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Cross-Spatiotemporal Graph Convolution
Networks for Skeleton-Based Parkinsonian
Gait MDS-UPDRS Score Estimation
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Abstract— Gait impairment in Parkinson’s Disease (PD)
is quantitatively assessed using the Movement Disorder
Society Unified Parkinson’s Disease Rating Scale (MDS-
UPDRS), a well-established clinical tool. Objective and
efficient PD gait assessment is crucial for developing
interventions to slow or halt its advancement. Skeleton-
based PD gait MDS-UPDRS score estimation has attracted
increasing interest in improving diagnostic efficiency and
objectivity. However, previous works ignore the important
cross-spacetime dependencies between joints in PD gait.
Moreover, existing PD gait skeleton datasets are very small,
which is a big issue in deep learning-based gait studies.
In this work, we collect a sizable PD gait skeleton dataset by
multi-view Azure Kinect sensors. The collected dataset con-
tains 102 PD patients and 30 healthy older adults. In addi-
tion, gait data from 16 young adults (aged 24-50 years)
are collected to further examine the effect of age on PD
gait assessment. For skeleton-based automatic PD gait
analysis, we propose a novel cross-spatiotemporal graph
convolution network (CST-GCN) to learn complex features
of gait patterns. Specifically, a gait graph labeling strat-
egy is designed to assemble and group cross-spacetime
neighbors of the root node according to the spatiotemporal
semantics of the gait skeleton. Based on this strategy,
the CST-GCN module explicitly models the cross-spacetime
dependencies among joints. Finally, a dual-path model is
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presented to realize the modeling and fusion of spatial,
temporal, and cross-spacetime gait features. Extensive
experiments validate the effectiveness of our method on the
collected dataset.

Index Terms— Parkinsonian gait, quantitative assess-
ment, graph convolutional network, skeleton-based data.

. INTRODUCTION

ARKINSON'’S Disease (PD) is the second most common
Pneurodegenerative disease, which affects millions of peo-
ple around the world [1], [2], [3], [4]. The prevalence of PD
increases with age, and it is rare in people under 50 years
old [5], [6]. In terms of pathophysiology, PD is caused by
reduced amount of dopamine in the brain. Dopamine is a
vital neurotransmitter in the execution of spontaneous move-
ments [7], [8]. Hence, dopamine deficiency usually provokes
symptoms of significant gait disturbance [9], [10]. Since the
severity of gait impairment marks the progression of PD
disease, accurate assessment of PD gait is crucial for adjust-
ing clinical treatments [11]. Currently, clinicians assess the
severity of PD gait impairments by part III of the Movement
Disorder Society Unified Parkinson’s Disease Rating Scale
(MDS-UPDRS) [12]. Due to the requirement for clinical
visits, the PD gait MDS-UPDRS score based on manual
inspection is performed infrequently in daily life, making it
prone to overlooking gait changes in patients. Moreover, this
method is semi-subjective and inefficient. Therefore, there is
a pressing need to develop an automated technology capable
of objectively estimating the MDS-UPDRS score of PD gait.
In recent years, various gait analysis systems have
been investigated for automatic quantification of PD gait
impairments using multi-camera motion capture (Mocap) sys-
tems [13], foot force sensors [16], [17], and multiple inertial
measurement units (IMU) systems [14], [15]. While Mocap
and force sensors provide accurate lower limbs’ kinematics
and dynamics for gait assessment, they require complicated
sensor protocols and calibration. It is difficult to collect gait
data using these complex and expensive sensors. Addition-
ally, the invasive nature of wearable IMU can affect the
naturalness of a patient’s gait. Since depth sensors, such as
Kinect, offer a non-intrusive and less expensive platform for
capturing human motion, it has gained popularity in gait
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TABLE |
MDS-UPDRS STANDARD FOR PROGRESSIVE PD GAIT IMPAIRMENTS

Score Symptom Manifestation

0 Normal No problems.

1 Slight ?ndependent walking with minor gait
1mpairments.

2 Mild Inc.iepende.nt walking but with substantial
gait impairments.

3 Moderate Requires assistance device for safe walking
but not a person.
Cannot walk at all or only with another

4 Severe

person’s assistance.

analysis [18], [19]. Many studies validate that the Kinect
sensor exhibits acceptable accuracy for examining gait [20],
[21], [22], [23]. Moreover, the Kinect sensor enables real-time
3D human skeleton tracking which alleviates the effect of
human appearance differences and lighting variations. Deep
learning techniques can accurately recognize human move-
ments represented by skeleton data [24], [25], [26]. Supported
by recent advances in depth sensors and computer vision, it is
possible to automatically estimate PD gait MDS-UPDRS score
in daily life.

We refer to the clinical scoring scheme of the MDS-UPDRS
to describe PD gait impairment in detail. The scores range
from 0, indicating no gait impairments, to 4 for patients unable
to walk independently, as depicted in Table I. Scores O to
2 indicate a progressive decrease in mobility, characterized by
reduced stride amplitude and foot lift. These types of PD gait
are not easy to be distinguished from each other. In contrast,
PD gaits scored more than 2 are easy to identify since these
patients cannot walk independently. The clinical doctors assess
the patient’s gait by timed up-and-go (TUG) tests, which
consist of six sub-tasks, i.e., Sit, Sit-to-Stand, Walk, Turn,
Walk-Back, and Sit-Back. Since patients with scores of 3 and
4 are associated with a high risk of falls, we only collected
TUG test data for Parkinsonian gait with scores of 0, 1, and 2
in this work.

Many studies have proposed skeleton-based method to
achieve an automatic PD gait MDS-UPDRS score estima-
tion. Lu et al. instructed 55 Parkinson’s patients to perform
the gait exams and proposed an ordinal-focal double-feature
double-motion network (OF-DDNet) to quantify PD gait
impairments [28]. The OF-DDNet concatenates coordinate
vectors of all joints to form a single feature vector per
frame, which cannot effectively learn the latent spatial fea-
tures. In works by Sabo et al. [27] and Guo et al. [47],
spatial-temporal graph convolution network (ST-GCN) was
employed to effectively model spatial and temporal gait fea-
tures. Sabo et al. [27] collected 399 natural gait videos from
53 elderly individuals, where only 14 participants exhibited
drug-induced Parkinsonism gait. In [47], 441 gait exami-
nation video clips of 142 patients were collected for the
assessment of PD gait. These advances have demonstrated
the feasibility of skeleton-based PD gait quantitative analysis.
However, the above PD gait datasets generally suffer from
limitations such as few subjects, insufficient gait data, and
a single viewpoint. The absence of large-scale datasets limits
the development of deep models for quantitative assessment of

PD gait. The gait circle is segmented into four phases: swing
phase, initial double-support phase, single-support phase, and
end double-support phase [30]. The cross-spacetime depen-
dencies between joints are critical for characterizing PD gait
severity. However, ST-GCN-based methods have limitations
in capturing complex cross-spatiotemporal dependencies due
to obstructed information flow. There is no research on the
direct modeling of cross-spacetime gait features for PD gait
MDS-UPDRS score estimation.

To solve the above issues, we used Azure Kinect to collect
a sizeable PD gait skeleton dataset which contains 148 partic-
ipants (102 Parkinson’s patients and 46 healthy people). Two
experts conducted MDS-UPDRS scoring for 102 Parkinson’s
patients. The gait of 46 healthy individuals was assigned
a default score of 0. The healthy individuals consist of
16 younger participants below the age of 50 and 30 older
individuals who match the age and gender of the PD group.
Three Azure Kinect cameras placed at different positions were
employed to capture TUG depth videos of participants. Sub-
sequently, 3D skeleton data from six different viewpoints was
extracted from the recorded videos using the corresponding
SDK. The multi-view dataset is more consistent with the
requirements of realizing automatic gait assessment in the
home environment. To our knowledge, our collected dataset
is the largest in the field of 3D skeleton-based PD gait
MDS-UPDRS score estimation. Such a sizable and diverse
dataset is conducive to the development of deep learning-based
PD gait analysis.

Moreover, we propose a novel cross-spatiotemporal graph
convolution network (CST-GCN) to enhance the modeling
of complex PD gait features. First, we design a gait graph
and corresponding cross-spacetime neighbor graph labeling
function according to the semantics of the gait skeleton. The
labeling strategy is scalable in spatial and temporal dimen-
sions of the gait graph, which divides the cross-spacetime
neighbor nodes of the root node into a fixed number of
subsets. Based on the cross-spacetime labeling strategy, CST-
GCN is introduced to learn the cross-spacetime dependencies
of joints. The CST-GCN adopts unshared weights in spatial
and temporal dimensions, which enhances the capability of
modeling the cross-spacetime gait features. Finally, a dual-path
model is constructed to model and fuse the spatial, temporal,
and cross-spacetime features for PD gait MDS-UPDRS score
estimation. Extensive experiments on the collected dataset
demonstrate the effectiveness of the proposed CST-GCN and
dual-path model for PD gait assessment.

In summary, the contributions of our work are summarized
as follows:

1) We collect a multi-viewpoint PD gait skeleton dataset
from 148 participants, which contains 102 Parkinson’s
patients and 46 healthy controls. To our knowledge,
the collected dataset is the largest in the field of
skeleton-based automatic PD gait assessment. Such a
sizable multi-view dataset is conducive to the devel-
opment of deep learning-based PD gait MDS-UPDRS
score estimation.

2) We propose a novel CST-GCN to learn the
cross-spacetime features for PD gait MDS-UPDRS
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score estimation. A cross-spacetime graph labeling
strategy is introduced to partition the cross-spacetime
neighbor gait graph according to gait skeleton
semantics. Based on the labeling strategy, CST-GCN
adopts unshared weights to enhance the capability
of modeling cross-spacetime gait features. Moreover,
a dual-path model is constructed to simultaneously learn
spatial, temporal, and cross-spacetime gait features.

3) Extensive experiments on the collected dataset validate
the effectiveness of the proposed method.

I[l. RELATED WORKS
A. Gait Dataset

In the field of abnormal gait recognition, many works have
collected and publicly released vision-based abnormal gait
datasets. Paiement et al. [31] gathered gait data encompassing
normal, Parkinson’s, and Stroke conditions, with the abnormal
gaits of the latter two conditions simulated by five healthy
adults. Chaaraoui et al. [32] utilized Kinect v2 to collect
gait data from 7 volunteers, who simulated four abnormal
gaits: right knee injury, left knee injury, right foot dragging,
and left foot-dragging. In another walking gait dataset [33],
9 healthy volunteers were guided to simulate the pathological
asymmetric gait by padding sole (5 cm, 10 cm, and 15 cm
soles) and attaching weight (4kg weights). In the multi-modal
gait symmetry (MMGS) dataset [22], 27 healthy volunteers
were asked to simulate abnormal gait by using insoles or
keeping their knees stiff. Because the collection of patient data
requires formal permissions and involves privacy protection,
the above abnormal gait datasets were obtained from healthy
volunteers.

For skeleton-based PD gait MDS-UPDRS score estimation,
Lu et al. collected videos of the TUG test from 55 partici-
pants, and first quantified movement-linked impairments for
assessing PD severity on MDS-UPDRS [28], [34]. Cao et al.
recorded the gait video of 18 Parkinson’s patients and
42 healthy for detecting freezing of gait [37]. Sabo et al. [27]
collected 399 natural gait videos from 53 elderly individuals,
where only 14 participants exhibited drug-induced Parkin-
sonism gait. In a recent study, a two-view PD gait dataset
was collected for PD gait analysis. However, it comprises
only 9 patients with Parkinson’s disease [35]. The above PD
gait datasets generally suffer from limitations such as few
subjects, insufficient gait data, and a single viewpoint. The
absence of a sizeable dataset limits the exploration of deep
learning-based PD gait assessment and hinders application
potential. In this work, we collect a sizeable PD gait 3D
skeleton dataset to fully explore the problems existing in
automatic PD gait MDS-UPDRS score estimation, such as the
gait feature distribution and age effects.

B. Skeleton-Based Gait Analysis

Vision-based gait analysis relies primarily on RGB
video [36], [37], [38], [39] and skeleton sequences [22],
[28], [35], [49], [50]. In comparison to videos, skeleton data
exhibits robustness to environmental changes. Many works
adopted hand-crafted gait features based on prior knowledge

to achieve skeleton-based abnormal gait recognition [31], [40],
[41]. However, the hand-crafted gait features have limited
representation and generalization because of missing important
clues. Khokhlova et al. [22] proposed a bidirectional Long
Short-Term Memory (LSTM) network for evaluating gait
symmetry. Guo et al. [42] conducted a comparison between the
support vector machine (SVM) and LSTM network, finding
that the LSTM network improved the accuracy of gait classi-
fication. Lu et al. [28] presented an ordinal focal convolution
network to estimate the MDS-UPDRS scores of PD gait.
The work in [35] introduced a comprehensive quantitative
comparison of 16 diverse traditional machine and deep learn-
ing algorithms, which demonstrates the potential of the deep
learning-based framework for neurological gait dysfunction
prediction. The above methods concatenate coordinate vectors
of all joints to form a single feature vector per frame. Since
the gait skeleton is represented essentially as a series of non-
Euclidean graphs, these methods cannot effectively learn the
latent spatial dependencies in skeleton joints.

For effectively modeling spatial gait features, Liu et al.
proposed a symmetry-driven hyper feature GCN for the
skeleton-based gait identity recognition [50]. In [49], a GCN-
based approach, integrating higher-order inputs and residual
networks, was introduced for gait identity recognition. Many
works adopted ST-GCN [24] for skeleton-based abnormal
gait analysis [27], [43], [44]. The work in [44] designed
a spatiotemporal attention module to enhance the capabil-
ity of ST-GCN for learning the fine-grained gait features.
However, the above methods have limitations in achieving
unobstructed cross-spacetime information flow for capturing
complex spatial-temporal dependencies of joints.

In skeleton-based action recognition, MS-G3D intro-
duced dense cross-spacetime edges as skip connections for
direct information propagation across the spatial-temporal
graph [25]. However, MS-G3D adopts shared weight in the
time dimension, which limits the modeling of cross-spacetime
features. In contrast to MS-G3D, our CST-GCN module has
two important distinctions: (1) The labeling function groups
the cross-spacetime neighbor node according to the spatiotem-
poral semantics of the gait skeleton. (2) The CST-GCN deploys
unshared weights in spatial and temporal dimensions, which
enhances the capacity for learning cross-spacetime dependen-
cies among joints.

[I1. DATA COLLECTION

A. Assumptions and Limitations of the System

Skeleton data of the patient in the TUG test can be used for
automatic PD gait MDS-UPDRS score estimation [27], [47].
In the data collection system, three Azure Kinect cameras
placed at different locations are used to capture the 3D
skeleton gait data of participants. The Kinect records depth
video at a resolution of 320 by 288 pixels, operating at a
frequency of 30 Hz. The operating range of the Azure Kinect
camera is 0.5-5.46 meters. The 3D skeleton data are delivered
from the depth video by the corresponding SDK. Participants
were instructed to perform the TUG test on a 3-meter length
carpet. The setup for data collection is shown in Fig. I.
In the confined spatial setting, the deployment of multi-view
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Fig. 1. (a) The schematic displays a bird eye view of the equipment
arrangement. Three Azure Kinect sensors, Kinect 0, Kinect 1, and
Kinect 2, are placed at different locations. (b) Photographs show the
layout of Azure Kinect sensors highlighted by the red rectangle.

Back

Right Rear Right

Fig. 2. Six views of the walk, i.e. Front (F), Back (B), Left Front (LF),
Right Rear (RR), Left (L), and Right (R).

data acquisition more aptly conforms to the requirements of
conducting Parkinson’s disease (PD) gait analysis within a
home environment.

In practical application, the gait acquisition area is rela-
tively small due to the operational range limitations of the
Azure Kinect camera. Patients are required to walk within the
designated area, ensuring the absence of obstacles or other
individuals.

B. Data Collection

The dataset was collected by the Neurology Department of
Qilu Hospital from March 2022 to April 2023. All procedures
were approved by the Research Ethics Board at Qilu Hospital
of Shandong University, which prohibits public dataset release
due to patient privacy constraints. We collected skeleton data
of the TUG test from 148 participants, which contains 102 PD
patients and 46 healthy controls. Walks from PD patients were
scored on the MDS-UPDRS scales by two specialists, and

TABLE Il
SCORE DISTRIBUTION AND RELATED INFORMATION
OF THE 148 SUBJECTS

Socre 0 1 2
N - 54 48

PD Gender(F/M) - 29/25 19/29
Age(meantstd) - 64.7£8.0 66.2+38.0
N 30 - -

OC  Gender(F/M) 16/14 - -
Age(meantstd) 62.7+74 - -
N 16 - -

YC  Gender(F/M) 6/10 - -
Age(mean+std) 35.0+9.1 - -

the control group had a default score of 0. Because of the
high severity of gait impairment, patients with scores 3 and
4 are at high risk of falling. We only collected gait data from
PD patients with scores of 1 and 2. All patients were not
taking anti-Parkinsonian medication or “off” anti-Parkinsonian
medication state. Moreover, we collected the gait data of
16 healthy adults (YC) younger than 50 years old in the control
group to explore the effect of age on PD gait MDS-UPDRS
score estimation. The remaining 30 controls were healthy
older adults (OC) whose age and gender were matched with
PD groups. Score distribution and related information of the
148 gait participants are provided in Tab. II. Each PD subject
was recorded twice, while each control subject was recorded
four times. The TUG test comprises two gait-related sub-
tasks: walking and walking back. By employing three Azure
Kinect sensors, gait data from six views (Front, Back, Left
Front, Right Rear, Left, and Right) can be collected in a
single TUG test, as depicted in Fig. 2. In total, the dataset
contains 2314 sequences of gait skeletons. Compared with
the existing studies on skeleton-based PD gait MDS-UPDRS
score estimation, our dataset encompasses the largest number
of PD patients and multi-view gait data. This augments the
exploration of deep learning methods for automatic PD gait
analysis.

IV. METHODS

In this section, we initially provide a preliminary overview
of spatial GCN and temporal GCN. Subsequently, we formu-
late the gait graph and its corresponding graph labeling func-
tion. Finally, a CST-GCN is proposed to learn cross-spacetime
gait features. Additionally, we propose a dual-path model to
learn and fuse the spatial, temporal, and cross-spacetime gait
features for PD gait MDS-UPDRS score estimation.

A. Preliminaries

The skeleton sequence captured by Kinect is a temporal
series of human joint positions represented as 3D coordinates
in each frame. It can be represented as a spatiotemporal non-
Euclidean graph, as illustrated in Fig. 3. ST-GCN [24] serves
as a foundational framework for extracting motion features
from non-Euclidean skeleton graphs, encompassing sequential
spatial GCN and temporal GCN steps.
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1) Spatial GCN: In contrast to the 2D image convolution,
it is trickier to define the weight function W for spatial GCN.
The spatial GCN utilizes a graph labeling process to map all
neighboring vertices into a fixed number of K subsets, each
associated with a unique learnable weight vector. The layer-
wise propagation rule of spatial GCN is given as follows:

K
Four =0 (Z AkFinVVk) , (D

k

RNXC RNXCOLU

where F;,, € in is the input feature map, Fy,; €
is the output feature map, Wy € RCin*Cour js a learnable
weight vector, C;, and C,,; are numbers of channels, Ay €
RN*N is normalized adjacency matrix of A;, N is the number
of joints, and o (-) denotes an activation function.

2) Temporal GCN: The basic temporal GCN is a classical
temporal-only convolution layer (TCN). Concretely, TCN per-
forms a I' x 1 convolution on the output feature map F,,; in
the spatial GCN (1), I" denotes the kernel size for the temporal
dimension. The TCN only involves the same joint on the
inter-frame.

B. Gait Data and Processing

1) Gait Skeleton Data: We used Azure Kinect DK to obtain
3D coordinates (X, Y, Z) of the joints. In skeleton-based gait
analysis, many methods only use the coordinate of lower limb
joints as input [29], [35], [44]. This strategy is implemented
to prevent the introduction of redundant information from
additional nodes. In this work, the gait skeleton data is
composed of the coordinates of nine joints in the lower limbs,
as shown in Fig. 3(a). In our methodology, we employ the
gait skeleton sequence S € RT*N*Co a5 input, where T is
the sequence length, N = 9 is the number of joints in gait
skeleton, Cyp = 3 is the channel number of 3D coordinates.

2) Data Pre-Processing: Each gait skeleton is normalized
by subtracting the positions of the 0-base of the spine joint,

S=[Sciy—Sconliel01,...,N—1], )

where § € RT*N*Co is the normalized gait skeleton data,
Scin € RT*1xCo s the positions of the i — th joint, and
S¢0, € RT*1xCo is the positions of the O-base of the spine
joint.

3) Gait Graph: In the spatial dimension, the joints within
one frame are connected according to the human body struc-
ture, as illustrated in Fig. 3(a). When employing a factorized
spatial and temporal GCN to model gait graph sequences, each
joint is only connected to the same joint in the consecutive
frame, as shown in Fig. 3(b). In the case of utilizing a
cross-spacetime GCN for modeling gait graph sequences, each
joint is connected to the cross-spacetime neighbor joints in
consecutive frames, as shown in Fig. 3(c).

C. Spatial Graph Labeling Function

On the spatial gait graph, we define the spatial neighbor
set Bg (v;;) = {U,j |d (vtj, v,i) < D} of a node v;;. Here
d (vsj, vt,-) gives the shortest length of any path from v;; to
vyi. D is less than or equal to the diameter of the spatial gait

P o

5}

W

t-1
4 r
t+1

(b) (©

Fig. 3. (a) Spatial gait graph. The IDs of the joints are 0-base of the
spine, 1-left hip, 2-left knee, 3-left ankle, 4-left foot, 5-right hip, 6-right
knee, 7-right ankle, and 8-right foot. (b) Each joint is connected to the
same joint in the consecutive frame. (c) Each joint is connected to the
cross-spacetime neighbor joints in consecutive frames.

graph. The set B can be interpreted as the spatial receptive
field of the spatial GCN. For the gait skeleton graph depicted
in Fig. 1 (b), we define the temporal neighbor set B; (v;;) =
{vri|lt —t] <T/2 } of a node vy;.

If the aggregation of long-range (D > 1) spatial informa-
tion is performed using higher-order polynomials AD of the
adjacency matrix, it may introduce bias towards local regions
and nodes with higher degrees. MS-G3D [25] introduced the
disentangling neighborhoods labeling function I* (v, v;) =
d (v, s vn-) to address the above problem. We follow this idea
to construct a spatial labeling function for the proposed gait
graph. To encode the geometric characteristics of the gait
graph, joints with the same distance from the root node v; are
further divided into the left group and the right group. The
left group denotes the neighboring nodes that are closer to the
4-left foot node than the root node, i.e. d (vj, v4) < d (v;, vg).
Conversely, the right group denotes d (Uj, U4) > d (v, v4),
where d (vj, v4) = d (v;, v4) refers to the root node itself.
This strategy is inspired by the symmetry of gait. The spatial
labeling function can be formulated as:

2d (U;j , U”')

—1 ifd(vj,vq) <d (vi,vg),
I8 (Utj7vti)=[2d (vej, vii) ) |

else,
3)

where v;j € By (vi), and 0 < I* (v, v;;) < 2D. The proposed
labeling function divides the spatial neighbor set B (v;) into
2D +1 subsets. The corresponding adjacency matrix is defined
for each subset as follows:

1 P =k,
A‘Zk)[l,J]=[0 R

where A, € RN*N "and 0 < k < 2D. Based on the proposed
spatial graph labeling function (3), we arrive at the factorized
spatial and temporal GCN operator as follows:

2D
1+1 N Dy
X<+>:TCN(G(§ Afk)X“w(k))), (5)
k=0

n . . .
where X0 e RT*NxCY g the input gait feature, XD ¢
I+1) . . . .
RT*NxCHD g the gait feature generated by factorized spatial

“4)

else,
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and temporal GCN, CD and CUtD are the number of fea-

1 I1+1) .
ture channels, WEQ) € RC( Ixctr )1s the learnable parameter,

~

Afk) = ka)_lAfk) is the normalized adjacency matrix of
Afk), ka) is the degree matrix of Afk), o (+) is an activation
function, and TCN is employed as temporal GCN operator.

D. Cross-Spacetime Graph Convolution Network
(CST-GCN)

The factorized spatial and temporal GCN hinders the
cross-spacetime information flow, which can not effectively
learn the complex PD gait features. We propose the CST-GCN
to model complex cross-spacetime gait features for the
MDS-UPDRS score estimation of PD gait. First, a temporal
window of size I' is slid over the gait graph sequence with
zero padding to obtain 7 cross-spacetime subgraphs. Each
subgraph encompasses all nodes across I' frames, as shown
in Fig. 3 (c). By extending the spatial receptive field B;
to consecutive frames on the cross-spacetime subgraph, the
cross-spacetime neighbor set of the root node v;; is defined
as By (v;;) = {v,j ||r —t] < F/2&d (vrj, v,i) < D}. By,
can be regarded as the cross-spacetime receptive field of the
CST-GCN. To construct the weight function of the CST-
GCN, we further extend the spatial graph labeling function
I8 (v,j, vt,-) to the cross-spacetime graph. This results in the
development of the cross-spacetime graph labeling function,
designed as follows:

s s —1
l’(vrj,v,i):l (vj,vl')-f-(:_LF/ZJ)(ZD-Fl), (6)

where |-]| is the round-down function, v¢; € By (vy), and
0 < I¥ (vej,vi) < I'(2D +1). The cross-spacetime graph
labeling function divides the cross-spacetime neighbor set
Bs; (v) into T'(2D + 1) subsets. On the cross-spacetime
subgraph, adjacency matrixes are defined as follows:

- 1 if (v, v) =k
A% | T H_)N .i|: s Vti )
(k) [l (LF/2J +J 0 else,
(7N

where Aflt{) e RVXI'N and 0 < k < I'(2D +1). Based
on the proposed cross-spacetime graph labeling function (6),
we formulate the CST-GCN operator as follows:

r2D+1)
N 1
XD — o Z Afi)sw (Xu)) ng)) ’ ®)
k=0

where X € RT*NxC" ig the input gait feature, X(+D e
1+1 . .

RTXNXCTY o the gait feature generated by CST-GCN,

CcO, cU+D are the number of feature channels, WEQ) €

cOxcl+b . At — st —Last
R is the learnable parameter, A(k) = D(k) A(k) is

the normalized adjacency matrix of A‘(',tc), Df,i) is the degree
matrix of A%}, o () is an activation function, and sw : X® ¢

RTXNXC(” N X(l) c RTXFNXC(I)
r

is the sliding window
operator. In contrast to the MS-G3D [25], the CST-GCN
employs unshared weights WEQ) in temporal dimensions to
enhance the modeling of cross-spacetime gait features.

Patch embeding

Dual-path GCN Block 2

1x1 Conv
Dual-path GCN Block 3

FST-GCN
Global Average Pooling a

CST-GCN

Ne
D€

\ 4
FC+Softmax 1x1 Conv
v
(b) Dual-path GCN Block

(a) Full Architecture

Fig. 4. Model architecture. (a) The overall architecture. The model is
composed of 3 layers of dual-path GCN blocks, the output channels
of the layers are 64, 128, 256. The global average pooling, fully con-
nected layer, and SoftMax are used to obtain the classification score.
(b) The dual-path GCN block. The dual-path GCN block deploys the
FST-GCN pathway and CST-GCN pathway to simultaneously capture
complex spatial, temporal, and cross-spacetime dependencies of joints.
The FST-GCN pathway contains spaital-GCN, point-wise convolution,
and grouped TCN. The CST-GCN pathway includes a CST-GCN layer
followed by a point-wise convolutional layer. The outputs from two
pathways are aggregated by a 1 x 1 convolutional layer to enhance the
fusion of multi-path features.

E. Model Architecture

In this section, we design a dual-path model to learn and
fuse spatial, temporal, and cross-spacetime gait features for
automatic PD gait MDS-UPDRS score estimation. The overall
model architecture is illustrated in Fig. 4 (a). On a high level,
it contains one patch embedding block and three dual-path
GCN blocks, followed by a global average pooling layer and
a SoftMax classifier. First, patch embeddings of size T x N x
CD are computed by a TCN layer in the patch-embedding
block. After that, the patch embeddings are passed through
three dual-path GCN blocks. The output from dual-path GCN
block 1 manifests as a feature map with dimensions 7 x N x
CW. Subsequently, dual-path GCN block 2 yields a feature
map sized T x N x 2CD, while the output of dual-path GCN
block 3 constitutes a feature map of dimensions 7' x N x4C1D.
CD is set to 64.

As shown in Fig. 4 (b), each dual-path GCN block deploys
two pathways to simultaneously capture temporal, spatial, and
cross-spacetime dependencies of joints, and the outputs from
two pathways are aggregated by a 1 x 1 Conv layer. The
FST-GCN pathway includes spatial-GCN layer, 1 x 1 Conv
layer, and channel-grouped TCN layer. The 1 x 1 Conv
layer is inserted in the middle of the spatial-GCN layer and
the TCN layer. The kernel size of grouped TCN is 1 x 7,
and the temporal stride is set to 1. The CST-GCN pathway
includes a CST-GCN layer and a 1 x 1 Conv layer. To reduce
the parameters of the model, we use grouped pointwise



418 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 32, 2024

convolution to replace the pointwise linear projection in spatial
GCN and CST-GCN. For all grouped convolutions, the number
of channels in each group is 16. To simplify the expression,
all the default BN or ReLU after convolution are omitted in
Fig. 4.

V. EXPERIMENTS
A. Experiment Setting

All experiments are conducted on the PyTorch deep learning
framework and run on an Nvidia RTX3090 GPU with 24GB
memory. All models are trained with Stochastic gradient
descent (SGD) with Nesterov momentum (0.9). Cross-entropy
is selected as the loss function to back-propagate gradients.
48 frames of skeleton data randomly selected from each gait
sequence are down-sampled to 16 frames as input. Our models
are trained with batch size 8, an initial learning rate of 0.001,
and a weight decay of 0.0005. The learning rate is divided
by 10 at the 20th epoch. The training process ended at the
25th epoch. The parameter setting of each experiment is the
same, and a random number seed is set to ensure complete
reproducibility of the experimental results.

B. Evaluation Metrics

Accuracy (Acc), precision (Prec), recall (Rec), fl-score
(F1), and area under the ROC curve (AUC) are used as
evaluation metrics to evaluate the classification results. These
metrics are defined as follows:

TP + TN
Acc = )
TP + FN + TN + FP
TP
Prec =
TP + FP,
TP
Rec= ——,
TP + FN
2 x Prec x Rec
Fl=m ————— ©)]
Prec + Rec

where TP, TN, FP, and FN represent the number of true pos-
itive, true negative, false positive, and false negative samples,
respectively.

C. Validation Strategies

The experiments are performed by a participant-based five-
fold cross-validation. The dataset is randomly divided into five
fixed independent folds; four folds are used for training, and
the remaining one is used for independent testing. Samples
of each participant are restricted to be in exactly one fold so
that the training set and the testing set do not have samples
from the same participant. We set two evaluation benchmarks,
i.e. Cross-Subject (CS) and Cross-Subject-View (CSV). In the
CS evaluation, we split the 148 subjects into training and
testing groups according to the participant-based five-fold
cross-validation. For CSV evaluation, the training dataset was
collected through Kinects 0 and 1, while the testing dataset
was obtained using Kinect 2, following the participant-based
five-fold cross-validation strategy.

TABLE Il
COMPARISON WITH BASELINE AND ABLATED METHODS
Methods Acc Prec Rec F1 AUC
ST-GCN [24] (baseline) 0.663 0.640 0.626 0.629 0.789
FST-GCN (25joint) 0.664 0.627 0.622 0.615 0.814
FST-GCN (our) 0.670 0.656 0.633 0.637 0.804
G3D [25] (baseline) 0.661 0.654 0.627 0.633 0.802
CST-GCN (our) 0.672 0.656 0.633 0.636 0.803
Dual-path model (our) 0.677 0.666 0.641 0.647 0.804

D. Ablation Experiments

In this section, we conduct ablation experiments on the
CS-benchmark to validate the effectiveness of our proposed
method.

1) Gait Graph and Spatial Graph Labeling Function: The
individual FST-GCN pathway is adopted to validate the effec-
tiveness of the proposed gait graph and corresponding labeling
function. We take the ST-GCN [24] as the baseline in this
section. We also test the FST-GCN pathway based on the
whole body skeleton graph and the spatial configuration parti-
tioning strategy [24], namely FST-GCN (25 joints). The spatial
and temporal receptive fields are set to D = 1 and I' = 7.
As shown in Table III, the FST-GCN (25 joints) outperforms
the ST-GCN by 0.025 AUC, which validates the effectiveness
of the proposed FST-GCN pathway. The proposed FST-GCN
with the proposed gait graph and labeling function outperforms
the FST-GCN (25 joints) by 0.006 accuracy and 0.022 F1-
score. These results further validate the effectiveness of the
proposed gait graph and corresponding spatial graph labeling
function.

2) CST-GCN: In this section, we validate the effectiveness
of the individual CST-GCN pathway. The G3D pathway of
Ms-GCN [25] is used as a baseline. These experiments are
conducted on our proposed gait graph, the spatial and temporal
receptive fields are set to D = 2 and I' = 3. The CST-GCN
outperforms the G3D by 0.011 accuracy and 0.003 F1-score,
as shown in Table III. These results validate that the proposed
CST-GCN enhances the capacity for learning cross-spacetime
gait features.

3) Dual-Path Model: Finally, we validate the effectiveness
of the dual-path model, as shown in Tab III. The proposed
dual-path model achieves accuracy of 0.677 and Fl-score of
0.647, which exceeds the CST-GCN pathway by 0.005 accu-
racy and 0.011 Fl-score. These results fully illustrate the
effectiveness of the dual-path model.

E. Comparison With Baseline Methods

Machine learning models (K-Nearest Neighbors (KNN),
Decision Tree (DT), Random Forest (RF), Support
Vector Machine (SVM) with poly kernels, and Extreme
Gradient Boosting (XGBoost)) and deep learning models
(OF-DDNet [28], AGS-GCN [44], GaitGraph2 [49],
ST-GCN [24], and Ms-G3D [25]) are selected as baselines to
evaluate the performance of our dual-path model. As shown in
Table IV, although our method exhibits a slightly lower AUC
than MS-G3D on CS protocol, it achieves the best accuracy
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TABLE IV
COMPARISON WITH BASELINE METHODS ON CS BENCHMARK. BEST
RESULTS ARE IN BOLD AND SECOND BEST ARE UNDERLINED

Method Acc Prec Rec F1 AUC
KNN 0.526 0.501 0.515 0.499 0.687
DT 0.461 0.449 0.447 0.448 0.585
RF 0.550 0.503 0.503 0.489 0.680
SVM 0.555 0.536 0.538 0.537 0.714
XGBoost 0.611 0.577 0.577 0.574 0.760
OF-DDNet [28], [34] 0.626 0.597 0.586 0.584 0.737
ST-GCN [24] 0.663 0.640 0.626 0.629 0.789
AGS-GCN [44] 0.665 0.637 0.634 0.631 0.797
MS-G3D [25] 0.668 0.637 0.637 0.636 0.810
GaitGraph2 [49] 0.666 0.628 0.631 0.621 0.804
Our model 0.677 0.666 0.641 0.647 0.804
TABLE V

COMPARISON WITH BASELINE METHODS ON CSV BENCHMARK. BEST
RESULTS ARE IN BOLD AND SECOND BEST ARE UNDERLINED

Method Acc Prec Rec F1 AUC
KNN 0.532 0.503 0.518 0.502 0.685
DT 0.474 0.445 0.452 0.447 0.589
RF 0.537 0.481 0.488 0.459 0.654
SVM 0.547 0.514 0.523 0.516 0.701
XGBoost 0.589 0.551 0.547 0.536 0.745
OF-DDNet [28], [34] 0.584 0.571 0.561 0.565 0.725
ST-GCN [24] 0.690 0.684 0.653 0.660 0.798
AGS-GCN [44] 0.655 0.631 0.620 0.614 0.780
MS-G3D [25] 0.676 0.649 0.640 0.639 0.808
GaitGraph2 [49] 0.684 0.667 0.652 0.656 0.794
Our model 0.700 0.679 0.664 0.658 0.818
TABLE VI

MODEL COMPLEXITY OF THE PROPOSED MODEL AND OTHER
GCN-BASED METHODS

i S Inference
Method Pez;l[r)ns FI(‘C(;))P s Trzl;;lelngcgine computational
P time(s)
ST-GCN [24] 3.07 1.09 4.88 0.0048
AGS-GCN [44] 1.39 0.05 3.86 0.0033
MS-G3D [25] 2.79 1.63 36.29 0.0260
GaitGraph2 [49] 2.99 0.99 5.45 0.0043
Our model 0.33 0.12 3.52 0.0031

and Fl-score, which outperforms MS-G3D by 0.009 and
0.011, respectively. Moreover, as shown in Table V, the
proposed method surpasses other models across all evaluation
metrics on CSV protocol, which validates its robustness to
viewpoint changes.

F. Model Complexity

We provide a comparison of the complexity (parameters
(Params) and floating point operations (FLOPs)) and run-
ning speed (training phase and inference computational time)
between our proposed model and other GCN-based models,
as shown in Table VI. The Params and FLOPs in our model
are notably lower compared to ST-GCN, MS-G3D, and Gait-
Graph2. While AGS-GCN [44] has fewer FLOPs than our
model, its accuracy is significantly worse than our method,
as shown in Tables IV and V. Moreover, our model accelerates
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Fig. 5.  Visualization of gait features and confusion matrix on the
CS benchmark. (a) UMAP embedding clusters of the raw test data.

(b) UMAP embedding clusters of the representative features generated
by our model. (c) Confusion matrices on CS benchmark.

the training process and reduces inference computational time.
Overall, we provide an energy-efficient method for Parkinson’s
gait assessment.

G. Feature Visualization and Confusion Matrices

To analyze the results of the proposed model in more
detail, we visualize the distribution of the test data and the
representative features (256 dimensional) generated by our
model on the CS benchmark. Uniform Manifold Approxima-
tion and Projection (UMAP) [45] is adopted to perform the
dimension reduction of the gait skeleton data and the represen-
tative features. It can be seen from Fig. 5(a) that the feature
embeddings of raw gait skeleton data are highly scattered
in nature. There are no pre-defined cluster patterns for the
different gait impairments, which makes the task of predicting
the UPDRS scores difficult. The learned representative features
are more clustered compared to the raw gait data, as shown
in Fig. 5(b). These results explain the effectiveness of our
model. However, the distribution of learned representative
features gradually transitions from O to 2, and there is no clear
boundary between different gait impairments. It can also be
seen from the confusion matrix (Fig. 5(c)) that the test samples
are easily misclassified into classes adjacent to the ground
truth. The reason for this phenomenon is that gait impairments
are symptoms of continuous development, which also brings
difficulties in achieving automatic scoring of PD gait.

H. Age Effects

Since elderly people without PD could also experience gait
disturbance with age, we assess the effect of age for our
method on the CS benchmark. Fig. 6 shows the age distri-
bution and predicted score of these participants with different
MDS-UPDRS gait scores. As shown in Fig 6 (a), participants
with MDS-UPDRS score O but misclassified as 2 are all over
50 years old, indicating that our model is biased by gait impair-
ments associated with aging. To further validate the age effects
on PD gait recognition, we conduct an analysis of variance
(ANOVA) [46] on the age of subjects with different predicted
scores. For the subjects with MDS-UPDRS scores 1 and 2, the
ANOVA test returns p-value of 5.7 x 107> and 6.2 x 10717,
which indicates that there are significant age differences across
different predicted scores. In conclusion, senility-induced gait
impairments can interfere with the automatic analysis of PD
gait. Disentangling PD gait features and senility-related gait
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TABLE VI
COMPARISON WITH EXISTING RELATED PD GAIT ASSESSMENT STUDIES

Author/Year Subjects/gaits Viewpoint Features Methods Acc Prec Rec F1
Sabo et al./2020 [48] 14/398 Front 16 3D features Logistic regression 0.621 0.607 0.614 0.610
Guo et al./2021 [47] 142/441 Front 2D skeleton ST-GCN-based method 0.657 0.654 0.651 0.649
Sabo et al./2022 [27] 53/399 Front 3D skeleton ST-GCN-based method 0.529 0.553 0.670 0.520

. 2D skeleton ST-GCN-based method - 0.663 0.683 0.670
Zeng et al./2023 [51] - 80/480 Right+left Skeleton+silhouetie  ST-GCN+VGG 0713 0713 0710 0,710
Our model 148/2314 Six-viewpoint 3D skeleton CST-GCN method 0.677 0.666 0.641 0.647
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Fig. 6. Subjects with different MDS-UPDRS scores are plotted with
their predicted score and their age, respectively. (a) Subjects with
ground-truth MDS-UPDRS scores of 0. ANOVA test returns a p-value =
4.7 x 1079 on the OC group (30 healthy older), confirming a significant
age difference between the subjects with predicted scores 0, 1 and 2.
(b) Subjects with ground-truth MDS-UPDRS scores of 1. ANOVA test
returns a p-value = 5.7 x 1075, confirming an insignificant age differ-
ence across the groups with different predicted scores. (c) Subjects
with ground-truth MDS-UPDRS scores of 2. ANOVA test returns a
p-value = 6.2 x 10~17 which validates that there are significant age
differences across the groups with different predicted scores.

features is of great significance to improve the PD gait analysis
performance. We leave this to future works.

I. Comparison With Existing Related Studies

Many PD gait assessment studies have demonstrated the
challenges in accurately estimating UPDRS gait scores [27],
[47], [48], as shown in Table VII. Compared to these existing
studies, our dataset includes more participants, gait sam-
ples, and viewpoints. The proposed model achieves better
accuracy than other skeleton-based methods [27], [47], [48],
which validates the effectiveness of the proposed CST-GCN
model for PD gait assessment. Moreover, Zeng et al. [51]
improved the accuracy of PD gait score estimation by fusing
skeleton and silhouette data. However, their gait dataset is
considerably smaller compared to our multi-view gait dataset.
The above qualitative analysis demonstrates the excellence of
our multi-view PD gait dataset and the proposed CST-GCN
method.

VI. CONCLUSION

In this paper, we use Azure Kinect sensors to col-
lect a sizable multi-view PD gait skeleton dataset. To the
best of our knowledge, this dataset is the largest in the
field of 3D skeleton-based PD gait MDS-UPDRS score
estimation. The CST-GCN is proposed to effectively learn
cross-spacetime gait features that are important for recogniz-
ing PD gait impairments. We further construct a dual-path
model to simultaneously model and fuse spatial, temporal, and

cross-spacetime features of PD gait. We extensively evaluate
our model on the collected PD gait dataset. The results
demonstrate significantly improved performance in automatic
PD gait analysis. However, since PD gait impairments are a
series of progressive symptoms, it is very difficult to find the
appropriate classification boundary even using the deep model.
Moreover, senility-induced gait impairments could affect the
automatic PD gait analysis. We argue that how to decouple PD
gait features and senility-related gait features is a meaningful
research direction in automatic PD gait classification. Another
limitation of this study is that the gait data collection was per-
formed in the hospital. Although we use multiple-view Azure
Kinect sensors and carpets to mimic the daily environment, the
white coat effect may affect the gait performance of patients.
It may be very difficult but necessary to collect a large-scale
gait dataset from patients in their home environment.
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