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Abstract— In the field of EMG-based force modeling, the
ability to generalize models across individuals could play
a significant role in its adoption across a range of applica-
tions, including assistive devices, robotic and rehabilitation
devices. However, current studies have predominately
focused on intra-subject modeling, largely neglecting the
burden of end-user data acquisition. In this work, we pro-
pose the use of transfer learning (TL) to generalize force
modeling to a new user by first establishing a baseline
model trained using other users’ data, and then adapt-
ing to the end-user using a small amount of new data
(only 10%, 20%, and 40% of the new user data). Using a
deep multimodal convolutional neural network, consisting
of two CNN models, one with high-density (HD) EMG and
one with motion data recorded by an Inertial Measure-
ment Unit (IMU), our proposed TL technique significantly
improved force modeling compared to leave-one-subject-
out (LOSO) and even intra-subject scenarios. The TL
approach increased the average R squared values of the
force modeling task by 60.81%, 190.53%, and 199.79% com-
pared to the LOSO case, and by 13.4%, 36.88%, and 45.51%
compared to the intra-subject case for isotonic, isokinetic
and dynamic conditions, respectively. These results show
that it is possible to adapt to a new user with minimal data
while improving performance significantly compared to the
intra-subject scenario. We also show that TL can be used to
generalize on a new experimental condition for a new user.
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I. INTRODUCTION

ACCURATE electromyography-based force estimation is
important for various applications, such as powered

exoskeletons, human-robot interaction, rehabilitation systems,
and human-machine interfaces (HMI). The surface elec-
tromyogram (EMG) has been used for non-invasive neural
decoding of end-point force/joint torque since 1952 [1].
This paper primarily focuses on surface EMG. Therefore,
all subsequent references to ‘EMG’ specifically pertain to
surface EMG. The majority of work thus far has focused
on intra-subject force modeling, where user-specific models
are developed using burdensome amounts of user-supplied
data [2], [3], [4], [5], [6], [7], [8], [9]. Recently, some studies
have pooled data from multiple users to provide more data
for deep inter-subject models [10], [11], [12], [13], [14], but
the same users used to test the models were included during
training. As well, their performance degrades significantly
when evaluated on a new user that was not previously seen
during model training (cross-user) due to strong inter-user
differences in EMG characteristics and behaviours [11].

The current challenge for force estimation, therefore,
remains the poor generalizability between users. However,
developing a generalized model that performs well in cross-
subject evaluation, or adapting an existing model to a new user,
is challenging. Increasingly, transfer learning (TL) is becoming
an effective deep learning technique that transfers learned
knowledge from one problem to a different, but related,
problem to improve performance in the new task [15]. TL is
commonly used with convolutional neural networks (CNN) to
leverage feature extraction kernels learned on readily available
data as a baseline, then fine-tuning these weights on a new
dataset [16], [17]. This means that the pretrained model is
reused as the starting point for a new task.

Recently, TL has been proven to be beneficial in
classification-based myoelectric control for model calibration
(inter-session) [16], [18], for multi-subject models (subject-
independent) [19], adapting a pretrained model to a previously
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unseen end-user with minimal data (cross-subject) [20], and
success in other EMG-based applications [21]. Ameri et
al. demonstrated model calibration using TL, which less-
ened the performance degradation caused by confounding
factors such as electrode shift and physiological parame-
ters changing over multiple sessions [16], [18]. Likewise,
Prahm et al. used TL to recalibrate myoelectric pattern
recognition models to obtain high accuracy after a signif-
icant electrode shift [18]. TL can also be used to form
a consensus across multiple subjects and establish a sin-
gle usable model; despite large differences between subjects
and acknowledged challenges in creating subject-independent
models [22], [23]. For example, Côté-Allard et al. constructed
a single subject-independent model using data from numerous
subjects that significantly outperformed the intra-subject sce-
nario for the same cohort of subjects [19]. Campbell et al. then
extended this subject-independent scenario to a cross-subject
scenario by adapting to a novel end-user with minimal subject-
supplied data, even outperforming the intra-subject scenario
despite having less end-user data [20]. Likewise, Long et al.
have shown this TL strategy was valid outside EMG gesture
recognition by outperforming within-subject continuous finger
kinematic prediction models using subject adversarial transfer
learning [21].

Despite its successful demonstration in EMG pattern recog-
nition for myoelectric control, no previous study has used
TL to generalize an EMG-based force estimation model to a
new user. We hypothesize that the application of TL to force
modeling can leverage data from other users to learn general
and informative features via a pre-trained model, before gener-
alizing and fine-tuning to a new user. Leveraging the additional
data from other users through TL may therefore enhance a
new user’s performance while reducing the recording burden
for that user (as a smaller portion of data is required for tuning
than training).

Consequently, we propose a TL approach to investigate the
feasibility of generalizing a force model to a new user using
high-density (HD) surface EMG and inertial measurement unit
(IMU) motion data during one degree of freedom dynamic
elbow flexion and extension. The proposed TL approach is
based on a deep multimodal CNN that learns from EMG
(CNNE MG) and motion (CNNI MU ) signals using twin CNN
heads to extract features from each modality individually
before being fused. High-density (HD) surface EMG elec-
trodes are used to record EMG signals from the long head
and short head of the biceps brachii, brachioradialis, and
triceps brachii muscles. Motion data, obtained from a wear-
able Inertial Measurement Unit (IMU) device mounted on
the forearm, and ground-truth force data are collected under
quasi-dynamic (controlled force/or controlled velocity) and
dynamic (no control on force and velocity) conditions. The
reason for utilizing the IMU data along with EMG signals
is because we have shown in our previous study [13] that
incorporating the kinematic information recorded by IMU con-
siderably contributes to the model’s performance to estimate
force under quasi-dynamic and dynamic conditions accurately.
Our findings from [13] indicated that using only one data
source, either EMG or IMU, resulted in a significant decline

in force modelling performance under quasi-dynamic and
dynamic conditions. The results of the proposed TL approach,
using both EMG and IMU data, show the robustness of our
method in comparison to intra-subject modeling and the leave
one subject out (LOSO) scenario for different training sizes.
We also performed ablation experiments for the TL model to
find the best configuration for our problem.

The contributions of this work can be summarized as
follows. First, we propose a multi-sensor fusion TL-based
solution to generalize force estimation to a new user during
quasi-dynamic and dynamic contractions. Our solution signifi-
cantly outperforms naive generalization in a leave one subject
out (LOSO) scenario and even the conventional intra-subject
approach. Second, we investigate the effect of training size on
the model’s performance. We show that, although increasing
the amount of training data improves both the intra-subject and
TL schemes, TL significantly outperforms the intra-case for all
considered training sizes under all experimental conditions.
Finally, we demonstrate the feasibility of leveraging TL to
generalize force modeling to a new experimental condition
(dynamic contraction).

II. EXPERIMENTAL SETUP AND DATA COLLECTION

A. Experimental Setup
Data collection took place at the Human Mobility Research

Lab of Queen’s University. A total of thirteen participants,
comprising 6 females and 7 males, with an average age of
26±9 years, were recruited for this research. The experimental
protocol received approval from the Health Sciences and
Affiliated Teaching Hospitals Research Ethics Board (HSREB)
at Queen’s University, and participants provided informed
consent before engaging in the study.

A Biodex (model 840-000) [24] was used to control arm
motion and measure generated torque. It was configured for
controlling elbow flexion and extension of the right arm,
allowing participants to perform a series of paired flexion-
extension movements. The study encompassed three distinct
elbow flexion-extension movement conditions: isotonic-non-
isokinetic, isokinetic-non-isotonic, and fully dynamic. Data
collection was performed for a single degree of freedom.

For isotonic contractions, the torque remained constant
while the movement speed varied, as there were no restric-
tions on movement velocity. Participants executed isotonic
contractions at three different torque levels, applying 5, 8,
and 12 Nm of force to the elbow joint. Isokinetic contractions
involved three different velocity settings, specifically 60, 90,
and 180 deg/s, without any constraints on torque and no
minimum required torque. During the fully dynamic condition,
participants were unrestricted in terms of applied torque levels
and movement velocity, allowing them to move their arm
freely with varying levels of velocity and torque. For a more
comprehensive understanding of the experimental setup and
its procedural details, refer to [25].

B. Data Recording
The EMG data were acquired using a EMG-USB2 HD-

system [26], which operated in a referenced monopolar mode.
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Fig. 1. The experimental setup (a), the network diagram of the proposed deep multimodal CNN is shown from (b): recorded and pre-processed
data to (d): feature-fusion to force modelling.

Prior to the placement of electrodes, necessary preparations
included shaving the skin (if necessary), followed by a
thorough cleaning and abrasion process using an abrasive
conductive gel. EMG sensor arrays were affixed to the skin
using adhesive pads that featured wells filled with conductive
paste, ensuring proper contact with the electrode contacts.
EMG signals were recorded from the long and short heads of
the biceps brachii, the brachioradialis, and the triceps brachii,
using 4 linear HD-electrode arrays with 8 monopolar channels
(5 mm spacing). For the biceps, the fourth electrode of each
array was placed at the recommended SENIAM location [27].
For the brachioradialis, the fourth electrode was placed at
one-third the length of the forearm measured from the elbow.
For the long head of the triceps brachii, electrodes were placed
at 50% of the distance between the posterior crista of the
acromion and the olecranon at 2 finger widths medial to their
midpoint. Each electrode array was connected to the EMG-
USB2 via an adapter, where each adapter had its own reference
electrodes. Standard ECG pre-gelled electrodes with Ag/AgCl
contact were used as reference electrodes placed on regions
with lower myoelectric activity. For the brachioradialis, the
reference electrode was located on the wrist, while for the long
and short heads of the biceps and for the triceps brachii they
were placed on the elbow and fossa cubit (tendon). A driven
right leg (DRL) circuit was used to reduce 60 Hz interference
by attaching two reference electrodes on the right and left
wrists. EMG signals were recorded with a sampling frequency
of 2048 Hz, and were filtered with analog band-pass filters
with cut-off frequencies of 10 and 500 Hz.

To track and record the movement of the arm, a Shimmer
wearable IMU sensor [28] was placed on the back of the
forearm, 4 cm from the location of the ground electrode on
the wrist. This location was chosen as it yielded less move-
ment due to muscle contraction during the experiment, which
reduced the recording noise due to unwanted movement of the
IMU. The IMU has three sensors, namely a triaxial accelerom-
eter, a triaxial gyroscope, and a triaxial magnetometer, all of

which were recorded at a 500 Hz sampling rate. The force
data were recorded by the Biodex, with a sampling frequency
of 1250 Hz.

For each subject, the data were collected in one session.
For each quasi-dynamic condition, 12 trials were completed in
2 sets of 6 continuous repetitions with 30 seconds rest between
sets. This was repeated for the three isotonic conditions (5,
8, and 12 Nm) and three isokinetic conditions (60, 90, and
180 deg/s), yielding a total of 36 trials for both the isotonic
and the isokinetic cases. Another 36 trials were repeated for
the dynamic condition (3 sets of 12 trials) to ensure the same
number of trials across conditions. Appropriate rest periods - at
least 10 minutes and more if needed - were provided between
conditions to avoid muscle fatigue. More details on the data
recording can be found in [25]. Figure 1 (a) and (b) shows the
experimental setup, including the subject seated in the Biodex
machine, the EMG-USB2 HD-system, the HD-electrodes, the
IMU sensor.

C. Data Pre-Processing
The torque signals, initially sampled at 1250 Hz by the

Biodex, underwent up-sampling through linear interpolation
to reach a frequency of 2048 Hz, aligning with the EMG’s
sampling rate. Likewise, the IMU data underwent a similar up-
sampling process, transitioning from 500 Hz to 2048 Hz. Then,
differential HD-EMG signals were obtained by subtracting
neighbouring channels longitudinally along each 8-channel
array, resulting in 7 differential channels from each array. Each
differential channel was further band-pass filtered with cut-
off frequencies of 10 Hz and 500 Hz using an eighth-order
Butterworth filter. The Biodex data were smoothed using a
300-point (146.48 ms) moving average filter. The IMU data
were low-pass filtered using a Savitzky-Golay filter, with a
window length of 400 points (195.31 ms). The data were
then segmented, where the segment lengths were set to 50 ms
with an overlap of half of the segment length, based on our
previous findings [25]. Before processing the data obtained
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during muscle contractions, any intervals corresponding to rest
periods between sets were excluded from analysis.

Data normalization was carried out using the standardization
approach to maintain a uniform scale and optimize model
training. We first determined the mean and standard deviation
of each channel of data (for both EMG and IMU) within
the training dataset. The training data was then standardized
using these values. Notably, when standardizing the test data,
we utilized the statistics derived only from the training set to
prevent potential data leakage. This approach ensures that our
model is trained on harmonized data, and the test set evaluation
remains unbiased. More information regarding the train and
test data will be explained in the following section.

III. METHODS

A. Transfer Learning for Force Modeling Generalization
In order to generalize the results of force modeling to the

new user, a model must first be developed using a cohort
of users, before fine-tuning it on a new user. Pretraining on
the full dataset from a cohort of users is done to capture
informative features that are consistent across subjects so as
to develop a good base model for the unseen subject. Then,
through the fine-tuning process using a small amount of data
from the end-user, the weights of certain layers of the model
are tuned to extract optimal subject-specific features.

The force generated by muscles can be characterized by
the EMG from which it is produced, as well as the resulting
motion. To take full advantage of both sources of information,
we employed a multimodal approach that uses both EMG and
IMU data. As shown in our previous work [13], incorporating
the kinematic information recorded by IMU considerably
improves model performance when estimating force under
quasi-dynamic and dynamic conditions. A base model was
trained using EMG (28 channels) and motion signals (9
channels, obtained from a wearable IMU device) extracted
from the cohort of training subjects. For the TL procedure,
we then tuned the parameters of the base model to personalize
it to a previously unseen end-user for subject-specific force
modeling. In the following subsections III-A.1 and III-A.2,
we explain the details of the model development process.

1) Model Architecture: CNNs are extensions of standard
neural networks, originally proposed for the analysis of
image and video data as they are capable of dealing with
high-dimensional raw data without the need for manual feature
extraction. They are used in a variety of applications related to
biological signals and have been previously employed for force
modelling [10], [25]. CNNs are typically made up of several
types of layers: convolutional layers, batch normalization, non-
linear activation functions (rectified linear unit (ReLU)), and
max-pooling layers to reduce the dimensionality of the feature
map, decrease computation, and to help avoid overfitting. The
use of these layers for automatic feature extraction from input
data in CNNs is referred to as a conv-block here. Therefore,
each conv-block shown in Figure 1 consists of convolutional
layers, batch normalization, ReLu activation functions, and
max-pooling layer.

An overview of the proposed deep multimodal CNN frame-
work for force modelling is shown in Figure 1 (b)-(d). The

pre-processed and segmented EMG and IMU data are used as
inputs to separate CNNs (CNNE MG and CNNI MU ). For the
CNNE MG , inputs consisted of the preprocessed and segmented
EMG data (28 differential signals). The input layer for the
CNNI MU was fed with the pre-processed and segmented IMU
data recorded by the triaxial accelerometer, gyroscope and
magnetometer (9 channels in total). The size of the input
layers for CNNE MG and CNNI MU were thus (102 × 28)
and (102 × 9), respectively. During training, a dropout layer
was used at the end of each CNN to reduce the chances of
overfitting to the training data. Each CNN stream was used
to learn features from its respective inputs (feature learning
block). Next, the feature fusion block concatenated the learned
features to obtain a multimodal feature encoding of both EMG
and IMU. This was then followed by fully connected (dense)
layers, which acted as a shallow neural network to weight
the obtained features, and a regression layer to estimate the
induced force at the wrist. Two dense layers with 100 and
200 neurons, respectively, were used. The output of the
network was used for all experimental conditions (isotonic,
isokinetic, and dynamic contractions).

The network architecture was largely influenced by our
past work on this dataset pursuing intra- and inter-subject
force modelling [13], where, we determine the best number
of neurons per layer in the architecture empirically (grid
search over convolutional layer parameters, fully connected
parameters, and window sizes). Here, a number of hyper-
parameters for each CNNE MG and CNNI MU were tuned to
achieve the best results using a validation set of the cohort
data, and closely resembled the optimal hyperparameters for
the inter-subject prior work [13]. The tuned hyperparameters
include: the number of conv-blocks, the number of filters
and their sizes for each convolutional layer, batch sizes, the
number of training epochs, and dropout rates. The values for
these parameters obtained for each CNN are presented in
Table I. The batch size was set at 64, as smaller sizes led
to extended training times without enhancing force modelling
performance, and larger sizes adversely affected the perfor-
mance. We chose 150 epochs because increasing the number
did not further improve performance and only lengthened the
training time, while fewer epochs diminished the performance.
Visual inspection of the training process supported this choice,
using the validation set to ensure that adequate training had
been performed. We verified underfitting had not occurred
by selecting a number of epochs for training that the vali-
dation loss and training loss generally decreased. Likewise,
We verified overfitting did not occur for our selected number
of epochs by ensuring validation loss did not begin to increase
while training loss continued to decrease. The selected dropout
rate for all base learners was 0.5. To avoid overfitting, L2
regularization was used. Additionally, dropout was performed
after the final conv-block for both CNNE MG and CNNI MU .

The proposed architecture and all analyses were imple-
mented in Python using Keras with a TensorFlow backend,
on a Intel(R) Core(TM) M-5Y10c CPU @ 0.80GHz, 998 MHz
processor, with 8 GB of RAM. The models were trained with
the adaptive moment estimation (ADAM) optimizer to update
the network weights during back-propagation because it has
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TABLE I
HYPER-PARAMETERS (NUMBER OF CONVOLUTION BLOCKS, NUMBER

OF FILTERS, FILTER SIZES, AND MAXPOOL SIZES) FOR ALL

EXPERIMENTAL CONDITIONS AND SCHEMES

been proven to be efficient in computing the stochastic gradient
problem and avoiding local minima [29]. Mean squared error
loss was used for determining the accuracy of the predic-
tions and to perform back-propagation.A learning rate (lr ) of
0.001 was used with exponential decay rates for the first and
second movement estimates of β1 = 0.9, and β2 = 0.999,
respectively. The smaller learning rate was used for the TL
model fine-tuning (0.00001). Early stopping with 15 patience,
and min δ = 0.5 was used.

2) Transfer Learning Fine-Tuning: As the goal of this study
was to perform force modelling on a new, previously unseen
user, the base model explained in III-A.1 was then fine-tuned
through a TL procedure to tailor the developed model to
the new user. While tailoring the model to the new user,
the model parameters that are adapted can be selectively
chosen. In this regard, an ablation experiment was conducted
to determine the optimum number of conv-blocks to freeze
(remain unaltered) during the TL procedure to obtain the best
force modelling performance on a new user. For the first case
studied, we started by unfreezing the entire base model, which
allowed all of the parameters of the model to be tuned (all
conv-blocks and linear layers). As a second case, we froze the
first two conv-blocks; conv-block 1, the first conv-block for
EMG feature extraction, and conv-block 2, the first conv-block
for IMU feature extraction (as shown in Figure 1), and tuned
the parameters of the rest of the model for the TL procedure.
Finally, in the third case, we froze all of the conv-blocks
and only tuned the parameters of the remaining four linear
layers, shown in the red box of Figure 1 (d). The selection
of which blocks are frozen controls how much of the original
base model learning is persisted in the final TL-tuned model.

B. Evaluation
The performance of the TL model was compared with

a naive LOSO approach and the conventional intra-subject
approach. As in the TL method, base model training for
LOSO is conducted with all but one user, but no fine-tuning
is conducted on the end-user. For intra-subject performance,
a model was trained using only the end-user’s own data, as is
conventionally done in EMG force modelling. The LOSO
scheme was meant to emulate a lower-benchmark of perfor-
mance where the end-user training burden is minimal, but
performance is known to be poor. In contrast, the intra-subject
scheme was meant to simulate a competitive-benchmark of
performance where the end-user training burden is the same
as with the TL model, but it does not leverage any pretraining
from the cohort of other users.

In order to determine if the TL approach was beneficial for
EMG force modelling, its efficacy was compared against the

established LOSO and intra-subject approaches within the iso-
tonic, isokinetic, and dynamic conditions, independently. For
each assessment, the dataset was first split into its condition,
then further split into a cohort dataset (data from all users
except the test user) and an end-user dataset (the data from
the subject being held-out for testing). The final contiguous
50% of the end-user dataset was used as the testing dataset
for all analyses to establish a fair comparison across the TL,
LOSO, and intra-subject approaches. Details surrounding the
portion of data used by each approach are given below:

• Intra-subject: From the residual 50% of the end-user
dataset, α% was used for the training set, and 10%
was used for the validation set. To evaluate how much
end-user training burden was necessary, three values of α

were tested: 0%, 20%, and 40%; where using 40% of the
end-user data resulted in all end-user data being involved
in the analysis.

• Leave-One-Subject-Out (LOSO): From the cohort
dataset, 90% was used for the training set and the
remaining 10% was used for the validation set. No end-
user data was used in the training of this approach.

• Transfer Learning (TL): The cohort dataset was used
the same way as the LOSO approach to establish the base
model. Afterwards, the learning rate was lowered, and α%
of the remaining end-user data was used for the training
set of the fine-tuning and 10% for the validation set, and
the same 50% of the end-user dataset as the intra-subject
was used for testing. Similar to the intra-subject analyses,
α was tested for values: 10%, 20%, and 40%.

Importantly, although the training and validation sets for
the intra-subject training and TL fine-tuning were randomly
selected from non-testing set end-user data, these selections
of data were identical to ensure fairness. Additionally, since
our study had three experimental conditions–namely isotonic,
isokinetic, and dynamic–and under the isotonic and isokinetic
categories, three respective cases were presented (three force
levels for isotonic and three velocity levels for isokinetic).
We ensured that each data portion (train/validation/test) con-
sistently represented each case, meaning that they originated
from identical experimental conditions while maintaining a
consistent percentage across each case.

Performance was evaluated using the coefficient of deter-
mination (R2), which is calculated as follows:

R2
= 1 −

∑N
i=0(F Est

i − Fi )
2∑N

i=0(Fi − Fi )2
, (1)

where N is the number of data samples, Fi is the i th measured
force sample, F Est

i is the corresponding estimated force, and
Fi is the average of Fi . The numerator in the second term
of the equation is the total mean squared error (MSE) of the
estimates, whereas the denominator is the total variance of the
force.

C. Statistical Analysis
Statistical analysis was performed on the R2 values using

the Wilcoxon signed rank test, a nonparametric statistical test,
as our evaluation metrics were not normally distributed. The
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Fig. 2. R2 values for 13 users, using transfer learning with different frozen layers: 0 (no conv-block was frozen), 2 (the first EMG conv-block and
the first IMU conv-block were frozen), and 4 (all conv-blocks were frozen). The dashed line shows the mean R2 values across all users, while the
pink shading represents the standard deviation across subjects for each model, under the different experimental (isotonic, isokinetic, and dynamic)
conditions.

null hypothesis was rejected when the p-value was below the
critical value, which is set to 0.05. The significance level was
adjusted using Bonferroni correction when multiple pairwise
tests were conducted. Statistical analysis were conducted to
evaluate the performance of the of TL approach relative to
the naive LOSO case and traditional intra-subject modelling.
The obtained R2 values were compared between methods
in a pairwise fashion, using MATLAB (MATLAB 19.1, The
MathWorks Inc.).

IV. RESULTS AND DISCUSSION

In this section, we provide an analysis of the impact of var-
ious aspects of the TL procedure, such as the effect of
unfreezing the conv-blocks during transfer, the amount of
training data used, and the impact of end-user supplied training
data for fine-tuning. We then present the performance of the
proposed TL model in conducting force estimation compared
with the naive LOSO approach (with no model fine-tuning)
and traditional intra-subject force modelling. We also investi-
gate the feasibility of using TL to generalize force modeling to
a new user under a new experimental condition for that user.

A. Ablation Study
An ablation study was conducted that first determined the

optimum number of conv-blocks to tune for the TL proce-
dure following the cases outlined in section III-A.2. For this
analysis, the base models were trained as described in III-B,
20% of the data from a new user was used to fine-tune the
TL model, 10% was used for validation, and finally, 50% was
used for testing. Figure 2 shows the R2 values obtained when
freezing different numbers of conv-blocks for fine-tuning. The
results indicated that freezing all four conv-blocks resulted in
significantly higher performance, for isokinetic (p < 0.0039)
and dynamic (p < 0.0037) compared to freezing two or no
conv-blocks. For the isotonic case, there was no significant
difference between freezing all four conv-blocks and freezing
the first two conv-blocks, although freezing all conv-blocks
was significantly better than freezing none them (p = 0.0078).

Freezing all conv-blocks was also much better in terms of
reducing computational time, as gradients didn’t need to flow
back through those layers.

Therefore, in our TL approach, freezing all four conv-blocks
in the model led to enhanced performance, primarily because
these layers, pre-trained on a cohort of users, already captured
robust, generalized features essential for force modelling.
By keeping these layers frozen, we effectively prevented
overfitting, a crucial consideration given the potentially limited
data available for each new user. This strategy ensured the
stability and relevance of the features extracted, allowing the
model to retain the generalized knowledge acquired from
the broader cohort while focusing the training process on
fine-tuning the dense layers. These layers, more adaptable to
individual variations, were specifically tuned to the charac-
teristics of the new user. This approach not only optimized
the model’s performance by maintaining a balance between
knowledge retention and adaptation to individual specificity
but also improved computational efficiency, a significant factor
in real-time applications. Thus, for the rest of the analysis
presented here, TL was completed by freezing all four conv-
blocks, and only the last four linear layer parameters were
updated (fine-tuned) using end-user data, aimed at achieving
the best balance between general feature extraction and indi-
vidualized force estimation.

B. Performance and Comparison
In Figure 3, the performance of the TL, LOSO, and

intra-subject approaches are shown for all experimental con-
ditions. Again, the TL procedure used 20% of the end-user
data to fine-tune the base model, 10% for validation, and 50%
for testing. The intra-subject model used the same data, but
trained a subject-specific model using the 20% end-user data
(instead of fine-tuning the base model). The LOSO directly
used the base model without fine tuning, but used the same
50% for testing. The dashed line in Figure 3 shows the average
R2 values across all subjects, and the pink shading shows
the standard deviation across subjects for each method under
the different experimental conditions (isotonic, isokinetic, and
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Fig. 3. R2 values for the 13 users, using transfer learning compared to the LOSO and Intra-subject force modelling. The dashed line shows the mean
R2 values across all users, while the pink shading represents the standard deviation across subjects for each model, under different experimental
conditions, isotonic, isokinetic, and dynamic. LOSO stands for leave on subject out, Intra: intra-subject modelling, TL: transfer learning.

Fig. 4. The estimated versus the measured force using TL, LOSO and Intra, for one user.

dynamic). Pairwise comparisons were performed using the
Wilcoxon test on the R2 values of 13 participants, for each
condition (isotonic, isokinetic, and dynamic) separately. The
experimental results show that intra-subject performance is
significantly better than LOSO for all experimental conditions
as p < 0.0024. More importantly, TL achieves significantly
better performance than both LOSO and intra-subject for
all experimental conditions, with posthoc p-values of p <

0.00024 for all conditions of TL versus LOSO and p <

0.0017 for all conditions of TL versus intra. The TL result
demonstrates that the TL approach can not only increase the
performance of LOSO force estimation by fine-tuning to the

end-user, but that it can effectively leverage data from other
users to outperform within-subject training alone.

Figure 4 shows examples of the measured force vs. esti-
mated force using the TL, LOSO, and intra cases, for one
subject under the different experimental conditions. The TL
approach is clearly able to estimate the force for a new
user more accurately in each of the different experimental
conditions than the other approaches. The R2 values for the
data shown in Figure 4 are TL: 0.71, LOSO: 0.44, and intra:
0.58 (for isotonic), TL: 0.51, LOSO: 0.15, and intra:0.34 (for
isokinetic), and TL: 0.65, LOSO: 0.097, and intra: 0.51 (for
dynamic).
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1) Effect of Experimental Conditions on Model Performance:
We also conducted a statistical analysis to investigate the
effect of experimental conditions on the performance of the
TL model. Specifically, we compared the R2 values of three
experimental conditions: isotonic, isokinetic, and dynamic
contractions. Our results indicate that the TL model performed
significantly better for the isotonic condition compared to the
isokinetic (p = 0.0002) and dynamic (p = 0.0002) conditions.
However, there was no significant difference in the TL model’s
performance between the isokinetic and dynamic conditions
(p = 0.5).

Additionally, we compared the intra-subject force modeling
approach across different conditions and found that isotonic
performance was better than isokinetic (p = 0.0002) and
dynamic (p = 0.002) conditions, with no difference between
isokinetic and dynamic conditions (p = 0.9). For the LOSO
scenario, we found that isotonic performance was statistically
better than isokinetic (p = 0.0007) and dynamic (p = 0.0002)
conditions, while dynamic performance was not significantly
better than isokinetic. The higher performance under isotonic
conditions may stem from the relatively consistent force over
time and across participants, in contrast to the inconsistency
observed in isokinetic and dynamic scenarios. As highlighted
in previous research [13], the variability in force levels during
isokinetic and dynamic conditions plays a more significant
role in performance reduction compared to velocity variability
seen in isotonic and dynamic conditions. This is because
the inclusion of IMU data makes the model more robust to
changes in velocity, as the IMU can track the varying speeds
of the limb. However, in the dynamic and isokinetic conditions,
we rely on EMG to account for the variability in the force.

C. Impact of Fine-Tuning Data Amounts on Performance
Although deep learning benefits from more training data,

the amount of data required from an end-user for EMG-based
force modelling should be minimized for practicality and user
convenience. To help overcome this conflict, in this study, the
multimodal deep CNN base model was pre-trained using a
larger set of data recorded from other users. This base model
was then fine-tuned through TL using some amount of end-
user data.

To investigate the impact of the amount of data available
from the end-user for fine-tuning on TL performance, we con-
sidered using 10%, 20%, and 40% of the available end-user
data for each experimental condition. We also compare the TL
results with the intra-subject approach, using the same amount
of data to directly train a new subject-specific model. In all
cases, the validation and test sizes were kept consistent, with
10% used for validation, and 50% for testing.

Figure 5 shows the impact of training size on the R2 for
the different experimental conditions, for both the TL and
intra-subject approaches. As shown in Figure 5, increasing
the amount of data used to fine-tune the TL and train the
intra-subject models improves the performance of both. For all
experimental conditions, however, the performance of the TL
approach is significantly higher than that of the intra-subject
scheme when using the same amount of end-user data, with p
values of p < 0.01, p < 0.0049, and p < 0.02 for isotonic,

Fig. 5. The average and standard deviation of R2 values across all
users, using transfer learning (TL) compared to Intra-subject (Intra) force
modelling, for different amounts of end-user data used for fine-tuning
and training (10%, 20%, and 40%), respectively. Results are shown for
the different experimental conditions, isotonic, isokinetic, and dynamic.

isokinetic, and dynamic, respectively. Furthermore, increasing
the training size from 10% to 40% significantly improves the
TL performance only for the isotonic condition, while for the
intra-subject scheme, the performance improved significantly
for all experimental conditions. This indicates the need for
more training data to develop a model from scratch for a new
user, whereas when using the TL approach, the model can
benefit from the learned features from other users.

1) Effect of Experimental Conditions on Model Performance
for Different Amounts of Training Data: We investigated the
impact of experimental conditions on the performance of the
TL for different amounts of data available for fine-tuning:
10%, 20%, and 40%. Our statistical analysis indicates that the
TL model performed significantly better for the isotonic con-
dition compared to the isokinetic (p < 0.0007) and dynamic
(p < 0.0012) conditions for all considered training sizes.
However, there was no significant difference in performance
between the isokinetic and dynamic conditions (p > 0.05).

In the intra-subject case, we found that isotonic condition
performance was significantly better than the other conditions,
including isokinetic (p < 0.005) and dynamic (p < 0.002).
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When comparing isokinetic versus dynamic, there were no
significant differences in performance except for the 10%
training size (p = 0.0017). Despite variations in training
size, our findings demonstrate that both TL and intra-subject
modeling exhibit higher performance levels for the isotonic
condition compared to the isokinetic and dynamic conditions.

The amount of data required for the TL approach to
reach a plateau in performance was lower for the isotonic
condition compared to the isokinetic and dynamic conditions,
as only a negligible improvement was found when doubling
the amount of data for fine-tuning from 20% to 40% for
isotonic conditions. This early plateau was not found in the
intra-subject models for the isotonic condition. Given that
the LOSO approach alone did not outperform intra-subject
models for the isotonic condition (Figure 3), this suggests
that the early plateau was in response to both the isotonic
nature of the motions, and having access to the cohort’s
data. We suspect this plateau indicates that when the user
is performing variable speed motions, the TL model was
better able to leverage the modality that contributes kinematic
information and does not have subject-specific variability
(IMU). Given that the isokinetic and dynamic conditions
did not plateau, this indicates that when users perform
force varying motions, the TL model was able to leverage
information from the cohort to outperform the intra-subject
model; however, because of the subject-specific nature
of EMG signals more end-user data was required.This
relationship indicates that strategies that attempt to regularize
out subject-specific variability would be beneficial for EMG
force modelling in isokinetic and dynamic settings to improve
performance while minimizing training burden.

D. Generalizability to Dynamic Condition
Finally, we investigated the feasibility of using TL to not

only generalize force modeling to a new user for a given
condition but also to generalize to a new experimental con-
dition for that user as well. To do so, we trained the base
TL model using all of the quasi-dynamic data from a cohort
of training users (from the isotonic and isokinetic conditions)
and fine-tuned it using the same isotonic and isokinetic data
from the end-user, with 80% used for training and 20% for
validation. We then tested it using the fully dynamic condition
data from the end-user. We compared this to the intra-subject
and LOSO schemes. In the intra-subject case, using the same
end-user data availability, a new subject-specific model was
trained using the isotonic and isokinetic condition data for
that user, and tested using their dynamic data. For the LOSO,
data from other users during the quasi-dynamic conditions
were used to train the model, and testing was conducted
on the new user. Figure 6 shows the R2 values of the TL,
intra-subject, and LOSO schemes, for each participant. The
dashed line in Figure 3 shows the average R2 value and
the pink shading shows the standard deviation across all
subjects for each method, TL, intra and LOSO. Leveraging
TL significantly outperformed intra-subject force modeling,
with average R2 values for TL of 0.29, intra-subject models
of −0.12, and −0.73 for LOSO. TL resulted in significantly
better performance compared to the intra- (p = 0.00073) and

Fig. 6. R2 values for the 13 users, using transfer learning compared
to the LOSO and Intra-subject force modelling for generalizing the
model to the dynamic condition. The dashed line shows the mean R2

values across all users, while the pink shading represents the standard
deviation across subjects for each model.

LOSO (p = 0.00024) cases. No significant difference was
found between the performance of intra- and LOSO when
generalizing to a new experimental condition.

V. CONCLUSION AND FUTURE WORK

The purpose of this study was to explore the potential
benefit of leveraging transfer learning to reduce the training
burden on an end-user in EMG-based wrist force modeling.
A novel state of the art TL approach was compared against
a naive LOSO approach and the conventional intra-subject
approach for isotonic, isokinetic, and fully dynamic elbow
flexion and extension conditions. The proposed TL method,
using a deep multimodal CNN pipeline as a base model which
extracted features from EMG and IMU data from multiple
users, and then tuned its parameters to personalize the model
for a new user, using a small portion of data. The TL approach
outperformed LOSO and intra-subject force modeling methods
for all experimental conditions. Our results confirmed the
effectiveness of using the TL approach over developing a
model from scratch for a new user, for different training
sizes. We also showed TL required less data than intra-subject
models and achieves significantly higher performance across
all experimental conditions. Further, while marginal improve-
ments can be made by including more end-user data, TL was
found to not significantly improve by including more than 10%
new user data for most conditions, indicating a viable approach
with minimal training burden. We also showed that TL can
be used to generalize even to a new experimental condition
for a new user. Thus, it has great potential for generalizing
a developed model not only to a new user, but also to a
new experimental condition, which is highly needed in force
modeling applications, such as assistive devices, robotics, and
rehabilitation.

In order to assess the robustness and generalizability of
the proposed method for more practical applications, such



400 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 32, 2024

as assistive devices or rehabilitation, the effectiveness of
the TL approach should be evaluated with larger datasets,
including individuals with disabilities. As this study focused
on a relatively small and healthy number of participants,
conducting further research with a more diverse population
would enable more comprehensive conclusions. We recognize
that this collection was constrained where users performed
contractions along only a single degree of freedom, and future
work should explore less enforced movements with more
irregular patterns. Also, further research should explore set-
tings with larger training burdens such as predicting force for
multiple degrees of freedom (including wrist flexion/extension
alongside elbow flexion/extension) and surveying more mus-
cles (flexor carpi radialis, extensor carpi ulnaris) to assess
whether TL can provide greater benefit under greater
challenges.
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