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Abstract— Decoding neural signals of silent reading with
Brain-Computer Interface (BCI) techniques presents a fast
and intuitive communication method for severely apha-
sia patients. Electroencephalogram (EEG) acquisition is
convenient and easily wearable with high temporal resolu-
tion. However, existing EEG-based decoding units primarily
concentrate on individual words due to their low signal-to-
noise ratio, rendering them insufficient for facilitating daily
communication. Decoding at the word level is less efficient
than decoding at the phrase or sentence level. Furthermore,
with the popularity of multilingualism, decoding EEG sig-
nals with complex semantics under multiple languages is
highly urgent and necessary. To the best of our knowledge,
there is currently no research on decoding EEG signals
during silent reading of complex semantics, let alone
decoding silent reading EEG signals with complex seman-
tics for bilingualism. Moreover, the feasibility of decoding
such signals remains to be investigated. In this work,
we collect silent reading EEG signals of 9 English Phrases
(EP), 7 English Sentences (ES), 10 Chinese Phrases (CP),
and 7 Chinese Sentences (CS) from the subject within
26 days. We propose a novel Adaptive Graph Attention
Convolution Network (AGACN) for classification. Exper-
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imental results demonstrate that our proposed method
outperforms state-of-the-art methods, achieving the high-
est classification accuracy of 54.70%, 62.26%, 44.55%, and
57.14% for silent reading EEG signals of EP, ES, CP, and CS,
respectively. Moreover, our results prove the feasibility of
complex semantics EEG signal decoding. This work will aid
aphasic patients in achieving regular communication while
providing novel ideas for neural signal decoding research.

Index Terms— Brain-computer interface, EEG signals,
complex semantics, silent reading, multiple languages.

I. INTRODUCTION

THE aphasia caused by nerve damage is irreversible.
Fortunately, Brain-Computer Interface (BCI) technology

for decoding neural signals offers an efficient communication
method for aphasic patients [1], [2], [3]. Numerous studies [4],
[5], [6], [7], [8], [9] have successfully decoded Electrocor-
ticogram (ECoG) signals of silent reading words, phrases,
and sentences. Compared with ECoG, Electroencephalogram
(EEG) [10] is non-invasive, more user-friendly, has a high
temporal resolution, and is widely used for decoding neural
signals. Due to its low signal-to-noise ratio, the units of
early studies on decoding silent reading EEG signals primarily
focused on syllables and phonemes [11], [12], [13], [14].
Research [12] also used non-English to replace the imaginary
pronunciation of English words and decode their EEG sig-
nals to help aphasic patients achieve simple communication.
However, decoding limited sets of syllables, phonemes, and
non-English words is inadequate for patients with language
disorders to communicate daily. With the advancement of
deep learning techniques and the enhancement of acquisition
equipment [15], [16], researchers [14], [17] have attempted
to decode silent reading EEG signals for multiple categories
of words and improved classification accuracy. For example,
Vorontsova et al. [17] decoded silent reading EEG signals
with 85% accuracy using 8 meaningful words. Although
the results were not as promising for out-of-sample sub-
jects, good performance was achieved on a single subject.
These findings provide an encouraging incentive for investi-
gating the decoding of silent reading EEG signals. However,
decoding EEG signals word-by-word is time-consuming and
requires more cognitive effort. A more efficient and natural
approach is directly decoding entire phrases and sentences
from neural signals. This method will significantly enhance
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the communication efficiency of aphasic patients. Additionally,
it is necessary to decode complex semantic EEG signals
of multiple languages in a multilingual social environment.
Decoding silent reading multiple EEG signals provides a
more realistic and smooth communication experience. It avoids
delays, misinterpretation, and information leakage caused
by translation software, which relies on external input and
lacks communication depth. Furthermore, decoding silent
reading bilingual EEG signals can help deepen the under-
standing of the neural mechanisms in the brain related to
multilingual processing. It thus can promote neuroscience
research in bilingual interaction, memory, and language
processing [18].

Compared with words, phrases and sentences contain more
complex information. Therefore, the corresponding silent read-
ing EEG signals are more intricate. Decoding neural signals
with complex semantics under bilingualism requires consider-
ation not only of the differences in brain use under different
languages but also of the complexity of semantics and changes
in neural signals over time [19]. To effectively extract mean-
ingful information from EEG signals with complex semantics
and decode them. The proposed algorithm must be capable
of selecting channels that contain the most useful information
corresponding to different languages. Additionally, it should
capture fluctuations in both temporal and spatial relationships
between the involved channels. Therefore, decoding bilin-
gual silent reading EEG signals with complex semantics is
methodologically more demanding. Furthermore, whether it
is possible to decode them directly has yet to be studied for
feasibility.

EEG signals are typically non-Euclidean structured
data [20], [21]. Representing EEG signals with graphs pro-
vides a more comprehensive representation of the spatial
connections between channels compared to using temporal
sampling points for each channel [22]. On this basis, we use
a two-dimensional matrix and its adaptive graph to represent
each EEG signal jointly. The two-dimensional matrix repre-
sents the sampling points of each channel in time, and the
graph provides a richer representation of the spatial connec-
tions between channels. Using a fixed graph for all EEG
signals does not provide a more comprehensive representation
of the variability of EEG signals [23] due to the differences
in the corresponding EEG signals of the same subject doing
the same task at different times. Therefore, we construct an
adaptive graph structure for each EEG signal based on its
characteristics to capture real-time changes in both temporal
and spatial domains.

This study collects silent reading EEG signals of 9 English
Phrases (EP), 7 English Sentences (ES), 10 Chinese Phrases
(CP), and 7 Chinese Sentences (CS) from the subject over
26 days. We propose a novel Adaptive Graph Attention
Convolution Network (AGACN) for classifying our datasets.
Our proposed method achieves the accuracy of 51.05±3.62%,
57.85±4.41%, 40.00±4.55%, and 52.20±4.94% for silent
reading EEG signals of EP, ES, CP, and CS, respectively. Our
work demonstrates the feasibility of decoding silent reading
EEG signals of phrases and sentences, opening up a novel
representation method for developing neural signal language
decoding techniques. This study is expected to provide more
communication options and improve the quality of life for

aphasic individuals. Our main contributions are summarized
as follows:

• We collect comprehensive datasets that contain silent
reading EEG signals of 9 English phrases, 7 English
sentences, 10 Chinese phrases, and 7 Chinese sentences
from the subject over 26 days. These datasets fill the gap
for the research of decoding silent reading EEG signals
with complex semantics in multiple languages.

• We propose a novel Adaptive Graph Attention Convolu-
tion Network (AGACN) for classifying our datasets. Our
method uses each feature matrix and its adaptive graph
structure as inputs. AGACN uses the attention mechanism
on the feature matrix according to the weights on the
edges of the graph to effectively capture the temporal
and spatial features of EEG signals.

• Our method performs superior to state-of-the-art methods
on four collected datasets. Extensive experiments demon-
strate the feasibility of decoding bilingual silent reading
EEG signals with complex semantics.

II. RELATED WORK

Studies [4], [5], [6], [7], [8], [24], [25] have shown that it
is possible to decode certain aspects of continuously spoken
speech from ECoG signals, including phonemes, words, and
sentences, or reconstruct acoustic properties of perception
and speech. In 2021, Willett et al. [19] successfully decoded
handwriting movements from neural activity in the motor
cortex, achieving typing speeds of 90 characters per minute
with an accuracy of 94.10% in one individual. Moreover,
multiple studies have proven direct decoding of EEG signals
associated with the silent reading of phonemes and words.
Early research [11] attempted to classify covert speech EEG,
focused on small language units such as vowels and syllables.
In 2009, DaSalla et al. [11] recognized EEG signals of English
phonemes /a/ and /u/. In 2010, Brigham and Kumar [26]
classified the EEG signals of two imaginary syllables /ba/
and /ku/, and initial results suggest that it is possible to
identify imagined speech. Following these, several researchers
proposed classifying complete and meaningful words, but most
are non-English. For instance, Jahangir and Sepulveda [12]
took ‘le’, ‘ry’,‘ba’ and ‘fo’ as the abbreviation of ‘left’, ‘right’,
‘back’ and ‘forward’. Zhao and Rudzicz [13] used 7 phonemic
syllabic prompts (i.e., /iy/, /uw/, /piy/, /tiy/, /diy/, /m/, and /n/ )
and 4 words phonetically-similar pairs (i.e., pat, pot, knew,
and gnaw) with 3 modalities (EEG, facial, and audio) for
classification. Nguyen et al. [14] tried to classify the unspoken
speech EEG signals of vowels (/a/, /i/, and /u/ ), long words
(‘cooperate’ and ‘independent’), and short words (‘in’, ‘out’,
and ‘up’). Sereshke et al. [27] classified ‘yes’ and ‘no’ to
investigate the reliability of EEG signals in discriminating
between different covert speech tasks. Lee et al. [28] clas-
sified meaningful Spanish words: ‘arriba’, ‘abajo’, ‘derecha’,
‘izquierda’, ‘adelante’, and ‘atrás’. In 2021, Darya et al. [17]
expanded the category of EEG signals to 8 words (i.e.,
‘forward’, ‘backward’, ‘up’, ‘down’, ‘help’, ‘take’, ‘stop’,
and ‘release’). Balaji et al. [29] classified English and Hindi
silent speech EEG signals for ‘yes’/‘no’ and ‘Haan’/‘Na’
respectively. Li et al. [30] decoded silent reading EEG signals
of 7 Chinese and 9 English words.
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Fig. 1. Brain topography and regions covered by 59 brain channel
electrode.

III. DATA COLLECTION

A. Preliminary Works

We use a 64-channel wet electrode wireless EEG equipment
device with a sampling frequency of 1000H z. The 64 channels
include 59 brain and 5 body functional signal channels. The
device is equipped with a wireless amplification, which can
amplify the signal at the same point in time by an equal factor
2×104. In our study, we select channels corresponding to dis-
tinct brain regions for the comparative analysis in Section V-E.
Therefore, we refer to [31] and categorize the 59 channels
into six clusters. These clusters represent the frontal, central,
temporal, parietal, and occipital lobe regions, as detailed
in [32]. Notably, the temporal lobe is further divided into
the left and right temporal lobe regions. The positions of the
corresponding 59 brain channels and their regions, following
the 10–20 system electrode placement method [33] are shown
in Fig. 1.

The subject is 21 years old, male, right-handed, and has no
neurological or other diseases. His native and second language
are Chinese and English. He began learning English at 10,
has a high English level, and can communicate skillfully.
We collect EEG signals on 16 days during the 26 days,
specifically on days 1, 4–8, 13–16, 18–22, and 26, with 3 to
5 daily trials conducted in each category. Data collection
involving multiple days can enrich the data diversity because
there are some changes in EEG signals when the same subject
performs the same task on different days.

To ensure the selection phrases and sentences are appro-
priate, we refer to the corpus used in [24] and consult
several individuals with language disorders. After consulting
with numerous aphasia patients, we summarize the most
frequently used phrases and sentences they desire to express
daily. Subsequently, psychologists and linguists evaluate the
scientific validity of these phrases and sentences employed
in the experiment. Table I shows the corpus used in each
category.

Before the experiment, the experimental monitor helps the
subject wear the EEG cap and fill conductive paste into
channels to reduce the impedance level within an acceptable
error tolerance. During the experiment, the subject wears
headphones and faces a white wall to minimize the effects
of noise and visual stimulation. Two computers are used in

TABLE I
CORPUS OF EACH TASK CATEGORY

the experiment. According to the set program, computer A
passes the marks wirelessly to computer B. Computer B is
used to record EEG signals and corresponding marks.

The experimental design aims to collect EEG signals during
silent reading. Depending on the characteristics of the used
device, we set up ‘listening’ before silent reading and ‘speak-
ing’ after silent reading. The ‘listening’ reminds the subject to
read what is pronounced silently, and ‘speaking’ ensures that
the subject does the silent reading of the audio he has heard.
Ensure the subject has sufficient reception and reaction time to
read phrases and sentences silently. Each phrase and sentence
is listened to three times, silently read once, and spoken once,
and EEG signals are collected throughout the entire process.
The operator monitors the experiment process according to
the instructions on the screen and marks the unqualified
data. For example, this data will be marked if the subject
does not speak or the ‘speaking’ is inconsistent with the
‘listening’.

The experimental process is illustrated by collecting EEG
signals of 9 English phrases, as shown in Fig. 2. There are
a ‘beep’ and automatic marks at the beginning and end of
‘listening’, ‘silent reading’, and ‘speaking’. One trial consists
of listening (3 times), silent reading (once), and speaking
(once) 9 phrases in sequence. The duration for ‘listening’,
‘silent reading’, and ‘speaking’ is set at 4 seconds each.
1–9 represent the beginning of ‘listening’ 9 phrases. 21 and
22 represent the beginning and end of silent reading, and
30 and 31 represent the beginning and end of speaking. For
example, marks 21, 22, 30, and 31 after 4 represent the
beginning and end of silent reading and speaking the fourth
phrase.

The process of collecting EEG data for sentences is identical
to that for phrases. The duration of ‘listening’, ‘silent reading’,
and ‘speaking’ for sentences is each 5 seconds. Before the
experiment, we introduce the process to the subject and sign
an informed consent form. The experimental procedure is
conducted under the ethical standards encoded in the latest
Declaration of Helsinki [34]. This research received approval
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Fig. 2. Experiment procedure. The operator monitors the experiment
process on two screens according to the instructions. The subject
wears headphones and faces a white wall. 9 phrases, in turn, listening
(3 times, each takes 4 seconds, all use 12 seconds), silent read-
ing (once, takes 4 seconds), and speaking (once, takes 4 seconds).
1–9 represents listening 9 English phrases in turn. 21 and 22 rep-
resent the beginning and end of the silent reading corresponding
phrase. 30 and 31 represent the beginning and end of speaking the
corresponding phrase.

TABLE II
SIZE OF EACH DATASET

from the Ethics Committee of Fudan University (IRB number:
FE23167I).

B. Datasets
We cut ‘silent reading’ EEG signals of each phrase or

sentence according to the marks in each trial. To reduce
computation, we apply a sliding window with a size of 2 and
a step of 2, downsampling the data within each window on
average. The average of the numbers in the sliding window is
used as a new sampling point. Thus, 2000 and 2500 sam-
pling points are in the EEG signals of the downsampled
silent phrases and sentences, respectively. Eventually, there
are four datasets: Silent Reading English Phrases (SREP),
Silent Reading English Sentences (SRES), Silent Reading
Chinese Phrases (SRCP), and Silent Reading Chinese Sen-
tences (SRCS). We remove the unqualified data marked in
the experiment and randomly divide the qualified data into
the training and test sets in the ratio of 8 : 2. The size of
each dataset is shown in Table II. The dataset will be publicly
available at: https://github.com/cfli20/EEG.

IV. METHOD

A. Graph Construction
Cumulative changes in neural activity can lead to differences

in corresponding EEG signals of doing the same task [35],
[36], even if the same subject performs the same task at
different times. In this work, we propose a novel method
for representing EEG signals to fully capture the tempo-
ral and spatial connections between channels in real-time.
Specifically, we utilize a feature matrix and its corresponding
graph structure to represent each EEG signal at different
times. The feature matrix captures the temporal dynamics
of EEG signals, while its graph structure represents the
spatial correlation between each channel. The feature matrix
(F ∈ RN×T ) is a two-dimensional matrix of the sam-
pling points of each channel in time. The adjacency matrix
(G ∈ RN×N ) is used to represent the graph structure, where

N is the number of channels, and T is the data points.
In the graph structure G(D, E), D is the set of nodes, and
D = {vti |t = 1, · · · , T, i = 1, · · · , N }. Where E is the set
of edges, the node set Es =

{
Ei j |(i, j) ∈ N

}
, Es is the

weight value of edges i and j . We hypothesize that if channels
exhibit strong correlations with each other, it indicates that
their corresponding neural activities are relatively consistent.
Thus, the more strongly correlated channels there are among
the key channels, the more consistent the neural activity of
their counterparts will be. Therefore, we calculate the Pearson
Correlation Coefficients (PCC) [37] of any two channels and
use it as the weight between the corresponding nodes. PCC is
calculated as follows:

ρ =
E[(X − µX )(Y − µY )]

σXσY
, (1)

where ρ is the PCC value corresponding to two nodes, µX
and µY are the mean value of channels X and Y, and σX , σY
are the standard deviation of the two channels. We treat each
channel as a graph node and use ρ as the weights on the edges
between two nodes to enhance the channel relationship. The
selection of weights E(i, j) on the corresponding edges of
nodes i, j follows the following equation.

E(i, j) =

{
ρ , ρ>0,

0 , ρ ≤ 0.
(2)

Therefore, we construct an adaptive graph structure for each
EEG signal. Extensive experiments show that choosing the
top 12 Key channels (AK-channels) using Analysis of Variance
(ANOVA) [38] can get the highest accuracy. The specific
selection process for the 12 AK-channels is detailed in
Section V-D. Each silent reading task takes 5 seconds, and
each data has 2500 points after performed downsampling,
so its corresponding feature matrix is F ∈ R12×2500. The adja-
cency matrix is G ∈ R12×12, and the graph structure differs in
the weights of each edge. In Fig. 3, we present the temporal
and spatial variations of EEG signals between channels during
the same silent reading task on the SREP. The visualization of
the adjacency matrix further illustrates that the graph structure
varies based on different EEG signals, mainly manifested in
the weight differences among individual channels. Due to the
fluctuations in EEG signals, the constructed graph structure
also changes accordingly. As a result, the correlations between
any two channels also vary.

Overall, the feature matrix and adjacency matrix keep the
spatial and temporal connection between channels and help
explore the changes in temporal and spatial dynamics of the
EEG signals during different tasks and over different periods.
By incorporating the graph structure and the feature matrix,
the models can better capture the spatial correlation between
the EEG channels, improving classification accuracy.

B. Adaptive Graph Attention Convolution Network
The adjacency matrix (G) is symmetric in an undirected

weighted graph, and the principal diagonal is zero. Therefore,
we introduce the unit matrix to represent the characteristics of
each node adequately. The adjacency matrix (G̃) is as follows:

G̃ = G + I, (3)

where, I is the unit matrix.
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Fig. 3. Visualization of the data from the same silent reading task on the
SREP. Each silent reading task lasts 5 seconds, resulting in 2500 down-
sampled data points. An adaptive graph structure is constructed for
each 5-second EEG signal, and its corresponding adjacency matrix is
visualized.

Fig. 4. The AGACN cell. F(N,T) is feature matrix, G(N,N) is the
corresponding adjacency matrix of F(N,T). w(i,o) is the training weight.
σ is an activation function.

The range of the weights on edges is [0,1]. Therefore,
no normalization of the adjacency matrix can ensure that
different input data have similar values and can find the
optimal solution faster by gradient descent [39]. In this work,
each feature matrix (F) and its adaptive graph structure (G̃) are
inputs of AGACN. AGACN uses G̃ as attention, F to convolve
with G̃, and G̃ is the convolution kernel with the perceptual
field of the whole F . According to different weights on the
edges of G̃, different attention is given to its corresponding
channels. This can preserve the important features of each
channel in time more richly and can effectively capture and
strengthen the spatial connection of channels. Then, a hidden
layer network maintains useful information and uses the
activation function for nonlinear expressions. Therefore, the
AGACN cell layer is:

H = σ
(

G̃ FW (i, o)
)

, (4)

where, H is the output of the current layer, σ is the activation
function, W is the training weight matrix, i is the input
dimension, and o is the output dimension. The AGACN cell
layer is shown in Fig. 4.

For the continuation of the features captured by the previous
network layer to be passed on, we take the output of the
previous layer as the feature matrix of the current layer. The
transfer relationship between the AGACN cell layer is as
follows:

H (l+1)
= σ

(
G̃(d) H (l)W (i, o)

)
, (5)

Fig. 5. Structure of the AGACN. The inputs of AGACN are each feature
matrix and its adaptive adjacency matrix. The outputs of the second and
third AGACN cell layers are cross-fusion convolution and following FC
layer and softmax layer.

where H (l) is the output of the previous layer as the char-
acteristic matrix of the current layer. The feature of the first
AGACN cell layer is F . G̃(d) is the d-th adjacency matrix that
corresponding to the d-th characteristic matrix. In this work,
G̃(d) is equal G̃.

We use three AGACN cell layers to classify complex seman-
tics. The output of the second layer is transposed ((H (2))T ),
and as Attention to Cross Fusion (CFA layer) convolves with
the output of the third layer to fully capture the connections
of dynamic features between channels. Using (H (2))T as the
convolutional kernel with a receptive field corresponding to all
the data in the third AGACN cell layer (H (3)) ensures com-
prehensive integration of the valuable information captured in
both (H (2))T and H (3). Therefore, the CFA layer is as follows:

H ( f )
= (H (2))T

× H (3). (6)

After the CFA layer, a Fully Connected (FC) layer and a
softmax layer are added. The structure diagram of the AGACN
network is shown in Fig. 5.

V. RESULTS AND DISCUSSION

A. Experiment Setup
This study implements the AGACN using PyTorch frame-

work [40], [41]. Parameters are kept the same for classifying
all datasets, demonstrating the effectiveness and robustness of
our proposed method. Specifically, the output dimension sizes
for three AGACN cell layers are 126, 64, and 132, respectively.
The activation functions for the three AGACN cell layers are
Relu, Tanh and Relu [42]. We use a learning rate of 0.0001 and
a dropout rate of 0.05. We use 5-fold cross-validation [43]
to evaluate the performance of the model comprehensively.
Namely, the training set is equally divided into 5 equal parts,
and 4 of them are used in turn as the training set and the
remaining one as the validation set. The Adam optimizer is
used with a decay of 0.0005, a batch size of 80, and epochs
of 500. The loss function is cross-entropy [44] as follows in
Eq. (7), which measures the discrepancy between predicted
and ground truth values.

H(p, q) = −

n∑
i=1

p(xi ) · log(q(xi )), (7)

where, p(xi ) represents the true distribution of ground truth
sample, and q(xi ) represents the distribution predicted by the
model.

To illustrate the data flow changes during the attention
convolution process, we show a feature capture schematic
in Fig. 6. The input feature matrix is F ∈ R(12,2500). The
size of the graph structure in each AGACN cell layer is
G ∈ R(12,12). The feature matrices from the first to the
third layers are denoted as F1

∈ R(12,126), F2
∈ R(12,64),
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Fig. 6. Data flow changes on SREP using AGACN. Feature matrices:
F ∈ R12×2500, adjacency matrix: G ∈ R12×12.

and F3
∈ R(12,132), respectively. Each layer of the AGACN

cell uses an adaptive graph as attention. Layer by layer, the
feature matrix containing richer features is gradually selected.
Then, the feature matrices selected by the second layer of the
AGACN cell are transposed as F2

∈ R(64,12)) and further
convolved with the third AGACN cell layer. The CFA layer
fully fuses features from the second and third layers of the
AGACN cell, capturing both temporal and spatial aspects.
It aligns the signals captured by the last two layers temporally
and integrates features spatially, effectively highlighting useful
characteristics.

B. Key Channels Selection
Zheng and Lu [45] observed higher classification accuracy

when using key channels selected based on calculated features
compared to using all channels. Therefore, identifying the
most potent characteristic channels and using relatively few
channels to achieve the highest classification accuracy is
essential. We select key channels from global features on the
training set in the following steps. Firstly, we apply a But-
terworth [46] 7th-order filter to eliminate noise above 50H z,
ensuring all the selected key channels contain more neural
signals. Secondly, we normalize the filtered data to reduce the
impact of different impedances on channel signals. For each
one-dimensional feature xi , the normalization formula for the
eigenvalue ˜xik of the k-th sample xik in Eq. (8). Finally, we use
the SelectKBest [47] function in Keras [48] to achieve it. The
selectKBest function scores the features of each channel on
the training set, with ANOVA employed as the criterion for
feature scoring in this study.

˜xik =
xik − min(xi )

max(xi ) − min(xi)
, (8)

where min(xi ) and max(xi ) represent the minimum and
maximum values across all data samples xik .

We sort the 59 channels in descending order of their scores
using the SelectKBest function. The selection process for the
12 channels is as follows. Firstly, we extract EEG data from
channels 2 to 59 in training and test sets, forming feature
matrices. Subsequently, we construct an adaptive graph for
each feature matrix. Then, we divide the training set, which
comprises channels 2 to 59, into new training and validation
sets in a ratio of 7 : 3, respectively. Finally, we utilize the
AGACN to classify the new training set and record the highest
decoding results of the validation set. We also experiment
with the classification accuracy of the validation set using
N-fold cross-validation, with N values of 5, 8, and 10. The
experimental results show that the validation set accuracy is
relatively higher for the four datasets when using 5-fold cross-
validation with the top 12 AK-channels. Therefore, we chose

TABLE III
THE TOP 12 AK-CHANNELS ON EACH DATASET

Fig. 7. The validation accuracy for the new training set using 2 to
59 channels on different datasets, respectively.

the top 12 AK-channels and 5-fold cross-validation for clas-
sification. The top 12 AK-channels are shown in Table III.
The classification accuracy of each validation set is shown in
Fig. 7.

As can be seen from Fig. 7, the validation accuracy is
relatively high when using 12 AK-channels on our four
datasets. When the number of channels is less than 12, the
included features are not comprehensive, resulting in relatively
lower accuracy. EEG signals have a low signal-to-noise ratio.
More channels will have more noise, and thus, accuracy will
not always increase with more channels. If the newly added
channel contains more noise than the neural activity signal,
the noise interferes with useful features, causing a decrease
in accuracy. Conversely, if the newly added channel con-
tains more useful neural signal features than noise, additional
valuable features are introduced, increasing accuracy.

C. Classification Results Using AK-Channels
We simultaneously use EEGNet [49], DeepCovNet

(DCN) [50], ShallowConvNet (SCN) [50], Support Vector
Machine (SVM) [51] for classifying on our datasets. We also
utilize Power Spectral Density [52] and Discrete Wavelet
Transform [53] to extract features from EEG signals. Subse-
quently, we use SVM (PSD-SVM and DWT-SVM) to classify
each case. We further utilize Multivariate Fast and Adap-
tive Empirical Mode Decomposition (MFAEMD) to extract
features and employ the Light Gradient Boosting Machine
(LGBM) algorithm (MFAEMD-LGBM) for classification [54].
They are widely used for EEG classification and have proven
highly effective across various EEG classification tasks. In this
study, SVM is trained using a Gaussian kernel function [55].
In the PSD-SVM experiments, the sampling frequency is
selected as 100, the length of each data segment is 300, and the
overlap between two analogous data segments is 10. Discrete
wavelet transform fifth level decomposition using Db2 [56].
Classification results of our datasets using 12 AK-channels
are shown in Table IV.
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TABLE IV
CLASSIFICATION RESULTS USING 12 AK-CHANNELS (%)

Fig. 8. Confusion matrix of four datasets classification using AGACN.
The numbers corresponding to the horizontal and vertical coordinates
represent the EEG signal category of the corresponding silent reading
task in each data set in turn.

The confusion matrix is widely used to evaluate the per-
formance of classification networks, which consists of True
Positive (TP), True Negative (TN), False Positive (FP), and
False Negative (FN). The number on the diagonal of the
confusion matrix indicates the probability that the category
corresponding to the true label is correctly classified. In
Fig. 8, we show the classification confusion matrix using the
AGACN for four dataset classifications. For example, in the
confusion matrix of SREP, the classification accuracy of silent
EEG signals for 2 (‘good morning’) and 3 (‘go out’) reach
85% and 77%. However, the classification accuracy of 1
(‘close the window’) is lower, with 38% being incorrectly
classified as 2 (‘good morning’). After engaging in discus-
sions with the subject, we conclude that an imbalance in
accuracy across categories may be attributed to inconsistent
attention to silent reading during various collection times
within the same low-accuracy category. The subject exhibited
difficulty concentrating and associating different elements with
the same low-accuracy category during each collection time,
which increased noise and inconsistencies, obscuring category
features. The limited data also contributes to reduced feature
distinctiveness within the same low-accuracy class.

In Table IV, the classification accuracy of four datasets
using our proposed method is higher than that of the other
networks. The main reason is that in the representation,
we use a feature matrix and its adaptive graph structure jointly
representing each EEG signal, fully preserving the temporal

Fig. 9. Classification results using CTK-channels.

TABLE V
THE TOP 12 CTK-CHANNELS ON EACH DATASET

and spatial connections between the original data. In the con-
volution process, the graph is used as the convolution kernel
to add attention to each channel according to the magnitude
of the edge weights on the graph, capturing the temporal and
spatial connections between channels. The network effectively
captures the spatial continuity between channels by utilizing
the output of the previous layer as the feature matrix of the
current layer. The second and third layers of the network
perform cross-fusion convolution of their outputs, a further
fusion of features between each channel in both temporal and
spatial.

D. Classification Results Using CTK-Channels
and 59 Brain Channels

ANOVA and chi-square test [57] are widely used statisti-
cal methods across various data types. We use ANOVA as
the criterion to select AK-channels since it is suitable for
continuous data and categorical independent variables and
can compare means and detect differences between groups.
The chi-square test is appropriate for analyzing categorical
data and determining independence between variables, which
assesses the association between categorical variables. We also
utilize the chi-square test as a feature selection criterion,
employing the SelectKBest function to choose key channels
for comparison. These selected channels are referred to as
Chi-square Test Key channels (CTK-channels). The 12 CTK-
channels selected in each dataset are shown in Table V.
We construct an adaptive graph structure for each feature
matrix on each dataset and then use AGACN, EEGNet [49],
DeepCovNet [50], ShallowConvNet [50], and Support Vector
Machine [51] for classification. The classification results are
presented in Fig. 9. Results demonstrate that our proposed
method gets higher decoding accuracy than other compar-
ison networks when using CTK-channels but lower than
AK-channels. This further demonstrates the effectiveness and
robustness of our proposed method.

We also utilize 59 brain channels to decode the four datasets.
The decoding accuracy of AGACN for EP, ES, CP, and CS
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Fig. 10. PCC value between any two channels. (a) is the PCC values
of any two channels from 59 channels. (b) is the PCC values of any
channels from AK-channels (c) is the PCC values of any channels from
CTK-channels.

TABLE VI
CLASSIFICATION RESULTS (%) USING DIFFERENT

FUNCTIONAL AREA CHANNELS

is 44.92%, 49.15%, 18.80%, and 22.45%, respectively. The
decoding accuracy for all of them is lower than that of using
AK-channels. We count the correlation between any two of
the 12 AK-channels, 12 ATK-channels, and 59 channels of
reading the same task silently EEG signals. The statistical
results show that while the correlation between any two
channels in the CTK-channels is strong in any of the datasets,
the strength of the correlation of AK-channels is higher. This
suggests that all AK-channels contain rich information on
neural activity. Consequently, using AK-channels holds the
potential for achieving higher decoding accuracy. We ran-
domly visualize the size of the PCC between any two channels
on the 59 brain channels, AK-channels, and CTK-channel
dataset of the same silent reading tasks, as shown in Fig. 10.
In Fig. 10, the strength of correlations between individual
channels can be visually assessed, indicating differences in the
consistency of neural activity corresponding to each channel.
Furthermore, it demonstrates that the key channels selected
using ANOVA are more suitable for AGACN than those
selected using the chi-square test.

E. Classification Results Using Different Functional Area
Channels

Using different functional area channels to decode EEG
signals is mainstream [58], [59], [60]. To prove the scientificity
of AK-channels, as a comparison, we select channels corre-
sponding to the auditory brain center and auditory language
center (Broca and Wernicke areas) [61], namely AF3, F3,
F5, FC3, FC5, T7, C5, TP7, CP5, and P5 for classifying.
We refer to the channels selected from Broca and Wernicke as
BW-channels. Meanwhile, we also use the channels from the
frontal, central, temporal, parietal, and occipital lobe regions
for classifying, respectively. The channels corresponding to
each lobe are illustrated in Fig. 1. All the classification results
are shown in Table VI.

The classification results show that using AK-channels
is higher than using different functional area channels on
four datasets. These results are because language processing

TABLE VII
THE RESULTS (%) OF ABLATION STUDY ON EACH DATASET

involves multiple brain regions, and the distribution of EEG
signals on the scalp is complex, with possible cross-talk.
Furthermore, the signal collected by the functional brain
area may contain noise signals caused by the quality of the
collection equipment, as well as hair and skin interference.
The 12 AK-channels with the strongest features contain more
useful information than different functional area channels.
This also illustrates the scientific validity and effectiveness
of AK-channels. As a result of these factors, the classification
accuracy using channels from different functional language
areas is lower than that of AK-channels.

F. Ablation Study
The AGACN achieves higher classification accuracy than

state-of-the-art methods on four datasets due to the role of each
layer. We conduct ablation experiments to explore the role of
each layer in decoding. Table VII shows the ablation exper-
iment results, with the ’✓’ indicating that the corresponding
network layer is used.

Ablation experiment results demonstrate that classification
results using three AGACN cells are higher than one or two
AGACN cells on four datasets. Three AGACN layers can more
effectively capture temporal and spatial characteristics than
one or two AGACN cells. Using less than three AGACN cells
does not fully capture the characteristics within the signals.
The classification results using three AGACN cells with a CFA
layer are superior to using three AGACN cells, indicating the
significant role of the CFA layer in further capturing signal
features. The accuracy of classification using four AGACN
cells is not necessarily higher than that using three AGACN
cells on our four datasets. The primary reason is that excessive
network layers can lead to over-capturing features between
signals, potentially misidentifying noise features as actual
signal features. This also leads to the reason that the accuracy
of using four AGACN cells with the CFA layer for the
classifications is lower than that of three AGACN cell layers
followed by the CFA layer. The results show that each layer of
AGACN is important for decoding complex semantics silent
reading EEG signals.

G. K-Fold Cross-Validation Experiments
K-fold cross-validation divides the training dataset into K

equally sized subsets, rotating with each subset used once
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Fig. 11. ROC curves of 5-fold, 8-fold, and 10-fold cross-validation.

as the validation set and the remaining K-1 subset used
for training. It can comprehensively evaluate the model and
prevent over-fitting due to small data. The choice of K plays
a significant role in the performance of the model.

Experiments prove that the AGACN performs best using
5-fold cross-validation. The Receiver Operating Characteristic
(ROC) curve is a visual representation used to assess the
quality of the classification model. TP and TN are the correctly
predicted positive and negative classes. FP and FN are the
incorrectly predicted positive and negative classes. The ROC
curve illustrates the trade-off between the True Positive Rate
(TPR) and the False Positive Rate (FPR) at various classifica-
tion thresholds. The formulas of TPR and FPR are as follows:

T P R =
T P

T P + F N
, (9)

F P R =
F P

F P + T N
. (10)

Therefore, the higher the value of the Area Under the Curve
(AUC), the better the decoding ability of the model [62].
Fig. 11 shows the ROC curve of 5-fold, 8-fold, and 10-fold
cross-validation classifying using AGACN on four datasets.
The results show that AGACN performs better using 5-fold
cross-validation than 8-fold and 10-fold cross-validation on
four datasets.

VI. CONCLUSION AND FUTURE WORKS

In this study, we collect SREP, SRES, SRCP, and SRCS
datasets and fill the blank of decoding bilingual silent reading
EEG signals with complex semantics. A novel AGACN is
proposed for EEG signals with complex semantics classifi-
cation. We use each feature matrix and its adaptive graph
structure to represent each EEG signal. Further, they are used
as inputs to the AGACN to capture the relationships among
channels in both temporal and spatial domains. Extensive
experiments demonstrate that our proposed method achieves
superior classification accuracy compared to state-of-the-art
methods.

It is crucial to note that while the current study exhibits
the feasibility of decoding silent reading EEG signals with

complex semantics, it is not a fully developed, clinically
applicable system. Additionally, it should be acknowledged
that the results of this work achieve the best performance
among the three subjects examined. In addition, the AGACN
experiments are limited to one-subject prediction. Further
research is necessary to propose a more robust method that
can overcome individual differences to achieve the decoding
of silent neural signals, which is also the focus of our future
work. We will also expand the count of phrases and sentences
and further propose methods for decoding silent EEG signals
involving more languages.
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