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Abstract— Adaptive compliance control is critical for
rehabilitation robots to cope with the varying rehabilitation
needs and enhance training safety. This article presents a
trajectory deformation-based multi-modal adaptive compli-
ance control strategy (TD-MACCS) for a wearable lower limb
rehabilitation robot (WLLRR), which includes a high-level
trajectory planner and a low-level position controller.
Dynamic motion primitives (DMPs) and a trajectory defor-
mation algorithm (TDA) are integrated into the high-level
trajectory planner, generating multi-joint synchronized
desired trajectories through physical human-robot interac-
tion (pHRI). In particular, the amplitude modulation factor
of DMPs and the deformation factor of TDA are adapted
by a multi-modal adaptive regulator, achieving smooth
switching of human-dominant mode, robot-dominant mode,
and soft-stop mode. Besides, a linear active disturbance
rejection controller is designed as the low-level position
controller. Four healthy participants and two stroke sur-
vivors are recruited to conduct robot-assisted walking
experiments using the TD-MACCS. The results show that
the TD-MACCS can smoothly switch three control modes
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while guaranteeing trajectory tracking accuracy. Moreover,
we find that appropriately increasing the upper bound of
the deformation factor can enhance the average walking
speed (AWS) and root mean square of trajectory deviation
(RMSTD).

Index Terms— Wearable lower limb rehabilitation robot,
physical human-robot interaction, trajectory deformation
algorithm, dynamic motion primitives, linear active distur-
bance rejection control.

I. INTRODUCTION

STROKE is a significant global health issue, resulting in
approximately 5.5 million deaths annually, and the number

of stroke survivors is projected to reach 77 million globally by
2030 [1]. The substantial disability rate associated with stroke,
exemplified by a one-year disability rate of 44.78% in China,
often leads to lower extremity motor and functional injuries
among survivors [2]. Driven by the need to accommodate the
large patient population, wearable lower limb rehabilitation
robots (WLLRRs), such as H2 [3], HAL [4], Ekso [5], and
BEAR-H1 [6], have emerged as promising interventions for
assisting the stroke survivors with lower extremity motor
dysfunction in achieving gait training. Furthermore, they have
demonstrated positive effects in facilitating the recovery of
motor function [6], [7], [8].

Various control strategies have been proposed to enable
rehabilitation robots to cope with patients with different levels
of motor abilities. For patients with weak residual muscle
strength, the passive control strategy is commonly employed,
delivering long-endurance and high-intensity therapeutic train-
ing along predefined trajectories [9]. Many passive control
strategies, such as the linear active disturbance rejection con-
troller (LADRC) [10] and the adaptive network-based fuzzy
logic controller [11], have been successfully implemented in
lower limb rehabilitation robots to ensure accurate trajectory
tracking. For patients with high residual muscle strength, the
active control strategy has garnered considerable attention as
it takes into account the patients’ active contribution, which
can promote neural plasticity [12]. An impedance controller
has been utilized in a lower limb rehabilitation robot (LLRR)
to provide predefined assistance within an acceptable tracking
error range [13]. Admittance controllers have been applied in

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-2335-3573
https://orcid.org/0000-0002-6127-4553
https://orcid.org/0000-0003-2906-2857
https://orcid.org/0000-0002-6059-7326
https://orcid.org/0000-0002-5694-8752
https://orcid.org/0000-0003-3662-116X


ZHOU et al.: TRAJECTORY DEFORMATION-BASED MULTI-MODAL ADAPTIVE COMPLIANCE CONTROL 315

WLLRR to deviate the robot-imposed motions from the prede-
fined trajectory, reducing gait trajectory mismatch and offering
more comfortable walking assistance [14], [15]. A human-
robot cooperation controller based on a trajectory deformation
algorithm (TDA) has been proposed and applied in a LLRR,
enabling the prediction of the robot’s future trajectory through
the physical human-robot interaction (pHRI) [16]. A force field
controller composed of normal, tangential, damping, and feed-
forward compensation force has been proposed for an active
leg exoskeleton [17], allowing the patients to move freely
around a preset reference path. Additionally, the velocity-field-
based controller has been proposed for a fully back-drivable
WLLRR, which can provide motion guidance and assistance
during over-ground gait training [18]. Although these active
control strategies consider the patients’ active contribution,
they overlook the significant variability in disability levels
among patients and even within an individual patient during
rehabilitation training.

Many research studies have focused on control strategies
that adaptively switch between multiple modes of rehabilita-
tion training. Li et al. developed a human-in-the-loop control
strategy for a WLLRR based on a specific potential energy
function [19]. This strategy effectively balances the capabil-
ities of the user and exoskeleton by transitioning between
the human-voluntary and robot-constrained regions. Further-
more, given the close coupling between rehabilitation robots
and patients, ensuring safety during rehabilitation training is
paramount. To address this concern, Zhang and Cheah [20]
proposed a human-robot interaction control strategy. Based on
real-time position error, this strategy can adaptively switch
between human-dominant mode, robot-dominant mode, and
safety-stop mode. Unfortunately, the impulsive contact force
or the low robot compliance will make it difficult for the
patients to generate enough error signals to activate the
safety-stop mode. To overcome this limitation, a multi-modal
control strategy was proposed and verified on the upper and
lower limb rehabilitation robots [21]. This strategy adaptively
switches between human-dominant mode and robot-dominant
mode based on tracking errors, and can easily activate the
safety-stop mode using interaction forces. Although error
signals are essential in motion learning [22], they cannot
be perceived by the patients promptly during robot-assisted
training without visual feedback. Additionally, the tracking
error is affected by both the subjects’ motor ability and the
controller’s performance. Therefore, Xu et al. proposed a
multi-modal adaptive control strategy for a sitting lower limb
rehabilitation robot [23]. This strategy enables smooth switch-
ing between the robot- and human-active modes by adjusting
a weight factor based on interaction torque obtained using an
EMG-driven impedance model. Although these multi-modal
adaptive control strategies can match the varying motor abili-
ties of patients, achieving compliant pHRI and adjusting robot
compliance, particularly in robot-assisted walking, remains a
significant challenge. To the best of our knowledge, how to
design a multi-modal adaptive compliance control strategy
for WLLRR, which can achieve smooth switching of human-
dominant mode, robot-dominant mode, and soft-stop mode
through compliant pHRI, has not been investigated.

Fig. 1. System of the SYSU-REHAB1-H: (a) The self-designed
WLLRR with a movable bracket; (b) The mechanical structure of the
hip actuator module; (c) The exoskeleton length adjustment and the
knee joint motion range limitation mechanical structure; (d) One stroke
patient walking over-ground assisted by the SYSU-REHAB1-H under
the guidance of the operator.

This article proposed a trajectory deformation-based multi-
modal adaptive compliance control strategy (TD-MACCS)
for a self-designed WLLRR. Besides, robot-assisted walking
experiments were performed on four healthy participants and
two stroke survivors, and the results were analyzed quantita-
tively. The main contributions can be summarized as follows:

1) We have integrated the dynamic motion primitives
(DMPs) [24] and TDA into the trajectory planner, making
learning and adjusting rehabilitation task trajectory more
convenient and realizing compliant pHRI. Besides, we have
proposed a multi-modal adaptive regulator based on the ampli-
tude modulation factor of DMPs and the deformation factor
of TDA. It can enable the WLLRR to match the varying
motor abilities of users by smoothly switching different con-
trol modes. Additionally, the LADRC is designed to ensure
trajectory tracking accuracy under internal and external dis-
turbances.

2) We have preliminarily verified the TD-MACCS on
four healthy participants and two stroke survivors. The
results demonstrate that TD-MACCS can adaptively and
smoothly switch between human-dominant, robot-dominant,
and soft-stop modes while maintaining high trajectory tracking
accuracy. Furthermore, we find that appropriately increasing
the upper bound of the deformation factor in TD-MACCS
can enhance the average walking speed (AWS) and root mean
square of trajectory deviation (RMSTD).

II. DESIGN OF WLLRR SYSTEM

A. Mechanical Structure of WLLRR
Intending to provide over-ground gait training for patients,

we have developed a wearable lower limb rehabilitation robot,
SYSU-REHAB1-H, based on the robot described in [25].
As illustrated in Fig. 1 (a), to constitute a simple and appli-
cable system, each leg is driven with two active DoF (degrees
of freedom) at the hip and knee joints (flexion/extension).
The waist, thigh, calf, and foot support with Velcro straps
are designed to fasten the WLLRR to the different parts of
the patient’s body. The limit block in each actuator module is
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Fig. 2. The framework of the control strategy for SYSU-REHAB1-H.

designed to avoid joint movement beyond the normal range,
as illustrated in Fig. 1 (b) and (c). Besides, the thigh and calf
exoskeletons are made adjustable by rotating the knobs to align
the user and SYSU-REHAB1 joints as much as possible. From
Fig. 1 (d), due to patients’ poor balance maintenance ability,
the hoist with a walking aid sling is adopted to prevent the
users from falling during robot-assisted walking.

B. Driving System of WLLRR
The driving system comprises the joint actuator modules,

the data acquisition/output module, and the compact DAQ
controller. A 220 W flat motor (EC 90 flat, Maxon, Sachseln,
Switzerland), a harmonic reducer (LCD-20-100-C-I, Leader,
Jiangsu, China), and a torque sensor (M2212A, SRI, Guangxi,
China) are selected to constitute the hip joint actuator module,
as illustrated in Fig. 1 (b). Besides, a 100 W flat motor (EC
60 flat, Maxon, Sachseln, Switzerland), a harmonic reducer
(LCD-17-100-C-I-ST, Leader, Jiangsu, China), and a torque
sensor (M2210N4, SRI, Guangxi, China) are applied to con-
stitute the knee joint actuator module. Different motors are
controlled by the same motor driver (Module 50/5, Maxon,
Sachseln, Switzerland). The angular position of each active
joint is sensed using an optical encoder (MILE 1024, Maxon,
Sachseln, Switzerland) located inside the motors. The data
acquisition/output modules (NI-9205, NI-9361, NI-9403, NI-
9401, National Instruments, Texas, USA) and the compact
DAQ controller (cDAQ-9136, National Instruments, Texas,
USA) are adopted to collect, generate, and output signals
to control the actuator module of each joint through the
LabVIEW 2018 software.

III. DESIGN OF CONTROL STRATEGY

As illustrated in Fig. 2, the TD-MACCS, including a
high-level trajectory planner and a low-level position con-
troller, is proposed for the SYSU-REHAB1-H. The high-level
trajectory planner consists of a trajectory generator, a desired
trajectory predictor, an interaction torque estimator, and a
multi-modal adaptive regulator. The LADRC is adopted as
the low-level position controller to ensure each joint of the
SYSU-REHAB1-H tracks the desired trajectory under internal
and external disturbances. Each part of the TD-MACCS will
be comprehensively discussed in the following subsections.

It is worth noting that to avoid confusion between the
reference trajectory and the desired trajectory, we provide the

following explanation: 1) The reference trajectory for each
active joint is generated by the trajectory generator without
activating the desired trajectory predictor; 2) The desired
trajectory for each active joint is generated by the trajectory
generator and the desired trajectory predictor, which can be
adjusted in real-time through pHRI.

A. Trajectory Generator
Different nonlinear methods were adopted as trajectory

generators for WLLRRs, including DMPs [26] and central
pattern generators [27]. Since DMPs have an excellent ability
for motion learning and generalizing, especially in multi-joint
robot control scenarios, they are suitable for encoding and
adjusting the periodic gait trajectory in real time [24]. Thus,
the trajectory generator is designed based on DMPs, and it
can be described as follows:{

κ żq = αq(βq(gq − qr)− zq)+ f q

κ q̇r = zq
, (1)

κφ̇ = 1, (2)
κ ṙ = αr(r0 − r), (3)

f q =

∑m
i=1 ψi (φ)wq,i∑m

i=1 ψi (φ)
r, (4)

ψi (φ) = exp(
cos(φ − ci )− 1

2σ 2
i

), (5)

where κ is the positive temporal scaling factor; gq ∈ R4 is
the position goal vector; αq and βq are positive constants,
and the critical damping configuration αq = 4βq can ensure
the convergence and stability of DMPs; f q ∈ R4 is the
forcing term vector obtained by supervised learning; we adopt
the locally weighted regression method [24] in this article;
qr ∈ R4 and q̇r ∈ R4 are the reference angle and angular
velocity vector; zq ∈ R4 and żq ∈ R4 are the reference
angular velocity and angular acceleration after expansion or
contraction; r and r0 are the state variables of the amplitude
modulation factor and the desired amplitude modulation factor
respectively; αr is a positive constant that determines the
change rate of amplitude factor; φ is the phase variable; ψi (φ)

is the ith kernel function; σi and ci are constants that determine
the width and center of the ith kernel function; m is the number
of kernel functions; wq,i ∈ R4 is the weight coefficient vector
corresponding to the kernel function ψi (φ).

B. Interaction Torque Estimator
The torque sensor mounted between the harmonic reducer

and exoskeleton can be used to measure the interaction
torque [13]. Unfortunately, it is not easy to accurately extract
the interaction torque because of the inertial torque, gravity
torque, and the torque caused by Coriolis and centripetal [28].
According to our previous research, an interaction torque
estimator is adopted to estimate the interaction torque without
using the dynamic model [25]. The interaction torque estimator
based on DMPs can be described as follows:{

κ żτ = ατ (βτ (gτ − τ nts)− zτ )+ f τ
κ τ̇ nts = zτ

, (6)
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f τ =

∑m
i=1 ψi (φ)wτ,i∑m

i=1 ψi (φ)
r, (7)

τ̂ I = τRmtw − τ nts, (8)

where τ nts ∈ R4 and τ̇ nts ∈ R4 are the normalized joint torque
vector and its first derivative; zτ ∈ R4 and żτ ∈ R4 are the first
and second derivative of τ nts after expansion or contraction;
ατ and βτ are positive constants in the interaction torque
estimator, and the critical damping configuration ατ = 4βτ
can ensure the convergence and stability of DMPs; gτ ∈ R4

is the torque goal vector; f τ ∈ R4 is the forcing term vector
in interaction torque estimator; wτ,i ∈ R4 is the weight
coefficient vector corresponding to the ith kernel function in
interaction torque estimator; τ jtw ∈ R4 and τ̂ I ∈ R4 are the
measured torque vector and interaction torque vector during
robot-assisted walking.

To avoid frequent adjustment of the reference trajectory
caused by small interaction torque under high robot compli-
ance [27], [29], it is necessary to design the interaction torque
truncation function as follows:

τ̂IA,k =

{
τ̂I,k,

∣∣τ̂I,k
∣∣ > τ̄k

0,
∣∣τ̂I,k

∣∣ ≤ τ̄k
, (9)

where k = 1, 2, 3, 4 represent different active joints, k = 1 and
k = 3 represent the left and right hip joints, k = 2 and
k = 4 represent the left and right knee joints; τ̂I,k represents
the interaction torque of the kth active joint; τ̂IA,k represents
the interaction torque of the kth active joint after truncation
processing; τ̄k represents the interaction torque threshold of
the kth active joint, which is the minimum interaction torque
required for activating the desired trajectory predictor; Usually,
the interaction torque threshold of the hip joint is greater than
that of the knee joint, namely, τ̄1 > τ̄2, τ̄3 > τ̄4, τ̄1 > τ̄4, τ̄3 >

τ̄2, and their value can be adjusted by physical therapists
according to actual needs [29].

C. Desired Trajectory Predictor
Physical interaction affects not only the current state of the

WLLRR but also its future behavior [30]. A trajectory planner
should be able to generate smooth current and future trajec-
tories continuously. TDA can smoothly generate the current
desired position and predict the future desired trajectory based
on the interaction torque [16]. Thus, the TDA is adopted as
the desired trajectory predictor.

According to our previous work [16], we define ts and tf
as the start and end times of the trajectory deformation at
the current pHRI. qr (t) ∈ R4 and qd(t) ∈ R4 are defined as
the reference and desired trajectory, respectively. u ∈ R4×4 is
defined as the diagonal deformation factor matrix. 0(u, t) is
defined as the deformation curve function, which can yield
different smooth deformation curves over the time interval
t ∈ [ts, t f ] by adjusting the deformation factor. The desired
trajectory in the current iteration and the previous iteration are
defined as follows:

qd(t) = 0(u, t), t ∈ [ts, t f ], (10)
0(0, t) = [qd(ts), qd(ts + δ),

· · · , qd(ts + (N − 2)δ), qr (t f )], (11)

N =
p
δ

+ 1, (12)

where p is the prediction time; δ is the sample period; N is
the number of waypoints.

The iterative equation of TDA for the current trajectory
deformation during pHRI can be described as follows:


0(u, t) = 0(0, t)+ V (t)u, t ∈ [ts, tf]
V (t) = δH τ̂

T
IA(ts)

H =
Wβ

(p + δ) ∥W∥

, (13)

W = (I − (ZT Z)−1CT(C(ZT Z)−1CT)−1C)(ZT Z)−1,

I ∈ RN×N , (14)

where τ̂ IA(ts) = [τ̂IA,1(ts), τ̂IA,2(ts), τ̂IA,3(ts), τ̂IA,4(ts)] is the
interaction torque vector after truncation processing at time
ts; β ∈ RN is the prediction vector of the interaction torque;
Z ∈ R(N+3)×N is a finite differencing matrix; C ∈ R4×N is
a constraint matrix; I ∈ RN×N is an identity matrix; H and
V (t) are the motor primitive and vector field functions.

Moreover, it is worth mentioning that, although we focus on
the current trajectory deformation, the desired trajectory can
be continuously generated in response to the interaction torque
through a linear iterative method during physical human-robot
interaction. Furthermore, the specific derivation process of
TDA is given in [16].

D. Multi-Modal Adaptive Regulator

Since the motor ability of different patients is complex
and ever-changing, it is necessary to develop a multi-modal
adaptive regulator to increase the robots’ adaptability and
training safety. Inspired by [21] and [23], a multi-modal
adaptive regulator is proposed according to the interaction
torque. The overall idea of the multi-modal adaptive regulator
is as follows: 1) the deformation factor can increase smoothly
and adaptively within the allowable range when the motor
ability is satisfactory, allowing the patients to move with
greater degrees of freedom, that is, the human-dominant mode;
2) the deformation factor can decrease adaptively to enforce
small or no deviations from the reference trajectory when
the motor ability is poor, which can correct the patients’
abnormal gait trajectory, that is, the robot-dominant mode;
3) the reference trajectory should be smoothly switched to
the zero reference position to offer soft-stop protection when
the interaction torque is outside the safe interaction torque
region, that is, the soft-stop mode. Besides, the reference
trajectory can also automatically and smoothly switch back
to the original reference trajectory to restore robot-assisted
walking after a specified protection time. The multi-modal
adaptive regulator based on the above concept can be described
as follows:

h(τ̂I,k) =
τ̂ 2

I,k

τ 2
n,k

− 1, (15)



318 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 32, 2024

uk =



uu,k,
∣∣τ̂I,k

∣∣ ≤ kτ,kτn,k

uu,k + (ud,k − uu,k)
[h(τ̂I,k)

4
− (k2

τ,k − 1)4]4

(k2
τ,k − 1)16

,

kτ,kτn,k <
∣∣τ̂I,k

∣∣ ≤ τn,k

ud,k,
∣∣τ̂I,k

∣∣ > τn,k

,

(16)

r̂k =

{
0,

∣∣τ̂I,k(ta,k)
∣∣ > τs,k ∪ ta,k < t ≤ ta,k + Ls

r∗

0 ,
∣∣τ̂I,k(t)

∣∣ ≤ τs,k ∩ t > ta,k + Ls
, (17)

r0 = min(min(r̂1, r̂3),min(r̂2, r̂4)), (18)

where k = 1, 2, 3, 4 represent different active joints of
WLLRR; τ̂ n = [τ̂n,1, τ̂n,2, τ̂n,3, τ̂n,4] is the nominal interaction
torque vector, which is set according to patients’ disability
level; We define that motor ability is satisfactory when the
interaction torque is less than the nominal interaction torque,
otherwise it is poor. h(τ̂I,k) is the interaction torque region
function of the kth joint, which can reflect the changes of inter-
action torque in a normalized form; kτ = [kτ,1, kτ,2, kτ,3, kτ,4]
is the constant vector, which determines the change rate of the
deformation factor; u = diag(u1, u2, u3, u4) is the diagonal
deformation factor matrix; uu = diag(uu,1, uu,2, uu,3, uu,4)

and ud = diag(ud,1, ud,2, ud,3, ud,4) are the upper and lower
bound matrices of the deformation factor, respectively; τ s =

[τs,1, τs,2, τs,3, τs,4] is the safe interaction torque vector, which
should be set to avoid the safety problem caused by excessive
interaction torque; ta,k is the time when the interaction torque
of the kth joint is larger than the safe interaction torque; Ls
is the specified protection time after the soft stop protection
is activated; r̂k is the amplitude modulation factor of the kth
joint; r∗

0 is the initial value of the amplitude modulation factor
for each joint; r0 is the desired amplitude modulation factor in
the interaction torque estimator and the trajectory generator.

According to (3), (17), and (18), the state variable of the
amplitude modulation factor r will converge exponentially to
zero when the desired amplitude factor r0 is switched to zero.
It follows that each component of the forcing term vector f q ∈

R4 can converge to zero. Thus, the reference trajectory of
each active joint will converge to the target position vector
gq ∈ R4 synchronously, realizing soft-stop protection during
robot-assisted walking.

E. LADRC

Model-free controllers [10], [31] are widely used in
WLLRR because the model parameters of the human-robot
coupling model are difficult to obtain accurately by system
identification. In recent years, an active disturbance rejection
controller has been applied in robots because it can eliminate
the necessity of an accurate human-robot coupling model [32].
To simplify the structure of the controller and reduce the
number of tuning parameters, the LADRC, i.e., a combination
of linear extended state observer and linear state feedback,
has been proposed [33]. In this part, the LADRC is designed
based on a second-order error auxiliary system to ensure each
joint tracks the desired trajectory under internal and external
disturbances.

The dynamic model of kth active joint in the human-robot
coupling system can be simplified as follows:

Jk q̈k + Bk q̇k + Gk sin(qk)+ Tksgn(q̇k)

= τA,k + τu,k + τH,k, (19)

where Jk is the inertial of the robotic exoskeleton (including
the subject’s leg); Bk is the viscous friction torque coefficient;
Gk is the gravity torque; Tk is the Coulomb friction torque;
τA,k is the control torque; τH,k is the active joint torque
of subjects; τu,k is the disturbance torque introduced by the
uncertain parameters, unknown friction characteristics, and
external disturbance of the dynamic model.

Defining the tracking error as ek = qk − qd,k , and a
second-order error auxiliary system can be constructed as
follows:

ëk = fk + bkτA,k, (20)

fk =
1
Jk
(τu,k + τH,k − Jk q̈d,k − Bk q̇k − Gk sin(qk)

− Tksgn(q̇k)+ JkτA,k − JkbkτA,k), (21)

where qd,k and qk are the desired angle and actual angle;
fk is the total disturbance consisting of internal and external
disturbances; bk is the compensation factor determined by
dynamic characteristics.

The state space form of (20) can be given as follows:{
ẋk = Ak xk + BkτA,k + Ek ḟk

ek = Ck xk
, (22)

where xk = [ek, ėk, fk]
T is the extended state vector, and

Ak =

 0 1 0
0 0 1
0 0 0

 Bk =

 0
bk
0

 , Ek =

 0
0
1

 , Ck =
[

1 0 0
]
.

The linear extended state observer corresponding to the
above equation can be given as follows:{

żk = [Ak − Lk Ck]zk + [Bk, Lk]Dk

yk = zk
, (23)

where zk = [êk, ˆ̇ek, f̂k]
T is the state vector; Lk is the observer

gain vector; Dk = [τA,k, ek]
T is the input vector; yk =

[êk, ˆ̇ek, f̂k] is the output vector.
It is necessary to reasonably design the observer gain

vector to realize the ideal state observation. The poles of the
observer’s characteristic equation are set at the same position
on the left side of the complex plane to ensure that the observer
gain vector is uniquely related to the observer bandwidth, i.e.,
Lk = [3ωk, 3ω2

k , ω
3
k ]

T, and it follows that

λ (s) = |s I − (Ak − Lk Ck)| = (s + ωk)
3, (24)

where I ∈ R3×3 is an identity matrix; ωk is the observer
bandwidth.

For the second-order error auxiliary system, the linear
extended state observer can estimate the external and internal
disturbances in real time. Hence, the integrator term used to
eliminate steady-state errors in classical proportional–integral–
derivative is unnecessary. Thus, the linear state feedback
control law for the error auxiliary system is simplified to a
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proportional–derivative controller. The control law for the kth
active joint of SYSU-REHAB1-H can be described as follows:

τA,k =
−kp,k zk,1 − kd,k zk,2 − zk,3

bk
, k = 1, 2, 3, 4, (25)

where kp,k and kd,k are the proportional and derivative gain,
respectively; bk is the compensation factor determined by
dynamic characteristics.

The stability analysis of the LADRC for nonlinear systems
with dynamic uncertainties has been considered in [34]. Under
the assumption that the total disturbance and its time derivative
are bounded, the estimation error of the linear extended state
observer and the tracking error of the closed-loop control
system are bounded, namely bounded-input-bounded-output
stable.

IV. DESIGN OF EXPERIMENT

A. Experimental Protocol
We conducted robot-assisted walking experiments on four

healthy participants and two stroke survivors at the Department
of Rehabilitation Medicine, Zhujiang Hospital of Southern
Medical University, China. Our research was approved by the
Ethics Committee of Zhujiang Hospital of Southern Medical
University. The participant information is shown in Table I.
The inclusion criteria of the stroke survivors are: 1) stroke
survivors should have enough strength to maintain the body
balance through upper limb support; 2) stroke survivors should
have no significant limitation in the passive range of motion
of the hip and knee joints; 3) stroke survivors should have
the walking ability, despite the walking stability is reduced
and the gait speed is significantly lower than that of person
without disability; 4) stroke survivors should have no visu-
ospatial, cognitive, or attention deficits that prevent them from
following instructions. Writing informed consent was acquired
from all participants before the experiments. Besides, some
instructions should be given to the participants: 1) participants
should maintain their balance through the hoist and complete
the alternating left and right legs by shifting the center of
gravity between two legs; 2) participants should walk along the
yellow guideline on the ground to the end under the guidance
of the operator. Moreover, similar to [25], we chose reference
trajectories for the SYSU-REHAB1 through the following
steps:1) we collected gait trajectories of healthy participants
through the motion capture system; 2) gait trajectories were
normalized and averaged, and the averaged gait trajectories
were used as the reference trajectories; 3) local weighted
regression method was adopted to encode the reference trajec-
tories; 4) we adjusted the gait speed and amplitude through the
temporal scaling factor and the amplitude modulation factor
to obtain suitable reference trajectories.

Each participant was required to conduct robot-assisted
walking experiments using the TD-MACCS with low, medium,
and high upper bounds of the deformation factor (TD-
MACCS-L, TD-MACCS-M, and TD-MACCS-H). Healthy
participants should train for 20 minutes before the experi-
ments, alleviating the influence of initial skill differences on
the experimental results. In each trial, the healthy participants

TABLE I
INFORMATION OF PARTICIPANTS

should complete a 15 m straight-line robot-assisted walking,
and they were permitted to sit on a chair and rest for
5 minutes after a trial. Stroke survivors must train for two
days (two groups per day, 30 minutes for each group) before
the experiment. It can help patients become familiar with the
SYSU-REHAB1-H and master the skill of shifting the center
of gravity. Due to the large difference in motor ability between
stroke survivors and healthy participants, stroke survivors
only needed to complete a 5 m straight-line robot-assisted
walking in each trial, and they were permitted to sit on a
chair and rest for 5 minutes after three trials. Each control
strategy (TD-MACCS-L, TD-MACCS-M, and TD-MACCS-
H) was used randomly and discontinuously three times during
robot-assisted walking experiments. In addition, the angle,
deformation factor, interaction torque, control torque, and
observation torque were recorded during each trial.

B. Parameter Settings
Control parameters of the TD-MACCS should be set rea-

sonably. Similar to [25], the positive constants in the trajectory
generator and the active torque estimator were set as follows:
αq = 25, βq = 6.25, ατ = 25, βτ = 6.25, αr = 12.5, gq =

gτ = 0. Besides, the temporal scaling factor was set to
κ = 0.3 and the initial value of the amplitude modulation
factor was set to r∗

0 = 0.8. For the trajectory predictor,
the prediction time was set to p = 1 s and the sample
period was set to δ = 0.02s. The lower bound of the
deformation factor was uniformly set to ud = 0 ∈ R4×4; and
the upper bounds of the deformation factor in TD-MACCS-
L, TD-MACCS-M, and TD-MACCS-H were set as follows:
uu = 0 ∈ R4×4, uu = diag{0.03, 0.03, 0.03, 0.03}, and
uu = diag{0.05, 0.05, 0.05, 0.05}, respectively. The interac-
tion torque threshold vector was set to τ̄ = [1, 0.5, 1, 0.5].
For the multi-modal adaptive regulator, the constant vector,
the protection time, the nominal interaction torque vector,
and the safe interaction torque vector were set as follows:
kτ = [0.15, 0.15, 0.15, 0.15] , Ls = 1 s, τ n = [15, 10, 15, 10],
and τ s = [20, 15, 20, 15], respectively. For the LADRC, the
compensation factor vector and the observer bandwidth vector
were set to b = diag{1, 1, 1, 1} and ω = [100, 100, 100, 100];
the proportional gain vector and the derivative gain vec-
tor were set to kp = diag{180, 160, 180, 160} and kd =

diag{25, 15, 25, 15}. Note that all control parameters of
the TD-MACCS remain unchanged for different partici-
pants to ensure the fairness of comparing experimental
results.
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Fig. 3. Results of SS#1 when using the TD-MACCS-L. The first and
second columns are the results of the right and left legs respectively. TT,
RT, TE, IT, CT, and OT represent tracking trajectory, reference trajectory,
tracking error, interaction torque, control torque, and observation torque,
respectively.

C. Evaluation Method
The average walking speed (AWS), root mean square of tra-

jectory deviation (RMSTD), and normalized root mean square
of tracking error (NRMSTE) were used to quantitatively evalu-
ate the movement performance during robot-assisted walking.
Each evaluation index can be described as follows:

AWS =
Lw
Tw
, (26)

RMSTD =

√∑M
n=11d2

k (n)
M

, (27)

NRMSTE =

√∑M
n=1 e2

k (n)
M

max(qd,k)− min(qd,k)
, (28)

where n = 1, 2, 3, 4, . . . ,M is the sample number; Lw is
the straight-line distance of robot-assisted walking; Tw is the
time taken by the participants to complete one trial; 1dk(n)
is the deviation between the reference trajectory and desired
trajectory of the kth active joint at the nth sampling point;
ek(n) is the tracking error between the desired trajectory and
tracking trajectory of the kth active joint at the nth sampling
point; max(qd,k) and min(qd,k) are the maximum and mini-
mum desired position of the kth active joint, respectively.

V. EXPERIMENTS RESULTS

Fig. 3 (a), (b), (e), and (f) show that the trajectory generator
can generate multi-joint synchronized reference trajectories
for active joints of SYSU-REHAB1-H, and the LADRC can
ensure that each joint tracks the reference trajectory within a
small range of error. Since the upper bound of the deformation
factor is set to zero to “shield” the desired trajectory predictor,
there is no real-time generation of desired trajectories during
pHRI. Fig. 3 (c), (d), (g), and (h) show that the interaction
torque, control torque, and observation torque of each joint

Fig. 4. Results of SS#1 when using the TD-MACCS-M. The first and
second columns are the results of the right and left legs respectively.
TT, DT, RT, and TE represent tracking trajectory, desired trajectory,
reference trajectory, and tracking error, respectively.

have obvious periodic characteristics during robot-assisted
walking. The interaction torque of each joint in the right leg
is within 10 Nm, less than that of the left leg (hemiplegic
side). Except for the right hip joint, the control torque curve of
each joint has no significant vibration. Besides, the shape and
magnitude of the observation torque are consistent with those
of the control torque, which shows that the linear extended
state observer can effectively compensate for internal and
external disturbances.

Fig. 4 shows that the TD-MACCS-M can smoothly switch
the control mode of the robot among human-dominant mode,
robot-dominant mode, and soft-stop mode during robot-
assisted walking. From the gray-shaded part, the soft-stop
mode is activated when the interaction torque exceeds the
safe interaction torque. The reference trajectory of each joint
quickly and smoothly converges to the zero reference position,
thus realizing the soft stop protection. Meanwhile, each joint
of SYSU-REHAB1-H can track the desired trajectory well.
From the orange-shaded part, the robot can smoothly switch
to human-dominant mode when it detects the interaction
torque smaller than the safe interaction torque after a specified
protection time. In human-dominant mode, the robot allows
the patient to adjust the reference trajectory naturally and
smoothly through pHRI. From the light green shaded part, the
robot-dominant mode is activated when the interaction torque
exceeds the nominal interaction torque, which can enforce the
desired trajectory to converge to the reference trajectory.

Fig. 5 shows that the right leg of the stroke survivor is in
human-dominant mode, while the left leg (hemiplegic side) is
in either robot-dominant mode or human-dominant mode when
using TD-MACCS-H. As shown in Fig. 5 (a), (c), (e), and (g),
the trajectory deformation factor of each joint is kept at the
maximum value for most of the time, which can allow the right
leg to move with greater degrees of freedom. The deviation
between the desired and reference trajectories significantly
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Fig. 5. Results of SS#1 when using the TD-MACCS-H. The first and
second columns are the results of the right and left legs respectively.
TT, DT, RT, and TE represent tracking trajectory, desired trajectory, and
reference trajectory, tracking error, respectively.

Fig. 6. Results of HP#1 when using the TD-MACCS-H. The first and
second columns are the results of the right and left legs respectively.
TT, DT, RT, and TE represent tracking trajectory, desired trajectory, and
reference trajectory, tracking error, respectively.

increases compared to TD-MACCS-M, and the right hip and
knee joints can track the desired trajectory accurately during
pHRI. The interaction torque range of the right leg hip and
knee joints are −13 ∼ 5 Nm and −4 ∼ 7 Nm, respectively, and
have periodic characteristics. From Fig. 5 (b), (d), (f), and (h),
the interaction torque of each joint has more obvious periodic
characteristics than that of the right leg. The amplitude of the
interaction torque increases significantly, and the deformation
factor is smoothly reduced to a minimum value, thus activating
the robot-dominant mode to prevent abnormal gait trajectories
in the swing phase.

Fig. 7. Kinematic data of robot-assisted walking experiments under
different upper bounds of the deformation factor: (a) (d), and (g) are
the trajectory profiles from 15 gait cycles of HP#1 and SS#1 in joint
space; (b), (e), and (h) are the average trajectory profiles from 15 gait
cycles of each participant in joint space; (c), (f), and (i) are the average
trajectory profiles from 15 gait cycles of the left and right hip joints of
each participant. From top to bottom are the results of the TD-MACCS-L,
the TD-MACCS-M, and the TD-MACCS-H, respectively. RT represents
the reference trajectory profile in joint space.

Fig. 6 shows that the left leg of the healthy participant
is in human-dominant mode, while the right leg is in either
robot-dominant mode or human-dominant mode when using
TD-MACCS-H. Compared to the results of the stroke survivor,
robot-assisted walking has less time in robot-dominant mode.
From Fig. 6 (a), the healthy participant can smoothly generate
desired trajectories with different amplitudes through physical
interaction, and the desired trajectory can converge to the
reference trajectory quickly once the robot-dominant mode
is activated, which is similar to the results of the stroke
survivor. Besides, as shown in Fig. 6 (d) and (h), compared
with the patient’s left leg (hemiplegic side), the periodicity of
the interaction torque of the healthy participant is not obvious,
and the amplitude is significantly reduced.

From Fig. 7 (a), (d), and (g), the trajectory profiles of
HP#1 and SS#1 in the joint space show a narrow band when
using the TD-MACCS-L. Increasing the upper bound of the
deformation factor can significantly expand the distribution
of the trajectory profiles. Compared with SS#1, the trajectory
profile of HP#1 is smoother. Fig. 7 (b), (e), and (h) show
that the average trajectory profiles of healthy participants are
similar to the reference trajectory profile, whereas they shift
more significantly with the upper bound of the deformation
factor increasing. Compared with healthy participants, the
average trajectory profile of each stroke survivor changes
significantly in shape and spatial position when using TD-
MACCS-M and TD-MACCS-H. As shown in Fig. 7 (c), (f),
and (i), the average trajectory profiles of all participants show
a butterfly-like shape, and the differences in gait symmetry
and spatial position increase when enlarging the upper bound
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TABLE II
STATISTICAL RESULTS OF AWS, RMSTD AND NRMSTE

of the deformation factor. Besides, compared with healthy
participants, stroke survivors have the lowest gait symmetry
under the high upper bound of the deformation factor.

Table II shows the RMSTD, NRMSTE, and AWS mean of
all healthy participants and each stroke survivor when using
the TD-MACCS-L, the TD-MACCS-M, and the TD-MACCS-
H. Compared with the TD-MACCS-M, the RMSTD mean of
all healthy participants is increased by 73.44% (LH), 69.57%
(LK), 83.87% (RH), and 69.05% (RK), respectively, when
the TD-MACCS-H is adopted. Notably, the trend that the
RMSTD mean of each stroke survivor increases does not
change when enlarging the upper bound of the deformation
factor. Besides, compared with the TD-MACCS-L, except
for the right knee joint, the NRMSTE mean of all healthy
participants decreases when using the TD-MACCS-M and the
TD-MACCS-H. The maximum NRMSTE mean of all healthy
participants is less than 5.00%. Although the NRMSTE mean
of each stroke survivor is larger than that of all healthy
participants, the tracking accuracy of each joint is within an
acceptable range. In addition, the AWS mean of all healthy
participants increases obviously when increasing the upper
bound of the deformation factor, and the maximum AWS mean
reaches 0.145 m/s. Compared with the results of all healthy
participants, a moderate increase in the upper bound of the
deformation factor improves the AWS mean of each stroke
survivor, but an excessive value decreases the AWS mean.

VI. DISCUSSION

A. Multi-Modal Adaptive Compliance Control
Adaptive compliance control strategies can make reha-

bilitation robots match users’ ever-changing motor abilities
and improve training safety. In this article, TDA [16] and
DMPs [24] are effectively integrated into the TD-MACCS,
which can smoothly switch the human-dominant, robot-
dominant, and soft-stop modes. In the human-dominant mode,
the SYSU-REHAB1-H allows the participants to adjust the
reference trajectory with variable deformation factors through
compliant pHRI, encouraging their active participation in
robot-assisted walking. Since patients with lower extremity
motor dysfunction usually have different symptoms, they are
prone to abnormal gait trajectories [35]. In the robot-dominant
mode, the SYSU-REHAB1-H can smoothly reduce the defor-
mation factor to a minimum value, effectively correcting
the participants’ abnormal gait trajectory by restricting their
freedom of motion. Furthermore, safety protection deserves

paying more attention during robot-assisted training [20].
In the soft-stop mode, the reference trajectory can smoothly
switch to the zero reference position by adjusting the desired
amplitude factor of DMPs. Besides, the reference trajectory
can automatically and smoothly switch back to the refer-
ence trajectory after the specified protection time. Although
multi-modal control strategies can be designed based on an
error-based function [9], [22], [36], they may cause oscillations
in the control signal and tracking trajectory when switching
continuously between different modes. In comparison, the
TD-MACCS can realize smooth switching of different modes
through a multi-modal adaptive regulator without considering
the tracking error. Furthermore, the participants can easily
activate the soft-stop mode through the interaction torque,
effectively solving the problem that the error-based safety
stop mode is challenging to activate under impact forces or
low robot compliance [21]. Compared to multi-modal control
strategies based on customized position controller design [20],
[21], the TD-MACCS can realize the separation of the LADRC
and the multi-modal adaptive regulator design, which can
avoid complicated position controller design and simplify
parameter adjustment. Additionally, learning and generalizing
the reference trajectory has not been considered in multi-modal
control strategies [9], [19], [20], [21], [22], [23], [36]; the
trajectory generator based on DMPs can help therapists obtain
and adjust reference trajectories of different rehabilitation
tasks [25], [37].

B. Effects on Movement Performance
TD-MACCS with different upper bound values of the defor-

mation factor can influence robot compliance, walking speed,
and gait symmetry during robot-assisted walking. In this arti-
cle, the TD-MACCS-H obtained the largest RMSTD among
the three tested control strategies while maintaining trajectory
tracking accuracy. The reason is that the LADRC can effec-
tively compensate for internal and external disturbances and
ensure trajectory tracking accuracy [33], [34]. Furthermore,
increasing the upper bound value of the deformation factor
enables the participants to adjust the reference trajectory
more easily [16], enlarging the RMSTD. Although it can
promote the patients’ motor exploration and learning [25],
the excessive upper bound value of the deformation factor
leads to a decrease in AWS for patients. The reason is that
increasing robot compliance reduces the degree of inter-joint
coordination kinematic guidance for the participants, which
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increases the difficulty of human-robot synergy movement
and makes the patients improve their local dynamic stability
by reducing walking speed [38]. Additionally, there is a
significant decrease in gait symmetry when increasing the
upper bound value of the deformation factor. The reason is
that the WLLRR reduces the normal walking speed of healthy
participants [39] and leads to the difference between the left
and right step lengths [40]. Compared with the healthy partic-
ipants, the gait asymmetry of stroke survivors caused by lower
limb movement disorder can be corrected by the WLLRR by
decreasing the upper bound value of the deformation factor.
Moreover, compared with healthy participants, the duration
of the robot-dominant mode increased significantly during
patients’ robot-assisting walking. It indicates that the WLLRR
using TD-MACCS can correct gait asymmetry under a pre-
determined upper bound value of the deformation factor by
adaptively switching to a control mode that matches patients’
varying motor abilities.

C. Limitations and Future Work
This article has several limitations that should be addressed

in future research. First, although we have tried our best to
enhance the stability of the different parts of the TD-MACCS,
the stability analysis was not conducted because the dynamics
of participants may not be perfectly known [41], and it is
difficult to model accurately. Second, although we propose
to distinguish different control modes based on the nominal
and safe interaction torques, they need to be set reasonably
according to the patient’s disability level and the comfort of
physical interaction; besides, to ensure the patient’s safety
and comfort, the nominal and safe interaction torques set in
this study are too conservative. Third, we did not standardize
the walking distances in our experimental paradigm, and only
two stroke survivors were included in robot-assisted walking
experiments. In further studies, we will attempt to construct the
dynamic model of the participants and introduce new methods,
such as energy tanks [41], [42], for stability analysis. Further-
more, more patients will be recruited, and the 2-min and the
10-m walk tests will be performed to assess the ambulatory
function of patients [43], which can help the physiotherapist
determine the appropriate robot-assisted walking speed and
nominal interaction torque. Besides, an external information
acquisition system will be designed to monitor the contact
behavior between the exoskeleton and skin, torso motion, and
total arm force during robot-assisted walking [15], [44], which
helps determine the appropriate safe interaction torque and
objectively and quantitatively evaluate patients’ acceptance
of the TD-MACCS. Meanwhile, patient-based robot-assisted
rehabilitation training will be carried out, and statistically
significant results will be obtained to verify the clinical effec-
tiveness of the TD-MACCS.

VII. CONCLUSION

This article proposed a TD-MACCS for a self-designed
WLLRR, SYSU-REHAB1-H. Robot-assisted walking experi-
ments and quantitative analysis were performed. The exper-
imental results have been provided to verify that the

TD-MACCS can adaptively and smoothly switch different
control modes. Moreover, a moderate increase in the upper
bound of the deformation factor can enhance the AWS and
RMSTD while maintaining the NRMSTE within an allowable
range. Therefore, TD-MACCS has the potential to be used in
robot-assisted training to match the varying motor abilities of
stroke survivors. It can also be applied in other fields involving
human-robot cooperation based on pHRI.
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