gait cycles when an augmented
observation state is used. The results show a clear trend in
the hips’ and knees’ angles during the gait cycle. The results

Fig. 5. Angles of the hips, knees, and ankles during the gait cycle using
the reduced state observation. The policy network has 228 hidden units
and 5 prediction categories, and was trained for 700 iterations of PPO.

also show little variation in the values of the hips’ and knees’
angles during the gait cycles in comparison to the gait obtained
with the reduced observation state. However, there is more
variation compared to the policy network trained with the
complete muscle information. The intact ankle (Figure 6f) has
some variance in the emerging pattern, while the prosthetic
ankle does not show a straightforward gait pattern. Similar to
the results obtained for the prosthetic ankle trained with the
complete observation state (Figure 4e), the emerging pattern
contains high variance. There is, however, still a similar trend
for both prosthetic ankles between 60 and 80% of the gait
cycle.

C. Gait Performances
Table VIII reports the RMSE, symmetry angle, and trend

symmetry between the hips, knees, and ankles joints, for
the imitation data and for the DRL architecture trained with
complete, reduced, and augmented observation state. The most
symmetrical DRL architecture for the hip and ankle joints
is the one with the complete observation state, i.e., the one
with the lower trend symmetry (0.04 and 0.02, respectively).
For the knee joint, the most symmetrical DRL architecture is
the one with the augmented observation state (0.05). Overall,
the architecture with the augmented observation has slightly
worse performances than the one with the complete obser-
vation. The architecture with the reduced observation state
produces the worst symmetry scores.
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Fig. 6. Angles of the hips, knees, and ankles during the gait cycle using
the augmented state observation. The policy network has 228 hidden
units and 5 prediction categories, and was trained for 700 iterations of
PPO.

TABLE VIII
GAIT PERFORMANCES DURING THE GAIT CYCLE. THE COMPARISON

IS MADE BETWEEN THE JOINTS (HIPS, KNEES, AND ANKLES) FOR THE

IMITATION DATA AND FOR THE DRL ARCHITECTURE TRAINED WITH

THE DIFFERENT OBSERVATION STATE

Table IX reports the average RSME, symmetry angle, and
trend symmetry for the hip, knee, and ankle joints for the DRL
architecture trained with complete, reduced, and augmented
observation state, with respect to the imitation data, as also
detailed in Figures 7 and 8. It is possible to note that the
DRL algorithm with complete observation state generates a
gait with better hip and ankle symmetry than the augmented
observation state model. However, the algorithm with the
augmented observation state has a better trend symmetry
for the ankle joint with respect to the imitation data than
when the complete observation state is used. The cases with
complete and augmented observation have relatively high trend

TABLE IX
GAIT PERFORMANCES DURING THE GAIT CYCLE. THE AVERAGES ARE

COMPARED TO THE IMITATION DATA FOR THE HIPS, KNEES, AND

ANKLE JOINTS

Fig. 7. Average angles of the hips, knees, and ankles during the gait
cycle using the complete, reduced and augmented observation models,
as well as the imitation data.

symmetry with the imitation data for the hip and knee joints.
There is, however, an observable decrease in symmetry with
the imitation data for the ankles.

D. Actuators’ and Muscles’ Analysis
Additional analysis was done on the DRL architecture

trained with the augmented observation state. This includes
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Fig. 8. Mean and standard deviation during the gait cycles using the
different observation states.

investigating the required torque/stiffness of the prosthetic
knee and ankle joints, as well as observing the forces of the
agent’s muscles during the gait cycle. For this analysis, the

Fig. 9. Knee and ankle actuators. (top) Torques (normalized per body
weight) with respect to the joint angle during a gait cycles. (bottom)
Torques (normalized per body weight) with respect to the percentage
of gait cycles.

gait cycle is divided into eight phases: initial contact, loading
response, mid stance, terminal stance, pre-swing, initial swing,
mid swing, and terminal swing. The first five form the stance
phase, while the latter three form the swing phase.

Figure 9 (top) shows the knee/ankle actuator torques (nor-
malized per body weight) with respect to the knee/ankle joint
angles during a gait cycle, and Figure 9 (bottom) shows the
normalized knee/ankle torques along the gait cycle. The gait
phases are also highlighted to give a better description of the
torques. These torque values have been filtered by using a
Savitzky-Golay filter with a polynomial order of 3 because,
due to the lack of constraint on the output of the neural
network, there is freedom for the network to result in highly
fluctuating activations of the actuators. Moreover, to present
a clearer depiction of the knee and ankle torques, a moving
average filter was applied to the instantaneous normalized
torque waveform using a window size of 0.11 s. Linear extrap-
olation was used to fill the truncated parts of the waveform
that resulted from the moving average filter.

Figure 10 shows the box plots of the muscle forces during
the phases of a gait cycle for the 11 muscles in the intact
leg of the agent. The combination of the actuators’ torques
and the muscles’ forces during the gait can give insights in
the practicality of using the DRL architecture with augmented
observation state in real scenarios.

V. DISCUSSION

The results of the DRL architecture trained using the
complete, reduced, and augmented state observations were
presented in different ways. First, the average reward of
50 episodes of the trained architecture was obtained. To further
evaluate the models, the symmetry of both legs, as well as the
symmetry with the imitation data was calculated.

While training the PPO model using 2, 3, and 5 predic-
tion categories, training with the complete observation state
generated the best performance (obtained reward) for the
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Fig. 10. Muscle force during phases of gait cycle.

agent. The augmented observation state also yielded adequate
performance on the locomotion task. It even outperformed the
complete observation state model in one instance (2 prediction
categories). There was, however, a drop-off in the performance
of the model when using the reduced observation for the agent.
This large disparity in rewards generated from training with
the reduced state and the other observation states suggests that
the muscle information or at least an approximation of it is
important in the state representation of the agent in order to
adequately perform locomotion with the DRL framework.

Over 50 episodes of the simulation, the hip, knee, and ankle
joint for the intact leg did not have a clear trend during the gait
cycle (Figure 5) unlike in the prosthetic leg when trained with
the reduced state. There was a high variation in the flexion
progression for different gait cycles. The lack of coordination
of the intact leg by the reduced state model is further reflected
by the lower symmetry with the imitation data of the hip,
knee, and ankle for that leg. For this reduced state model,
the symmetry for the prosthetic leg and the imitation data is
much higher than the symmetry of the intact leg. This result
is expected because there are more muscles in the intact leg
and the reduced state observation does not have information on
these values in its description. The learning agent thus learns a
robust way of maximizing rewards. This learned policy for the
reduced state model is not well-correlated with the imitation
data and causes the agent to have a less symmetrical and
human-like gait in comparison to the model trained using the
complete and augmented observation.

The stance phase represents about 60% of the gait
cycle [24]. This is true for the imitation data (Figure 7f).
It is also observable in the prosthetic leg of the model trained
with the complete, augmented, and reduced observation states.
There is a steep increase in the hip flexion from approximately
60% of the gait cycle for the rest of the gait cycle (the
swing phase). This corresponds to the agent’s foot leaving
the ground, the hips swinging the leg forward, and finally,
the contact of the feet and the ground. In the intact leg,
however, the stance phase occurs on average, for only 50%
of the gait cycle. This is due to the quicker motion of the
prosthesis in comparison to the intact leg. During the mid
and terminal swing phases, the prosthetic leg is able to swing
faster than the intact leg. This is consistent for both the
complete and augmented observation state models and can
be due to a number of factors. One reason for this could
simply be the lighter mass of the prosthesis in the simulation.
The imitation data used to train the model was obtained
from non-disabled adults. Transfemoral amputee users of
mechanical and microprocessor-controlled prostheses have
been observed to have such asymmetry in their gait [3], [25].

Overall, the variance of the hip, knee, and ankle flexion for
the 50 episodes of the simulation of the model trained with
the augmented state is much more similar to that of the model
trained using the complete state. The model has a more natural
gait pattern when trained by augmenting the missing muscle
information with a pre-trained neural network than when
trained without the muscle information; this again, indicates
the significance of the muscle data, or an approximation of it,
in the observation state to generate a healthy gait pattern.

A. Applicability to Real-World
1) Actuators’ Torques/Stiffnesses: Understanding the knee

and ankle joints stiffnesses achieved in the simulations could
help in further analyzing the gait of the agent, as well as
improving the prosthesis mechanical and control design. In this
study, the normalized maximum observed normalized knee and
ankle torque during the gait of the agent are 0.93 Nm/kg and
0.70 Nm/kg, respectively. The values of these joint torques
and the corresponding stiffnesses lie within a reasonable
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magnitude for the knee and ankle joint of people with lower-
limb amputation during a gait [25], [26], [27]. It is, however,
unconventional for the observed maximum knee torque to
be greater than the ankle torque. This is because the ankle
should act as a lever for propulsion and is normally the largest
contributor to positive work [28]. Hence, this result also shows
a relatively low stiffness in the prosthetic ankle joint. This
could lead to more work done by the knee actuator and hip
of the prosthesis’ user, in order to maintain a normal gait
pattern. This can further be improved by methods such as
reward shaping to encourage more work being done by the
ankle actuator of the prosthesis.

2) Muscle Force: The muscles’ forces of the agent during a
gait cycle of the simulation are achievable within the physical
constrained of the OpenSim simulation environment. However,
it should be noted that the gait1415+2 model is a sim-
plified abstraction of more realistic OpenSim musculoskeletal
models with more DOFs and more musculotendon units [2].
Therefore, a comparison with experimental data would not be
plausible. Nevertheless, general consideration can be drawn to
confirm the validity of the proposed DRL method.

During the initial contact phase of the gait cycle, the tibialis
anterior muscle generates a high amount of force (Figure 10j).
This is expected because the tibialis anterior muscle’s primary
function is ankle flexion and extension and in the initial contact
phase of the gait cycle, there is weight acceptance by the ankle.
Similarly, there is an increase in the muscle force in the pre-
swing phase, between the terminal stance and the initial swing
phases. This gait phase is a transition between the stance and
swing phase of the gait cycle and the foot is pushed and lifted
off the ground. There is an increase in force for the muscles
responsible for ankle flexion and extension (tibialis anterior
and soleus) in this gait phase (Figures 10j and 10i).

At the terminal stance phase, the iliopsoas muscle
(Figure 10g) which contributes to the flexion of the hip joint
records its maximum force with a median of over 3000 N. Sim-
ilarly, the rectus femoris muscle (Figure 10h) also contributes
to the flexion of the hip and increases its force in the terminal
stance and pre-swing gait phases, in preparation for the swing
phase of the gait cycle. Conversely, the generated force by
the gluteus maximum (Figure 10d) reduces in the terminal
stance and pre-swing phases and decreases further during the
swing phase of the gait cycle. The gluteus maximum’s primary
function is hip extension. This is why, to achieve locomotion,
this muscle’s activation decreases during the swing phase of
the gait, in order to achieve the necessary flexion in the hip
for the swinging motion of the leg. This is also observed in
the biarticular hamstrings (Figure 10a) which contribute to the
flexing of the knee joint. For this muscle, much lower force
values are observed in the swing phase of the gait.

In the early stages of the swing phase, there is a need for the
knee’s flexion to increase in order to have sufficient clearance
from the ground to swing the leg forward. The biarticular
hamstrings (Figure 10a) also contribute to the flexion of the
knee and it can be observed that there is a significant increase
in the force generated by the muscle during the pre-swing
phase. This is however not replicated in the biceps femoris
which also contributes to the flexion of the knee. A reason for

this is likely that the DRL algorithm learns a policy that mostly
utilizes the biarticular hamstrings for the flexion of the knee
but not the biceps femoris. Reward shaping can also be used
to reduce the over-reliance on specific muscles such as the
biarticular hamstrings by incorporating some biomechanical
information in the calculation of rewards.

3) Simulations for the Control of Lower-Limb Prostheses:
The empirical findings of this study demonstrate that it is
possible to train a transfemoral amputee agent without muscle
information to accomplish a locomotion task, but with signif-
icant deviations from the intended gait pattern, particularly in
the intact leg. This is evident in the higher asymmetry of the
gait and lower rewards obtained. However, when the agent was
trained using a prediction of the muscle data (force, length,
and velocity), it achieved significantly higher episodic rewards.
These results highlight the importance of including muscle
data in learning locomotion for transfemoral amputee models.
Therefore, with the final goal of using DRL for the control of
lower-limb prostheses, the muscle data, which are complex to
measure and process, could be predicted in simulation [18].

4) Implementation: The proposed method of augmenting
the muscle information by means of a neural network is not
computationally expensive and has the potential of being used
in real-time applications.

B. Limitations and Outlook to the Future
1) Reward Shaping: This study highlights the advantages of

incorporating supplementary rewards. The study also identifies
that the current actuator activation pattern generates undesired
bursts of force, which could be improved through reward
shaping techniques to reduce variability. Additionally, future
research can explore reward shaping based on human knowl-
edge of muscle activations during gait, aiming to achieve even
more realistic locomotion for the agent.

2) Incorporate Second-Order Information: This study uti-
lized positions and velocities as observation states to train
the muscle predictor network, excluding accelerations. The
limitation of only having first-order information may impact
the network’s ability to predict muscle forces accurately,
as they relates to accelerations. Further research can explore
the potential benefits of incorporating second-order data for
the muscle prediction and its impact on gait generation.

3) Continuous Action Space: The study findings showed a
decrease in rewards as the number of prediction categories
of the policy network increased. Further research can explore
the relationship between this expanded action space and the
performance of models trained with reduced/augmented obser-
vation states. Optimizing a policy network with a continuous
action space can be also investigated.

VI. CONCLUSION

This study aimed to train a transfemoral amputee model to
walk using a state of the art DRL algorithm while observing a
reduced number of states. The findings indicate that restricting
access to the agent’s muscle information significantly ham-
pers its ability to exhibit human-like locomotion. However,
by supplementing the reduced state with predicted muscle
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information from a pre-trained neural network, the reward
and gait symmetry of the agent improved. This technique
enabled the agent to perform similarly to when it had access
to complete observations, including muscle information. These
results highlight the importance of muscle information in
achieving a natural walking pattern for the trained model.
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