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Abstract— Wearable lower-limb joint angle estimation
using a reduced inertial measurement unit (IMU) sensor
set could enable quick, economical sports injury risk
assessment and motion capture; however the vast major-
ity of existing research requires a full IMU set attached
to every related body segment and is implemented in
only a single movement, typically walking. We thus imple-
mented 3-dimensional knee and hip angle estimation with
a reduced IMU sensor set during yoga, golf, swimming
(simulated lower body swimming in a seated posture),
badminton, and dance movements. Additionally, current
deep-learning models undergo an accuracy drop when
tested with new and unseen activities, which necessitates
collecting large amounts of data for the new activity. How-
ever, collecting large datasets for every new activity is
time-consuming and expensive. Thus, a transfer learn-
ing (TL) approach with long short-term memory neural
networks was proposed to enhance the model’s general-
ization ability towards new activities while minimizing the
need for a large new-activity dataset. This approach could
transfer the generic knowledge acquired from training the
model in the source-activity domain to the target-activity
domain. The maximum improvement in estimation accu-
racy (RMSE) achieved by TL is 23.6 degrees for knee
flexion/extension and 22.2 degrees for hip flexion/extension
compared to without TL. These results extend the applica-
tion of motion capture with reduced sensor configurations
to a broader range of activities relevant to injury prevention
and sports training. Moreover, they enhance the capacity
of data-driven models in scenarios where acquiring a sub-
stantial amount of training data is challenging.
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I. INTRODUCTION

WEARABLE lower-limb joint angle estimation using a
reduced inertial measurement unit (IMU) sensor set

facilitates the rapid and cost-effective assessment of sports
injury risk [1], [2], [3], [4], [5], motion capture [6], [7], [8],
[9], and improvement of motion techniques [1], [10], [11].
The IMU is a commonly used, lightweight, and affordable
sensor that is often integrated with machine learning models
to enable kinematic estimation [6], [10]. Traditional wearable
motion capture systems often necessitate one IMU sensor
per lower-limb segment to capture the 3D angles of each
joint, resulting in the use of numerous sensors [12], [13].
Karatsidis et al. [12] employed a wearable system consisting
of 17 IMUs. Utilizing the acceleration signals obtained from
IMUs, they reconstructed the kinematics of the anatomical
segments. This full IMU configuration can be intrusive, time-
consuming, expensive, and susceptible to errors such as sensor
swapping during mounting [6], [7]. In contrast, the reduced
IMU sensor configuration offers advantages by placing IMU
sensors on a subset of the total lower-limb segments [3],
[14]. This configuration enhances user comfort, reduces setup
time, mitigates wear-related difficulties, and decreases sys-
tem costs compared to the full IMU configuration [1], [3],
[6], [12]. One significant application of the reduced sensor
configuration is sports performance monitoring. Athletes and
fitness enthusiasts prefer using fewer IMUs, which provides
greater freedom of movement and facilitates long-term daily
monitoring [15]. This setup allows individuals to receive
real-time information about their joint angles and movement
techniques, giving them the ability to make adjustments to
prevent injury risk and optimize performance [2], [15]. Fur-
thermore, emerging human-computer interaction also benefits
from a reduced sensor configuration [6]. This configuration
enhances the convenience of interaction and enables the cap-
ture of diverse user motion poses, thereby improving the
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overall user experience [7], [8], [9]. The most widely tested
and practical sensor placement for the reduced IMU sensor
configuration entails affixing three IMUs to the pelvis and
shanks, utilizing one IMU per segment [1], [3], [6], [7],
[8], [14], [16]. The prevalent methodology for kinematic
estimation modeling involves a deep-learning approach that
correlates IMU sensor data with joint angles [10]. Compared
to physics-based methods, deep learning methods are favored
for their superior accuracy and ability to extract sufficient
information from fewer sensors [1], [2], [6], [7], [8], [9], [10],
[11], [13], [16], [17].

The vast majority of existing research was implemented in
only a single movement activity, typically walking [1], [2],
[18], [19], [20], [21], [22], [23], [24]. Mundt et al. [1] trained
a long short-term memory (LSTM) neural network to estimate
3D joint angles of the hip, knee, and ankle joints during self-
selected speed-level walking. Hossain et al. [2] proposed a
modular deep-learning model to estimate sagittal plane hip,
knee, and ankle joint angles during various walking conditions
(overground, treadmill, slope, and stair). Semwal et al. [19]
approximated human gait trajectories using an LSTM model
trained on human gait joint angle data generated in Opensim
simulations. Given the inherent reliance of data-driven models
on the training set, this model was not suitable for dynamic
activities beyond gait. Semwal et al. [20] estimated joint
trajectories during six walking-type activities: brisk walking,
normal walking, very slow walking, moderate walking, jog-
ging, and brisk walking. The differences in data distribution
for these walking-type activities are minimal, so it is not
possible to demonstrate the performance of the algorithm in
different non-walking activities. Semwal et al. [22] proposed
a personalized LSTM-CNN model trained on a feature set
consisting of anthropometric parameters and walking speed
to estimate the sagittal plane angles of hip, knee, and ankle
joints. However, this model can only predict one-dimensional
angles for each joint, and its accuracy significantly benefits
from the highly periodic nature of walking motion. Although
walking is a crucial movement in gait analysis and rehabili-
tation of impaired gait, various non-gait dynamic movements
associated with sports, exercise, and rehabilitation also have a
significant impact on injury risk and outcomes of therapeutic
interventions [25], [26], [27], [28]. However, the feasibility
of capturing joint angles using a reduced IMU set during
complex and highly dynamic non-gait movements remain
relatively unexplored. In contrast to the strong periodicity
observed in walking, non-gait dynamic activities are charac-
terized by robust non-periodic patterns, which may lead to
reduced observability of joint angles under a reduced sensor
configuration [6], [7], [17], thus posing challenges to accurate
estimation. Huang et al. [6] proposed a bi-directional recurrent
neural network that reconstructed the quaternion of all body
segments using six body-worn IMUs. The model was validated
on five user-defined uncertain motion categories, including
controlled motion of the arms or legs, locomotion, full-body
activities, and interaction tasks with objects. It achieved an
angular error of 17.54◦ across these various movements [6].

However, it has not been tested in various common activ-
ities related to sports injury risk and exercise. Therefore,
we proposed achieving three-dimensional knee and hip joint
angle estimation with a reduced IMU sensor set in five non-
gait activities, including yoga, golf, swimming, badminton,
and dance. The five non-gait activity data we collected are
highly relevant to global physical health and injury prevention
and cover a range of activity levels from stationary to light,
moderate, and vigorous activity [28], [29], [30], [31]. Addi-
tionally, we introduced an activity-aware hierarchical model
to implement the simultaneous recognition of motion patterns
and joint angle estimation across these five activities.

Another factor that limits the extension of joint angle
estimation with reduced sensor configurations to a wider range
of activity types, is the accuracy decline when deep-learning
models test with unseen activities [3], [32], [33], [34], [35].
The process of collecting a substantial marker-based motion-
tracking database for every unseen activity is time-consuming
and costly [6], [36], particularly for dynamic activities char-
acterized by higher variability. To our knowledge, current
research on reduced sensor configuration has not explored
improving the model’s generalization ability to new activities.
To tackle this challenge, we proposed a transfer learning (TL)
approach that transfers the knowledge obtained from joint
angle estimation of the source domain (known activity) to the
target domain (unseen activity) [35], [37], [38]. TL effectively
enhances the model’s generalization to the unseen domain
by leveraging the common knowledge of the source domain
model and joint angle estimation [37], [39], [40]. In various
research fields, TL has shown efficacy in reducing the required
size of datasets from unseen domains. Zhang et al. [34]
employed TL with existing datasets covering various move-
ments to estimate joint torque for a new movement. They
pre-trained the LSTM network to learn structural similari-
ties between movements. Ameri et al. [38] utilized existing
training data before an electrode shift and a TL method
with pre-trained convolutional neural networks to address
the issue of insufficient training data post-electrode shift.
Although TL has been extensively explored in cross-domain
activity recognition [35], [37], [40], [41], its performance
in cross-activity scenarios for joint angle estimation using a
reduced sensor configuration remains unclear. In addition to
considering the model’s generalization ability across diverse
activities, we also emphasized a practical scenario where the
model extends its generalization from semi-static activities to
dynamic activities. Semi-static activities exhibit lower move-
ment intensity than dynamic activities, exemplified by yoga
poses [17]. This characteristic facilitates ease of execution for
subjects and the quality of data obtained is relatively high,
making semi-static activities suitable as source domain data
sets. We hypothesized that the semi-static yoga pose dataset
contains some similar features to the dynamic activity dataset.
Therefore, the model’s generalization ability from semi-static
datasets to unseen dynamic activities can be enhanced through
the TL method.

The primary contributions in this work are as follows:



LI et al.: 3D KNEE AND HIP ANGLE ESTIMATION WITH REDUCED WEARABLE IMUs 327

• This study is the first to implement 3D knee and hip joint
angle estimation using a reduced IMU sensor configura-
tion during five non-gait activities, including yoga, golf,
swimming, badminton, and dance activities.

• This is the first study to extend the generalization ability
of joint angle estimation models to unseen activities. The
proposed TL method utilizes a dataset of the known
activity to transfer the general knowledge of mapping
correlations between IMU sensing data and joint angles
into a model of unseen activities. In particular, this
method could reconstruct three-dimensional joint angles
during dynamic activities using datasets derived from
semi-static yoga poses.

In Section II, this study conducted the estimation of 3D knee
and hip angles during five non-gait activities using a reduced
IMU sensor configuration. An activity-aware-based hierarchi-
cal model with artificial neural networks was proposed to
implement the estimation, enabling simultaneous recognition
of motion patterns and joint angle estimation. This method is
effective for estimating angles in known activities. In addition,
we also proposed a novel TL method to enhance the model’s
generalization ability to unseen activities, especially unseen
dynamic activities (Section II). We tested the TL method on
twenty dual-activity transfer pairs to thoroughly assess its per-
formance (Section II). The data collection process is elaborated
in Section II. Section III presents the estimation results of
the two proposed methods. In Section IV, we provided a
comprehensive discussion of various aspects of the results,
clarifying the strengths and limitations of the methods.

II. METHODS

To expand the application of motion capture with reduced
sensor configurations to various activities, our study proposed
two methods to estimate joint angles with a reduced sensor
configuration in known and unseen activities, respectively
(Fig. 1 (a)).

A. Activity-Aware-Based Hierarchical Model for Known
Activities

An activity-aware-based hierarchical model (AAHM) was
proposed for joint angle estimation of known activities in
the training set. This model can also realize simultaneous
motion pattern recognition and joint angle estimation, where
motion pattern recognition provides additional activity-type
information. Simultaneous motion pattern recognition and
joint angle estimation may be more critical in multi-sport
performance and risk monitoring [20], [42], [43], [44], [45].
Activity recognition can offer additional insights into the
type of activity, facilitating the computation of motion-related
metrics or precise control of risk thresholds for different activi-
ties [13], [34], [42], [46], [47]. AAHM can customize the joint
angle estimation process by identifying specific activity types,
especially in activities with multiple movement patterns. The
AAHM consists of two stages (Fig. 1 (b)). In the first stage,
an activity classification model is employed to recognize the
specific activity types of the input samples. Then, samples are
directed to the corresponding estimation model in the second

Fig. 1. (a) General flowchart for joint angle estimation of various
movements with reduced sensor configurations. (b) Proposed activity-
aware-based hierarchical model structure for simultaneous motion
pattern recognition and joint angle estimation. The first stage is a motion
pattern classification model that identifies the activity type of the input
sample. Based on the identified activities, the sample is directed to
the corresponding estimation model in the second stage. (c) Transfer
learning model structure for generalizing between different activities,
using the example of extending the yoga training model to dynamic
activities. We obtained all layers preceding the dropout layer from the
pre-trained source model and transferred them to the target model. The
target model was integrated by the transfer layer and a newly introduced
fully-connected layer, a dropout layer, and an output layer. Subsequently,
we trained the target model using a minimal dynamic activity dataset.

stage based on the recognized activities. The second stage
consists of five separate estimation models, each dedicated to a
specific activity type and responsible for joint angle estimation
(Fig. 1 (b)). By decoupling motion pattern recognition from
the joint angle estimation process, AAHM incorporates motion
pattern information as an additional constraint to improve
joint angle observability. This is particularly beneficial for
reduced sensor configurations where the information required
for accurate joint angle estimation is limited [6], [9], [13],
[47].

To reduce the complexity of the AAHM, we used a support
vector machine (SVM) instead of a deep neural network as the
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first stage of the model [47], [48]. Shallow machine learning
techniques, including SVM, have a proven track record of
effectively training accurate activity classification models [43].
We also tried other classification models in the first stage, such
as k-nearest neighbor and random forest. Moreover, we noticed
that note that the performance of the first stage has a minimal
impact on the joint angle estimation of the second stage,
which allows us to focus on selecting a simpler classification
model without affecting the overall joint angle estimation
accuracy of AAHM. We trained separate estimation models
corresponding to each activity for the second stage of AAHM.
The separate estimation model consists of two LSTM layers
with 128 units, two fully-connected layers with 64 neurons
each, and a dropout layer.

We compared the estimation accuracy between the AAHM
and the approach of directly applying the five separate estima-
tion models corresponding to each activity. The latter approach
assumes 100% accuracy in activity classification for the first
stage, effectively eliminating the influence of misclassification
on the joint angle estimation. In this way, we can evaluate the
benefits of incorporating activity awareness in the AAHM and
determine the extent of improvement in joint angle estimation
achieved through this hierarchical model. The activity clas-
sification model and separate estimation models in AAHM
were trained and validated using the leave-one-subject-out
(LOSO) cross-validation method. In this method, the activity
data from one subject were used for testing, the activity data
from another subject were used for parameter validation, and
the activity data from the rest subjects were used for training.
This method ensures that the data from the same subject do
not appear in the training and test datasets, which is preferable
to standard n-fold cross-validation [37].

B. Transfer Learning for Unseen Activities
To improve the model’s generalization ability to unseen

activities, we proposed a novel TL method that utilizes a
dataset of known activities to transfer the common knowledge
of the correlation mapping between IMU sensing data and
joint angles to a model of unseen activities.

1) Pre-Trained Source Model on Semi-Static Yoga Poses:
Initially, we required a pre-trained source model, which is
exclusively trained on the inertial data of the semi-static yoga
poses (Fig. 1 (c)). The pre-trained source model consists of
two LSTM layers with 128 units, two fully-connected layers
with 64 neurons each, and a dropout layer. The output layer
is responsible for generating the joint angle estimations. The
source model was trained using the LOSO cross-validation
method. This method ensures rigorous evaluation of the
model’s performance across different subjects.

2) Knowledge Transfer Towards the Target Dynamic Activity
Model: A TL technique was proposed to enhance joint angle
estimation in dynamic activities, such as golf, swimming,
badminton, or dance, even with a small dataset specific to
each dynamic activity (Fig. 1 (c)). Note that the source model
can transfer knowledge to only one dynamic activity model at
a time.

According to the conclusions of Yosinski et al. [39], the
initial layers of a neural network primarily learn generic

features that apply to a wide range of tasks. As the network
becomes deeper, subsequent layers specialize in learning task-
specific features. The pre-training of the source domain model
was performed using an abundant dataset of semi-static yoga
poses. This allowed the model to learn to estimate joint
angles from IMU data. However, since yoga movements
primarily involve calibration actions on the lower limbs,
although they directly incorporate the fundamental mapping
relationship between IMU data and joint angles, they lack the
specific motion patterns characteristic of dynamic activities
(Fig. 1 (c)). To address this issue, replacing the source model’s
layers close to the output layer is generally recommended [34].
Then, the pre-trained model can be integrated into entirely new
models for each dynamic activity (Fig. 1 (c)).

In our TL method, We obtained all layers preceding the
dropout layer from the pre-trained source model and trans-
ferred them to the target model. These layers contain generic
features relevant to the joint angle estimation task (Fig. 1 (c)).
The target model was assembled by integrating the transferred
layers with a newly introduced fully-connected layer contain-
ing 64 neurons, a dropout layer, and an output layer. During
training, the weights of both the transferred layers and the
newly introduced layer were updated using a minimal dataset
of dynamic activity. This fine-tuning technique plays a crucial
role in the TL framework. It automatically minimizes the
domain discrepancy between the datasets, enabling the model
to adapt to the new target activity with limited data.

3) Subject-Independent Training: The target model for the
dynamic activity was also trained using the LOSO method.
As a result, the TL-based model became subject-independent
since its pre-training, knowledge transfer, and fine-tuning
processes did not rely on any dynamic-activity data from the
tested subjects. To achieve optimal training performance, the
hyper-parameters of the models were tuned. The learning rate
during the training process was adaptively adjusted based on
the model’s accuracy variation on the validation set. In the later
stages of model training, a lower learning rate was utilized to
avoid getting stuck in local optima and to ensure more stable
and incremental changes in the trainable parameters.

4) Validation Strategies: We implemented two methods for
joint angle estimation in dynamic activities: TL and a method
denoted as NoTL, which directly applies the source model
trained on a large amount of semi-static yoga pose data to the
target dynamic activity. We then compared the performance of
these two methods. Each dynamic activity served as a target
domain in our study, resulting in four transfer tasks: transfer
from yoga to golf, transfer from yoga to swimming, transfer
from yoga to badminton, and transfer from yoga to dance.

To evaluate the methods, we used the LOSO cross-
validation method. The training set consisted of yoga activity
data from nineteen subjects for the NoTL and TL methods.
In addition, 20% of the dynamic activity data from the nineteen
subjects were set aside for the transfer and fine-tuning process
in the TL method [49]. This process was repeated for all
twenty-one subjects. The average performance of the models
across the twenty-one iterations was reported as the final
result [37]. In addition to transferring knowledge from the
semi-static yoga poses to the four dynamic activities, we fur-
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Fig. 2. Subject instrumentation layout with each orange box represent-
ing one IMU. Three IMUs were attached to each subject on the pelvis
and shanks, with one IMU per segment. Four 3-marker clusters were
used for motion tracking to calculate the ground truth for joint angles
placed on each thigh and shank, respectively. Each shank IMU was fixed
together with a 3-marker cluster.

ther explored transfer pairs involving different activities as the
source and target domains. As a result, we obtained twenty
transfer pairs for validation, considering the five activities
in total (5 × 4 = 20). These transfer pairs allowed us to
thoroughly investigate the effectiveness of knowledge transfer
between various activity domains and assess the model’s
generalization across different types of movements.

In addition to the LSTM network as the basic network for
the proposed AAHM and TL methods, we also explored the
application of transformer networks. The transformer consists
of an encoder and a decoder, both of which are composed of
stacked modules based on self-attention [50]. The bidirectional
encoder representations from transformers (BERT) contains
only one encoder and has been widely accepted for tasks
such as text classification or named entity recognition [33].
Our transformer network is based on the BERT architecture
and consists of an embedding layer, a positional encoding
layer, and a stack of encoder layers. Each encoder layer com-
prises multi-head self-attention, position-based feedforward
networks, residual connections, and layer normalization. Fol-
lowing this is a flattening layer and two fully-connected layers
with 128 and 12 units, respectively. To prevent overfitting,
a dropout layer was introduced between two fully-connected
layers. We set the number of attention heads to 8, the number
of encoder layers to 2, and the number of units in the hidden
layer of the feedforward network to 128. The configuration
of the transformer network in this study is very similar to a
recently published study [33].

C. Data Collection
1) Subjects: Twenty-one subjects (12 males and 9 females;

age: 22.8±0.8; height: 1.71±0.06 m; weight: 60.2±8.2 kg)
with no history of musculoskeletal disorders were recruited
to participate in this study. All the subjects were healthy
and given informed consent following the Declaration of
Helsinki [51].

2) Markers and IMUs: Twelve reflective markers were
placed on 12 anatomical landmarks to define the segments: left
and right ilium anterior superior, left and right ilium posterior
superior, left and right femur lateral epicondyle, left and right
femur medial epicondyle, left and right fibula apex of lateral
malleolus, left and right tibia apex of medial malleolus. Four
3-marker clusters were placed on each thigh and shank for

Fig. 3. Semi-static yoga poses used for reconstructing joint angles in
dynamic activities. Subfigures 1 to 6 correspond to the following yoga
poses: Standing Pose, Phantom Chair Pose, Dragon Pose, Initial stage
of Warrior I Pose, Warrior I Pose, and Warrior II Pose. The data collection
also included transitional movements for these poses.

motion tracking, placed on each thigh and shank, respec-
tively (Fig. 2). The marker trajectories were captured using
a ten-camera optical motion capture system (Vicon, Oxford
Metrics Group, Oxford, U.K.). Three IMUs (MTw, Xsens,
Netherlands) were securely strapped to the subject, with one
IMU per segment on the pelvis and shanks. To reduce the influ-
ence of soft tissue and alleviate the occlusion of optical marker
points, the shank IMUs were placed on the lateral side near
the ankle. Although there was no rigid orientation requirement
for the shank IMU in each subject, the general orientation
of the shank IMU for all subjects was toward the lateral
shank. The pelvis IMU was placed at the midpoint between
the left and right Ilium Posterior Superior (LIPS and RIPS)
on the back of the pelvis. This stable positioning indicated
the subject’s facing direction during the initial static phase
of data collection. Each IMU outputs three-axis acceleration
values and three-axis angular velocity values. Each shank IMU
was affixed together with the 3-marker cluster above (Fig. 2).
The IMUs and the optical motion capture system operated at
a sampling rate of 100 Hz. The IMUs and optical motion
capture system were electronically synchronized through a
cable before starting data acquisition.

3) Experimental Procedure: Before experimenting, the
researchers instructed the subjects to familiarize themselves
with the activities they would be performing. Researchers
also provided training on various dance and yoga movements
to ensure the subjects were comfortable with the required
actions. The data collection began with the subject performing
a 5-second static neutral posture calibration, maintaining an
upright stance with feet aligned to the marker line on the
ground [52]. This ensures that all subjects are facing the
same direction at the beginning of the experiment, thereby
increasing the invariance of IMU data to human human-facing
direction for improved model training and generalization [6].
Unlike traditional physics-based motion capture methods, this
study omitted the sensor-to-segment calibration. The reason
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for this decision is that deep learning models are susceptible
to random errors introduced by variations in sensor place-
ment orientation during training, ultimately enhancing the
model’s robustness for subject-independent applications [36].
Furthermore, it aligns with the common practice in deep-
learning-based joint angle estimation studies, which typically
avoid sensor-to-segment calibration [1], [2], [6], [7], [8], [9],
[10], [11], [13], [16], [17].

The subjects performed various yoga movements for the
yoga activity, mainly including Phantom Chair Pose, Dragon
Pose, Warrior I Pose, and Warrior II Pose (Fig. 3). Each
standard yoga pose was held for approximately 8 seconds to
simulate the actual yoga exercise. The subjects were asked to
swing an actual golf club at different amplitudes and speeds for
the golf activity. During the swimming activity, subjects were
required to simulate freestyle or breaststroke strokes while
seated. The chair was diamond-shaped and the subject was
seated on one corner of the diamond, allowing for a wide
range of leg motion without contact with the chair. It was
ensured that the subject’s feet and legs remained in the air
and did not have any contact with the ground or external
supports. The pelvis (hips) functioned as a pivot point, facili-
tating leg movement. Additionally, subjects were permitted to
support their hands backward on the two corners of the chair.
This was also to meet the challenge of the common subject
completing the breaststroke kick with only pelvis support.
The subjects were asked to imitate their regular movements
for the badminton activity, including swinging the racket in
various directions and with different intensities. As a result,
the magnitude and intensity of the activity varied among the
subjects. The dance activity involved performing five distinct
fitness dance movements, some selected from Zumba routines.
The duration of each activity was two minutes. The reference
knee and hip joint angles were calculated using the optical
motion capture system and Visual3D software (C Motion, MD,
USA).

4) Pre-Processing: The Vicon-captured optical data was
processed in Visual3D (C-Motion, MD, USA) following the
CAST procedure [53] to calculate the ground truth joint
angles. This optical motion capture system determines ground
truth joint angles through the following steps: a) calibration
of the constant transformation between marker cluster coor-
dinate systems and segments’ anatomical coordinate systems
during the initial N-pose (upright stance); b) tracking segment
movement using three-marker cluster coordinate systems dur-
ing activities; c) calculating relative Euler angles from the
proximal segment to the distal segment in a flexion-abduction-
rotation sequence. Additionally, joint angles during the initial
static N-pose period are regarded as zero, so the offsets during
this period are removed [54]. Specifically, the anatomical
coordinate systems of segments are established using markers
affixed to bony landmarks during static calibration. Concur-
rently, three-marker clusters are utilized to monitor segment
movement, assuming a rigid connection with the clusters [53],
[55], [56].

The raw time-series data from each IMU, including
three-axis acceleration and three-axis angular velocity, were
used as inputs for the data-driven models. The data was

transformed into time slices, with each time slice consisting of
three hundred time steps and eighteen features. The min-max
normalization technique was used to normalize each axis of
acceleration and angular velocity and normalize each dimen-
sion of the output joint angles.

D. Data Analysis
The performance of the TL method and AAHM was eval-

uated using the root-mean-square error (RMSE), which is
calculated as the difference between the ground truth and
the estimated joint angles. We calculated the RMSE for each
subject and determined the average RMSE across all subjects.
A paired t-test was performed on the RMSE values of the
NoTL and TL methods with a significance level of p = 0.05.
For the classification stage of AAHM, supplementary metrics
such as accuracy, sensitivity, specificity, and F1-score were
employed for performance evaluation [43].

III. RESULTS

The proposed TL method improved estimation accuracy
for swimming, badminton, dance, and golf activities in
inter-activity generalization scenarios with limited target train-
ing data (Fig. 4 (a)(c)(e)(g)). If the basic network was LSTM,
the RMSE accuracy improvements brought by TL ranged
from 3.7◦ to 23.6◦ in knee flexion/extension and from 3.2◦

to 22.2◦ in hip flexion/extension (all p < 0.0001). Specifi-
cally, when the model generalized from yoga to swimming
activity, the TL method significantly outperformed the NoTL
method (Fig. 4 (a)). For knee angle estimation, TL achieved
RMSE accuracy improvements of 22.2◦, 2.4◦, and 1.4◦ in
flexion/extension, adduction/abduction, and internal/external
rotation, respectively. For the hip joint angle estimation,
TL also achieved RMSE accuracy improvements of 23.6◦,
3.6◦, 10.4◦ in flexion/extension, adduction/abduction, and
internal/external rotation, respectively (Fig. 4 (a)). When the
model generalized from yoga to badminton activity, the
TL method significantly outperformed the NoTL method.
TL resulted in improved RMSE accuracy by 4.3 degrees in
knee flexion/extension and 4.9 degrees in hip internal/external
rotation (Fig. 4 (c)). When the model generalized from yoga to
dance activity, the TL method significantly outperformed the
NoTL method, resulting in accuracy improvements of 4.8◦ in
knee joint flexion/extension. For hip angle estimation, TL also
brought accuracy improvements of 5.3◦ in flexion/extension
and 2.6◦ in adduction/abduction (Fig. 4 (e)). When the model
generalized from yoga to golf activity, the TL method signifi-
cantly outperformed the NoTL method, resulting in accuracy
improvements of 4.5◦ in knee joint flexion/extension. For hip
angle estimation, TL also brought accuracy improvements
of 4.3◦ in flexion/extension and 1.7◦ in adduction/abduction
(Fig. 4 (g)). If the base network was a transformer, the RMSE
accuracy improvements brought by TL ranged from 6.37◦ to
15.07◦ in knee flexion/extension and from 5.98◦ to 22.05◦

in hip flexion/extension when the model generalized from
yoga to other four activities (all p < 0.0001) (TABLE III).
Compared to the TL method using LSTM as the base network,
the minimum accuracy of joint flexion/extension of the TL
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Fig. 4. Accuracy comparison between NoTL and the proposed TL when transferring from the semi-static yoga poses to the four dynamic activities
(swimming, badminton, dance, and golf) (basic network was LSTM). (a)(c)(e)(g) The mean RMSEs in each DoF for the methods. (b)(d)(f)(h)
The RMSEs in the left knee and hip flexion/extension for individual subjects. The subject-independent TL-based model was robust to individual
differences in the dynamic activity domain. NoTL represents directly applying the source model to the target activity (without TL). * denotes a
significant difference between the RMSEs of NoTL and TL (p < 0.001 for flexion/extension; p < 0.05 for other dimensions). R: Right, L: Left, flex:
flexion/extension, abd: adduction/abduction, int: internal/external rotation.

method using the transformer network is improved when
tested on unseen activities, which suggests that the transformer
network can perform better activity generalization after adding

the fine-tuning mechanism of the TL method. This may be
because the transformer model itself (without TL) is more
sensitive to test samples from unseen activities compared to the
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LSTM model. Therefore, TL is more beneficial for improving
the transformer’s accuracy on unseen activities, which also
reflects the necessity of TL to build generalized and robust
transformer models in the future. We compared the accuracy
of the transformer and the LSTM model after applying the
TL method, and there was no significant difference between
the two models in all 12-dimensional angle values (TABLE I,
TABLE III).

The subject-independent TL achieved higher accuracy than
NoTL when transferring knowledge from each subject’s data
of the yoga domain to the swimming domain (Fig. 4 (b)).
In addition, subject-independent TL generally achieved higher
accuracy than NoTL for badminton, dance, and golf activ-
ities, except for a few subjects (Fig. 4 ((d)(f)(h))). This
indicates that the subject-independent TL-based model was
robust to individual differences for the dynamic activity
(Fig. 4 (b)(d)(f)(h)).

TL consistently outperformed NoTL when the source or
target domains included swimming and when the source
domain was yoga, especially in the flexion/extension dimen-
sion (Fig. 4, TABLE I). It is also noteworthy that in transfer
pairs such as golf-badminton, badminton-golf, badminton-
dance, dance-yoga, dance-golf, and dance-badminton, TL, and
NoTL exhibited similar performance due to the similarity
in the data distribution of these activities (TABLE I). Golf,
badminton, and dance activities could easily be substituted for
each other in terms of joint angle estimation (Fig. 5 (b)).

In the task of simultaneous motion pattern recognition and
joint angle estimation using a reduced IMU configuration, the
average RMSEs of knee joint angle estimation by the AAHM
model (the base network is LSTM) were 10.20◦ (±1.61◦)
in flexion/extension, 4.21◦ (±1.21◦) in adduction/abduction,
and 6.34◦ (±1.03◦) in internal/external rotation across five
activities (Fig. 5 (a)). The average RMSEs of hip joint angle
estimation were 8.91◦ (±1.58◦) in flexion/extension, 5.38◦

(±1.03◦) in adduction/abduction, and 6.24◦ (±1.05◦) in inter-
nal/external rotation, also across five activities. Similarly, the
average RMSEs of knee joint angle estimation by the AAHM
model (the base network is transformer) were 11.64◦ (±1.69◦)
in flexion/extension, 4.38◦ (±1.23◦) in adduction/abduction,
and 6.92◦ (±1.07◦) in internal/external rotation across five
activities (TABLE II). The average RMSEs of hip joint angle
estimation were 9.59◦ (±1.58◦) in flexion/extension, 5.92◦

(±1.03◦) in adduction/abduction, and 6.64◦ (±1.05◦) in inter-
nal/external rotation, also across five activities. The estimation
accuracy of the transformer model for these five non-gait
activities was comparable to or slightly lower than the LSTM
model.

The first activity classification stage of AAHM achieved
an accuracy of 81.8%, an F1-score of 82%, a sensitivity
of 81.7%, and a specificity of 95.4% (Fig. 5 (b)). Note that
directly applying the five separate estimation models corre-
sponding to each activity would be equivalent to a virtual
AAHM with 100% accuracy of activity classification in the
first stage. Surprisingly, there was no significant difference
between the real AAHM and virtual AAHM (with perfect
activity classification) in all twelve knee and hip angle axes
(Fig. 5 (a)). This observation indicates that the first classifica-

tion stage has a negligible effect on the subsequent estimation
stage, despite the AAHM achieving a classification accuracy
of only 81.8%. Badminton and golf were the most easily
confused with each other among the activities, followed by
badminton, golf, and dancing, making these three activities
prone to confusion (Fig. 5 (b)). Additionally, there was confu-
sion between yoga and badminton/golf/dancing, indicating that
certain activities exhibited similar motion patterns (Fig. 5 (b)).
However, swimming had the highest classification accuracy
among all the activities (Fig. 5 (b)). The degree of similarity
between activities reflects the performance of transfer learning
(TABLE I).

Based on the comparison between the ground truth and
the estimated knee and hip angles for each activity, yoga,
swimming, badminton, and dance showed a strong correlation
in knee joint flexion/extension compared to other axes (Fig. 6).
On the other hand, hip adduction/abduction and hip inter-
nal/external rotation were the two dimensions that exhibited
lower estimation accuracy across all the activities (Fig. 6),
consistent with the results obtained in the previous study [3].
We presented the allowable ranges of ground truth values and
estimated values for five activities (TABLE IV), along with
the normalized RMSE of joint angle estimates concerning the
allowable range of ground truth (TABLE V).

IV. DISCUSSION

For the known activities in the training set, the proposed
AAHM with an LSTM neural network achieved satisfactory
three-dimensional joint angle estimation accuracy during yoga,
golf, swimming, badminton, and dance, using a reduced IMU
configuration (Fig. 5 (a)). To further enhance the model’s
generalization ability to unseen activities, the proposed TL
method improved the estimation accuracy of the model trained
on the yoga activity when tested on unseen dynamic activities.
The maximum improvement in estimation accuracy (RMSE)
achieved by TL is 23.6◦ for knee flexion/extension and 22.2◦

for hip flexion/extension compared to the NoTL baseline
(Fig. 4(a)(c)(e)(g), TABLE I). Notably, these improvements
were achieved using only 20% of the original size of the
dynamic activity dataset (Section II-B.4).

A. Joint Angle Estimation in Various Activities
We compared the joint angle estimation accuracy with the

most related motion capture studies that also evaluated various
semi-static and dynamic movements using reduced sensor
configuration [6], [8], [17], [57]. However, note that those
studies did not specifically focus on validating the accuracy
of a particular activity, and the subjects only performed a
few repetitions for the specific movements. In our study, the
joint angle estimation accuracy for golf, badminton, and dance
ranged from 3.83 to 13.07◦ in all dimensions (Fig. 4 (g)(c)(e),
TABLE I). This level of accuracy was higher compared to
the RMSEs reported in previous studies [6] (17.54◦), [17]
(10-15◦), and [8] (15.02◦). Additionally, our results were
consistent with the RMSE reported in the study [57]. The
joint angle estimation accuracy for the highly dynamic swim-
ming activity was approximately 7.15-20.71◦ (Fig. 4 (g)(c)(e),
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TABLE I
RMSE COMPARISON BETWEEN TL AND NOTL IN ALL THE SOURCE-TARGET TRANSFER PAIRS (BASIC NETWORK WAS LSTM)

TABLE I), which aligns with the results reported in the
study [6]. Semwal et al. [20] proposed an algorithm for
calculating joint angles of the robot based on the 3-link
principle. However, a human knee joint cannot be simplified
into a one-dimensional hinge or a three-dimensional ball hinge
for robots because the knee joint can move in all three
dimensions, and the range of motion in the coronal plane is
deeply affected by the motion in the sagittal plane. During
walking, the flexion of the knee joint changes greatly, and

the other two-dimensional angle changes are small. However,
during non-walking dynamic activities, the three-dimensional
angle changes may be large. Therefore, even if the error of this
algorithm is small during walking-type activities, it may not
be effective during dynamic activities. We also compared our
results with a study that estimated lower-limb 3D joint angles
during walking using the same reduced sensor set [3]. Sy et
al. [3] reported sagittal knee and hip joint angle RMSEs of
10.0±2.9◦ and 9.9±3.2◦, respectively, similar to our results.



334 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 32, 2024

Fig. 5. Simultaneous motion pattern recognition and joint angle estimation using a reduced IMU configuration (basic network was LSTM). (a) Overall
accuracy comparison between the activity-aware-based hierarchical model (AAHM) and directly applying the five separate estimation models
corresponding to each activity. Note that directly applying the five separate estimation models would be equivalent to a virtual AAHM with 100%
accuracy of activity classification in the first stage. There were no significant differences between the AAHM and the five separate estimation models
(all less than 0.1◦). (b) Confusion matrix for the first classification stage of AAHM.

Fig. 6. Comparison of the ground truth and the estimated knee and hip
angles corresponding to each activity (basic network was LSTM). X-axis
of each subfigure: time (s), y-axis: angle (degrees). R: Right, L: Left,
flex: flexion/extension, abd: adduction/abduction, int: internal/external
rotation.

However, they observed that during turning movements, the
RMSEs for sagittal knee and hip joint angles could reach 15-
20◦, and the RMSE for the hip joint angle of internal/external
rotation could reach 30-45◦. The reason for these large errors is
that the constraints designed by the algorithm are mainly based
on walking movement patterns, which may not be applicable
or require additional constraints for movements other than
walking, such as turning. Our activities include many dynamic
movements, such as golf swings that involve movements sim-
ilar to turning, so joint angle estimation in dynamic activities
may achieve lower accuracy than walking. Their study also
reported an error of 15◦ in hip adduction/abduction at the
beginning of the movement, which could be attributed to
the model considering previous actions and performing event
detection. There is more movement variability in non-periodic
dynamic activities such as badminton, which could be one
reason for the larger errors observed in dynamic activities.
In addition, estimating hip adduction/abduction and hip inter-

TABLE II
RMSES OF SIMULTANEOUS MOTION PATTERN RECOGNITION AND

JOINT ANGLE ESTIMATION USING A REDUCED IMU CONFIGURATION

WITH DIFFERENT MODELS

nal/external rotation angles posed greater challenges than other
axes (Fig. 6). These insights can inform future improvements
in joint angle estimation models and help focus on addressing
the challenges associated with specific joint angle dimensions
and activity types.

Swimming exhibited significant differences in movement
patterns compared to the other three dynamic activities (golf,
badminton, and dance), so swimming was less likely to be
confused with the other activities (Fig. 5(b)). In swimming,
the subject’s feet could not touch the ground, and their legs
could not rely on external support. Therefore, the pelvis served
as the pivot point to support the legs, allowing for lifting off
and completing movements (Section II-C.3). Whereas in other
activities, the pivot point is the foot in contact with the ground.
Furthermore, other body segments will move around the pivot
point. Therefore, the relationship between the movement of
the shank IMU and the pelvis IMU in swimming is different
from that in other dynamic activities.
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TABLE III
RMSE COMPARISON BETWEEN TL AND NOTL IN ALL THE YOGA-DYNAMIC ACTIVITY TRANSFER PAIRS (BASIC NETWORK WAS TRANSFORMER)

The transformer excels in handling sequence-to-sequence
mapping problems through attention mechanisms, such as
translation tasks in natural language processing [50]. However,
joint angle estimation with reduced sensor configuration is not
a simple mapping problem, it mainly involves the challenge of
time series estimation [19], [20], [21], [22], [58]. Furthermore,
due to the weak periodicity of the five non-gait dynamic
activities investigated in this study, finding the motion patterns
of human body segments is more challenging compared to
typical time series modeling problems. The reduction in the
number of sensors further reduces the observability of the joint
angle estimation problem [6]. Some recent studies reported
that RNNs (or LSTMs) and MLP-type models may outperform
transformers in certain time series tasks [59], [60]. One reason
for this is that transformers are less effective in handling time
series data compared to vision-related information [61]. More-
over, RNN-type models might still be a viable option if the
temporal nature of the data is crucial for the task. Furthermore,
we did not explore the sensitivity of the transformer model to
longer time windows of data. Using longer historical sequence
information tends to gradually enhance the performance of
the transformer [33]. However, training the transformer model
with a longer sequence reduces its feasibility in potential real-
time applications.

In a recent study, Geissinger and Asbeck [17] estimated the
orientation of all body segments using a reduced set of sensors
(five or six for the full body). The study compared two RNN
models and two transformer models. They collected a special
test set that included physical exercises with significantly
higher accelerations, such as Frankensteins, burpees, push-
ups, high jumps, and jogging, as well as stationary periods
and some low-acceleration movements. This special test set
exhibits non-periodic and unpredictable behavioral patterns
that are more similar to the dataset collected in our study.
The overall joint angle estimation results showed that the
RNN-type model performs best, but the accuracy difference
among the four different models is within 2◦. No single model
outperformed the others in all four reduced-sensor configu-
rations, and the transformer (mainly encoder) outperformed
the transformer under some configurations. These findings
suggest that in more dynamic and non-periodic activities,
models of the RNN class may be slightly superior. However,

the differences between transformers and RNNs are small, so it
is difficult to conclude which of these models is superior across
different datasets and reduced-sensor configurations. Sharifi-
Renani et al. [33] employed a transformer that utilizes four
IMUs for sagittal angle estimation at the hip, knee, and ankle
joints. The transformer architecture comprised encoder layers
and fully connected layers. The study reported comparable or
slightly superior performance of the transformer and LSTM
models. However, it is noteworthy that the problem addressed
in this study relates to a normal sensor configuration, not our
reduced sensor configuration. Furthermore, the study empha-
sized caution in applying transformer models to new datasets,
as variations in sensor placement and sensor accuracy could
adversely affect model estimations [33]. Future improvements
in transformer architecture may demonstrate better results in
the domain of reduced sensor configurations. Our study did
not include all types of activities, and for other activities, the
transformer may still be a favorable candidate model.

B. Transfer Learning
When transferring knowledge from the semi-static yoga

poses to the swimming activity, TL substantially improved
accuracy compared to NoTL (Fig. 4 (a)). However, when the
target domain was badminton, dancing, or golf, TL showed a
relatively smaller improvement over NoTL (Fig. 4 (c)(e)(g)).
It could be attributed to the differences between yoga and
the dynamic activities of golf, badminton, and dance being
smaller than the differences between yoga and swimming
(Fig. 5(b)). Transferring knowledge between highly similar
activity domains, such as badminton, golf, and dance, may
result in no significant effect or even slightly negative transfer
(TABLE I). It suggests that the information contained in
the source domain data was already sufficient for estimating
samples from the target domain [32].

The NoTL method displayed notable variability in RMSEs
across subjects. Specifically, when applying the model trained
on the yoga activity to the swimming activity, the RMSE
values for some subjects showed a difference of more than
20◦ (Fig. 4(b)). The error of the NoTL method includes
not only individual differences but also large differences
in data distribution between activities, such as swimming
and yoga activities that are significantly different (Fig. 5(b)).
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TABLE IV
GROUND TRUTH AND ESTIMATED ALLOWABLE RANGE (DEGREES) FOR FIVE ACTIVITIES (BASIC NETWORK WAS LSTM)

TABLE V
NORMALIZED RMSE (%) OF JOINT ANGLE ESTIMATES

CORRESPONDING TO EACH ACTIVITY (BASIC NETWORK WAS LSTM)

Consequently, individual differences in the test set may be
amplified by the activity differences, resulting in considerable
RMSE variability among specific subjects. This implies that
the model may be less robust across subjects if not adapted to
new activities. In contrast, our proposed TL method effectively
minimizes the data distribution differences between activities.
Therefore, its RMSE variability between subjects appears
reasonable and significantly smaller than that of the NoTL
method (Fig. 4(b)).

Using approximately 20% of the target domain data for
transfer is a commonly employed practice. Kang et al. [49]
used 20% of the target domain data for transfer and observed
that the accuracy reached a stable level when the amount
of target domain data involved in the transfer exceeded this
threshold. Similarly, Ameri et al. [38] utilized 25% of the tar-
get domain data to minimize the length of retraining sessions
while ensuring accurate estimation accuracy.

C. Simultaneous Motion Pattern Recognition and Joint
Angle Estimation

Despite the lower classification accuracy of the first stage
of AAHM, the final estimation accuracy of AAHM remained
comparable to directly applying the five separate estimation
models corresponding to each activity (Fig. 5(a)). In cases
where the classification model misclassified badminton sam-
ples as golf activity, which occurred with a probability of
22.2% (Fig. 5(b)), the estimation model for golf was used to
test the badminton samples in the second stage of AAHM.
The scenario corresponds to the NoTL method, where the

source domain is golf, and the target domain is badminton
(TABLE I). The accuracy of NoTL did not significantly
decrease, remaining below 10◦ (TABLE I). Therefore, even
when there are misclassifications in the first stage, they have
a relatively small impact on the final estimation accuracy of
the AAHM. On the other hand, the first stage of AAHM
demonstrated a high correct classification accuracy of 92.8%
for swimming (Fig. 5(b)). It indicates that AAHM rarely
confused swimming with other activities due to the significant
differences between swimming and other activities. Therefore,
samples were effectively prevented from entering the wrong
estimation model in the second stage, which helped avoid a
severe decrease in accuracy (TABLE I).

D. Future Possibilities
In future work, the proposed TL method can be extended

to knowledge transfer between any domains with similarities
in data distribution or feature space (Section II-B.2). There-
fore, this approach can enhance the model’s generalization
ability in various dimensions, including different populations,
and tolerate IMU placement errors, not limited to different
activities alone. The TL method enables fine-tuning of esti-
mation models originally trained on healthy populations for
application to osteoarthritis and total arthroplasty populations.
This adaptation uses only a small subset of observations from
these specific groups, reducing the need for extensive data
collection and retraining of models.

Our approach can be further extended to include more
dynamic activities such as football and skiing in the future.
This expansion holds the potential to make wearable injury
prevention and sports training systems more widespread and
economically viable. Moreover, the TL method enables the
model to acquire the ability to estimate joint angles in dynamic
activities using existing semi-static yoga data sets. This will
contribute to the development of joint angle estimation models
for more dynamic activities. Importantly, collecting data from
semi-static activities is easier than collecting data sets from
dynamic activities, thus significantly saving data collection
efforts.

Future work should seek to extend these findings to fur-
ther investigate the effectiveness of our proposed method
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in estimating upper body joint angles with reduced sensor
configurations. This method has the potential to integrate
dependencies between the upper and lower bodies, allowing
for the joint angle estimation of the upper body during
activities involving the entire body, particularly in situations
such as golf and swimming. The currently proposed activity-
aware-based hierarchical model can only recognize known
activities, though future work should focus on exploring
additional techniques such as anomaly detection to achieve
activity recognition for unknown activities.

E. Limitations
One limitation of this study is that the swimming data was

collected in a simulated seated position rather than in actual
water. In real swimming situations, the forces on the joints
of the whole body are significantly different compared to
common activities on land. Therefore, although we instructed
subjects to simulate swimming movements by driving their
legs as if lifting off in water without attaching any object, the
absence of water resistance and other aquatic factors might
have somewhat affected the dynamics and joint angles.

V. CONCLUSION

This study performed accurate 3D knee and hip angle
estimations using a reduced IMU sensor set across five
activities, including yoga, golf, swimming, badminton, and
dance. This validates the feasibility of the reduced sensor
configuration beyond gait-type activities. Simultaneous motion
pattern recognition and joint angle estimation revealed remark-
able similarities in models for activities prone to confusion.
This suggests a practical strategy: when developing estimation
models for new activities with data distributions akin to known
activities, the datasets of known activities can be directly
employed, thus substantially reducing the need for exten-
sive data collection. Additionally, we proposed a TL-based
approach to estimate joint angles in unseen activities with
limited training data, thereby enhancing the model’s gener-
alization ability across diverse activities. This is particularly
beneficial for activities where the data distribution differs
significantly from known data sets. Leveraging the known
semi-static yoga poses dataset, our proposed approach signif-
icantly improved joint angle estimation in dynamic activities
compared to without TL, utilizing only 20% of the original
dataset size. These findings not only extend the applicability
of motion capture with reduced sensor configurations to a
wider spectrum of activities relevant to injury prevention and
sports training but also offer a concrete TL-based solution for
augmenting the model’s adaptability to unseen activities using
minimal training data.
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