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Rehabilitation Evaluation of Upper Limb Motor
Function for Stroke Patients Based on
Belief Rule Base

Shuang Li*, Zhanli Wang™, Xiaojing Yin*™, Zaixiang Pang™, and Xue Yan

Abstract—In the process of rehabilitation treatment for
stroke patients, rehabilitation evaluation is a significant
part in rehabilitation medicine. Researchers intellectualized
the evaluation of rehabilitation evaluation methods and
proposed quantitative evaluation methods based on evalu-
ation scales, without the clinical background of physiatrist.
However, in clinical practice, the experience of physiatrist
plays an important role in the rehabilitation evaluation of
patients. Therefore, this paper designs a 5 degrees of
freedom (DoFs) upper limb (UL) rehabilitation robot and
proposes a rehabilitation evaluation model based on Belief
Rule Base (BRB) which can add the expert knowledge of
physiatrist to the rehabilitation evaluation. The motion data
of stroke patients during active training are collected by
the rehabilitation robot and signal collection system, and
then the upper limb motor function of the patients is eval-
uated by the rehabilitation evaluation model. To verify the
accuracy of the proposed method, Back Propagation Neural
Network (BPNN) and Support Vector Machines (SVM) are
used to evaluate. Comparative analysis shows that the
BRB model has high accuracy and effectiveness among
the three evaluation models. The results show that the
rehabilitation evaluation model of stroke patients based
on BRB could help physiatrists to evaluate the UL motor
function of patients and master the rehabilitation status of
stroke patients.

Index Terms— Rehabilitation robot, belief rule base, reha-
bilitation evaluation.

[. INTRODUCTION

TROKE is one of the common diseases of the elderly,
which is a disease of necrosis of brain cells and tis-
sues [1]. Stroke patients usually have unilateral or bilateral
limb weakness, unclear speech, cognitive impairment and
other symptoms, may die in severe cases [2]. It is clinically
proved that patients can recover limb motor function by
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rehabilitation training [3], [4]. The rehabilitation evaluation
is an important part of rehabilitation medicine in the process
of rehabilitation treatment for stroke patients. When patients
receive rehabilitation treatment, the rehabilitation physiatrist
will assess the patient’s rehabilitation and current physical
condition [5], [6]. According to the rehabilitation evaluation
results, the rehabilitation treatment plan will be formulated for
the patients to achieve the best treatment and recovery effect.

In clinic, physiatrists evaluate the rehabilitation level of
stroke patients according to the Medical Stroke Assessment
Scale [7]. Traditional clinical rehabilitation evaluation methods
include Bobath, Brunstrom, Fugl-Meyer Assessment (FMA),
improved Ashworth, Motor Status Scale (MSS) [8], [9], [10].
The traditional rehabilitation evaluation needs to be accom-
plished by well experienced physiatrist and the evaluation
results are influenced by the physiatrist and the evaluation
process needs more time [11]. Traditional rehabilitation eval-
uation is to be evaluated by well-experienced physiatrist [12].
The one-to-one evaluation between rehabilitation doctors and
patients takes a long time, and the evaluation result will
be affected by the subjective of the physiatrist. Therefore,
it is necessary to apply advanced theories and methods to
the field of rehabilitation medicine, establish an evaluation
model for patients’ motor function, and help their doctors
obtain rehabilitation level of patients accurately. Combining
advanced theoretical methods with medical combined reha-
bilitation methods and auxiliary rehabilitation resources can
not only optimize the rehabilitation effect and rehabilitation
resource allocation, but also provide important theoretical
support for intelligent medical treatment [13], [14], [15].

At present, many researchers try to intelligentize rehabilita-
tion assessment [16], [17], [18]. Takehito Kikuchi developed
a 6 degrees of freedom rehabilitation robotic system and
combined with the evaluation function software to establish
three evaluation modes: Rhythmic Stabilization, FNF and
GUR. The patient’s rehabilitation status and training quality
were displayed through the virtual reality system [19]. Fan
and Yin used multisource information fusion technology to
study the early rehabilitation of active and passive exoskeleton,
which improved the safety and efficiency of exoskeleton
assisted rehabilitation training [20]. Reddy et al. detected
the three-dimensional workspace surface area according to
the data collected by Kinect and evaluated the UL function
of patients with shoulder musculoskeletal dysfunction [21].
Kim et al. proposed a method to judge the degree of elbow
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spasticity and used machine learning algorithm to classify
the level of elbow spasticity [22]. Zhang et al. proposed
a rehabilitation evaluation system for desktop rehabilitation
training robot, which can quantitatively assessment the UL
motor function of patients and grasp the degree of rehabilita-
tion of patients [23].

The existing intelligent rehabilitation evaluation method is
quantitative evaluation [24]. According to the information
collected from the patients, the researchers use the quantitative
scoring method to evaluate the rehabilitation of the patients
and there was no involvement of physiatrist in the assessment
process. However, in clinical practice, the physiatrist obtains
the patient’s information and evaluates the patient’s rehabil-
itation based on the evaluation scale and their experience.
The experience of physiatrist plays an important role in the
rehabilitation evaluation of patients.

The BRB model is proposed by Yang which is a nonlinear
model based on semi-quantitative information [25]. It can
address both qualitative knowledge and quantitative informa-
tion. The characteristic of this model is that it incorporates
expert knowledge and can fully utilize quantitative knowledge.
Especially, when the model is combined with expert knowl-
edge, it exhibits excellent performance when dealing with the
small-scale samples. In the rehabilitation assessment model,
expert knowledge is the clinical experience of the physiatrist.

Therefore, in this paper, a rehabilitation robot with 5 DoFs is
designed to assist patients in rehabilitation training and acquire
motion data of stroke patients. In order to better measure the
patient’s movement data, surface electromyography (sEMG)
signal measurement is added. The rehabilitation evaluation
method of stroke patients is established by fusing the acquired
information and expert knowledge based on BRB theory.
The relationship model between rehabilitation characteristic
quantity and rehabilitation degree is established to simulate the
rehabilitation evaluation of patients by physiatrist to the great-
est extent. In the modeling process, aiming at the uncertainty
of expert knowledge, the updating and optimization method
of model parameters is studied to provide more accurate
rehabilitation evaluation results for physiatrist.

II. REHABILITATION ROBOT DESIGN
A. Structure of Rehabilitation Robot

The proposed rehabilitation robot for stroke patients is
shown in Fig. 1, which can help patients complete the reha-
bilitation actions of upper limbs, including active and passive
movements. The robot can complete the adduction and abduc-
tion of the shoulder joint directly in the coronal plane, which
can help patients better complete the rehabilitation of the
shoulder joint. The rehabilitation robot is composed by a base
station and five models, which can help the stroke patients
do rehabilitation exercises in their middle and late stages of
rehabilitation. The module I, II and III can accomplish the
movement of shoulder joint. The module IV accomplishes the
flexion/extension of the elbow joint, and module V accom-
plishes the radial/ulnar deviation of the wrist.

In module III, a gravity compensation device is designed,
which consists of a parallel four link mechanism and cable.
The gravity compensation device can bear the axial load

Fig. 1.

)

Fig. 2. Mechanism diagram of ULRR.

of the shoulder joint mechanism and improve the stability
when shoulder joint is moving. When patients use robots for
rehabilitation training, it is necessary to connect the patient’s
upper limbs to the robot through flexible straps, aligning the
patient’s upper limb joints with the robot joints. The robot
drives the patient’s upper limbs for rehabilitation movement by
actuators which are driving the joint movement of the robot.

B. Forward Kinematics of Rehabilitation Robot

The forward kinematics (FK) is to address the pose of the
end effector of robot by inputting the values of 6;. In this paper,
the FK of the robot is derived based on the D-H parameter
method. The kinematics model of the ULERR based on the
kinematics theory, as shown in Fig. 2. Each link of the robot
can be represented by the four parameters of D-H which are
the length a; of the link, the twist «;, the offset d; and the joint
angle 6;, respectively. The TABLE I shows D-H parameters
of robot.

According to the robotics knowledge, the coordinate trans-
formation systems of the robot can be expressed as:

Cl’ —SiC(Xi SiS(Xi aiC,-
-7 = S Cicéli —Cifai ai»?i 1
0 SO co; d;
0 0 0 1
where, C; = cos0; cb; = cosb;, sf; = sinb;S; = sinb;, caj =
COS;Cl = COS @, So; = Sinwjsaj = Sin .
The pose matrix of the coordinate system at the
end of the robot relative to the base coordinate
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TABLE |
D-H PARAMETERS OF THE ROBOT
Link . . . v . ,
/i Joint angle/®; | Link length/a; | Link offset/d; Link twist/o;
1 6, 0 A 90°
2 6, 0 I, 90°
3 23 I3 0 0°
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Fig. 3. Cloud map of the robot workspace.

system is:

ny Ox dx Px
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where, n, 0, a, are the posture of the robot and pxpx, pypy,
pzp. are represent the end position coordinate vector.

C. Workspace of Rehabilitation Robot

In order to know whether the designed robot meets the
rehabilitation needs of patients, it is necessary to know the
workspace of the robot. The workspace needs to include
the max range of upper limb activity for the patient. The
workspace is obtained by combining Monte Carlo method
and D-H parameter method. As shown in Fig. 3 of the
simulation results, the range of workspace of the end of the
robot is: —730mm < X < 730mm, —730mm < Y < 730mm,
—556mm < Z < 556mm. According to the ergonomics, the
limit position of the robot is near to the limit position of the
upper limb of the human body. Therefore, the designed robot
fulfills the requirements for the range of motion (ROM) of the
upper limbs.

D. Experiment of Rehabilitation Robot

To realize the control of robot using the computer, and
Fig. 4 shows the diagram control system of the robot. Using
the sensors on the robot to collect the human motion data, and
the information is transmitted to the data acquisition card, and
finally uploaded the data to the computer.

The purpose of the patient by using robot for rehabilita-
tion is that the patient can complete the basic activities in
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Fig. 6. The structure of the model.

daily life. Therefore, it is necessary the patients complete
the multi-joint compound movements by robot. Taking the
action of drinking water and touching the left shoulder as
examples, and multi-joint compound exercises rehabilitation
training experiment are carried out. The Fig. 5 shows the
participant completes the movement of drinking water and
touching the left shoulder by using the robot.

[1l. EVALUATION METHOD

The evaluation model of UL rehabilitation for stroke
patients based on BRB proposed in this paper mainly includes
three parts. First, the features are selected to represent the UL
rehabilitation characteristics of the patients. Secondly, the time
series evaluation model of rehabilitation characteristics based
on BRB is established. Finally, ER algorithm is used to fuse
these rehabilitation features. The UL rehabilitation status of
stroke patients was evaluated. Fig. 6 shows the structure of
the model.

A. Features Selection

At present, the main methods used in the evaluation of UL
motor function are the method based on the change of limb
motion mode and muscle strength. In the method based on
the motion mode of the limbs, the ROM is a motion feature
that can be directly observed and detected. ROM refers to the
motion arc through which the joint moves, usually expressed in
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degrees, which can be used as an indicator to reflect the motor
function level of stroke patients with motor disorders [26].
Muscle force refers to the ability of a muscle to generate
tension to make it produce static or dynamic contraction,
which can also be regarded as muscle contraction force. With
the development of detection technology, muscle strength can
also be reflected by sSEMG. sEMG signal is the most important
physiological parameter of human muscle activity. It is a
small electrical signal generated by human muscle during
contraction. The research shows that the amplitude of SEMG
signal is related to the size of muscle force, movement speed
and acceleration, and the Root Mean Square (RMS) of SEMG
reflects the number of motor units activated during muscle
activity [27], [28]. Therefore, in this paper, the ROM and
SEMG signals are selected as features to evaluate the UL motor
function of stroke patients.

B. Establishment of BRB Rehabilitation Evaluation Model

To evaluate the health status of UL of patients, the nonlinear
relationship between the health status of patients’ UL and the
characteristic quantity should be established first. The specific
relationship model is as follow:

H:f(xllsx2fa"' ,XM[,V) (3)

where, H represents the health status of the patient’s UL, f is
the nonlinear BRB model, xy;(N = 1,2,..., M) is one of
the characteristics of the evaluation system, V is the model
parameters. In this paper, the nonlinear model f between the
features and the evaluation state will be established by using
such features as the ROM and SEMG based on BRB theory.

The health status evaluation model of stroke patients based
on BRB considers both expert knowledge and feature informa-
tion. In the process of rehabilitation evaluation, considering the
uncertainty of expert knowledge, P-CMA-ES is used to update
the initial parameters of BRB respectively, and a simpler and
more accurate rehabilitation evaluation model is established.
The specific process of modeling is as follows:

The first step:

Assuming that a total of i features can be used to represent
the health status of UL of stroke patients, based on the eval-
uation scale and the professional knowledge of rehabilitation
physicians, the kth BRB rule of rehabilitation evaluation is:

Ry @ If alisAlf A agisAé A o A aMisA’/‘Wk , Then

{(D1,Bix  )(Da,Bok)--., (Dn,Bni)] with a rule
weight 6y and attribute weight 81k, 62k, ..., Om, k-
where,

Ry the k-th confidence rule.

a; the i-th premises attribute, i represents the number
of feature quantities of system, i = 1,2, -, My.

Af— the reference value of the i-th premises attribute in
the k-th rule, i = 1,2, , My, k = 1,2,--- , L, A¥ € A;,
and A; = {A,-,jj =1,2,---, Jm} represents the set composed
of J; reference values of the i-th prerequisite attribute.

My, the number of prerequisite attributes in the k-th
rule.

Dj—— the j-th evaluation result, j = 1,2,---, N(N is
the number of evaluation results).

/ The matching degree of the premise
attribute in k-th rule

Ay

K JART = Al

a = .

Step 1 1-afk=1+1

0,k=12,,N

where, A}*! and A} represent
the i-th premise attribute reference
value in two neighboring rules,
respectively;

L——the number of rules;

T—the number of premise
attributes;

a,——the matching degree of
the i-th input;

‘ 1S & the attribute weight.
\ a=| |(af)
i-1

k=104 < x, < AlFY

Calculating the matching
degree of the premise
attributes

The matching degree in the k-th rule

The activation weight for the kth rule
Step 2

Orear where, 6

the rule weight.
k=121
Shi 0

Calculating the activation g =
weight

where,

u:lii(%ﬁm*l’%iﬁ“;&-)*w*1)ﬁ<l*w»z\:ﬁm>| B the

confidence of the
output relative to D;:

Step 3 b= u(sC0)

Rule reasoning based the expected utility
on ER of S(X):
M u(Dy) the
;:(S(X)):Zu(u,)li, utility  of  the
NG = evaluation result D
Output the model
S - )
Fig. 7. Reasoning process based on ER.
Bjr—— the confidence of the k-th result D;, j =

1,2,--- ,N,k=1,2,...,L.
_ If there are M prerequisite attributes in BRB, then §;= §; k,

§i= i (=12, M k=1.2,....L).
i=1,2,..., M\t
N
IfZﬂj,k #1,
j=1

then k-th rule is incomplete; Otherwise, it is complete.

The second step: To get the final system output in the
BRB model, Evolutionary Reasoning (ER) algorithm is used
to perform combined reasoning on the confidence rules. The
reasoning process is as shown in Fig.7. The third step:

In the rehabilitation evaluation model for stroke patients
based on BRB, the initial parameters of the model are given
by experts, which is highly subjective and the accuracy of
the evaluation model is low. The initial BRB parameters are
optimized based on P-CMA-ES to improve the accuracy of the
evaluation model [29]. In the process of parameter optimiza-
tion of BRB rehabilitation evaluation model, the following
optimization objective function is established:

min& (V)
N
st D Bk =1,
n=1
Ofﬁn,kSL k=]727' sL
0<é6 <1, i=1,2, M
0<6r <1
where,
E(V) = —— i -5 m)°
t—T
t=1—1
y (t)—— output results of actual rehabilitation state of
stroke patients.
v (1) output of rehabilitation evaluation model for
stroke patients.
T—— the amount of data.
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Data Collecting

Data Processing

BioNeuro INFINITI

Fig. 8. Data collecting systems.

IV. CASE STuDY

To verify the effectiveness and accuracy of the rehabilitation
evaluation model for stroke patients proposed in this paper,
the model is used to evaluate the health status of UL of
stroke patients. When collecting joint angle data, the first step
is to place markers on the patient’s UL joints and connect
the patient’s UL to the robot through protective covers. This
facilitates guiding the patient through a series of joint move-
ments, such as shoulder adduction and abduction. The UL
rehabilitation robot and the QTM system are used to collect
the patient’s UL motion data. When collecting SEMG signals,
the first step is to clean the designated areas with alcohol
swabs. After the cleaning process is completed, electrode pads
are applied to the patient’s upper limb. BioNeuro INFINITT is
used to collect SEMG data during human joint movements.
Each subject is required to perform six sets of movements,
including adduction/abduction, internal/external rotation and
flexion/extension of shoulder joint, flexion/extension of elbow
joint, flexion/extension and radial/ulnar deviation of wrist
joint. Each movement is to be repeated ten times.The ROM
and sEMG of patients’ UL were collected using the rehabil-
itation robot, Qualisys Track Manager (QTM) and BioNeuro
INFINITI, as shown in the Fig. 8. The UL motion data of
30 patients with different rehabilitation levels and 5 normal
persons are collected to establish the rehabilitation evaluation
level data. The collection of exercise data from patients and
participants is agreed upon by them. The basic information
of the patients (15 males and 15 females, mean age of
57.84£10.4 years) is shown in Table II.

Because the MSS adopts a 6-level scoring mode, which
provides a detection method for the separation movement of
a single joint of the UL, this paper establishes a database of
different rehabilitation levels for different patients based on
the MSS and expert knowledge. Based on the quantitative data
of joint ROM and sEMG obtained, and qualitative knowledge
such as expert knowledge and MSS, a rehabilitation evaluation
model for UL of stroke patients is established.

According to the MSS and expert knowledge, the ROM
selects 6 reference values:

N = no contraction or motion

C = contraction or initiating first few degrees of motion

PP = performs partly movement

L = lacking few degrees of movement

CF = completes full range or decreased control

PF = performs faultlessly

And the AX e (N, C, PP,L,CF, PF}.

TABLE Il
THE BASIC INFORMATION OF THE PATIENTS
Subject | Age Sex Etiology Side | Mss
1 52 Male | Hemorrhagic | Right | 1+
2 46 | Female Ischemic Left 1+
3 66 Male Ischemic Right 0
4 78 | Female Ischemic Right | 1-
5 63 Male Ischemic Right | 2-
6 45 | Female Ischemic Left 0
7 48 Male Ischemic Right | 1-
8 71 | Female Ischemic Right | 1+
9 77 Male Ischemic Right | 1-
10 68 | Female Ischemic Right 1
11 64 Male Ischemic Left 1
12 66 | Female Ischemic Right 0
13 54 Male Ischemic Right | 2-
14 52 | Female Ischemic Left 1-
15 50 Male | Hemorrhagic | Right | 1+
16 47 | Female Ischemic Left 1-
17 42 Male Ischemic Right | 2-
18 43 | Female | Hemorrhagic | Right 0
19 74 Male Ischemic Right 2
20 65 | Female Ischemic Right 1
21 42 Male | Hemorrhagic | Left 2
22 64 | Female Ischemic Right 1
23 53 Male Ischemic Right 2
24 57 | Female Ischemic Left 0
25 50 Male | Hemorrhagic | Right | 1+
26 58 | Female Ischemic Right 2
27 66 Male Ischemic Right | 2-
28 62 | Female | Hemorrhagic | Left 2
29 55 Male Ischemic Right | 2-
30 57 | Female Ischemic Right 1

For sEMG, six reference values are selected the same as
ROM [30], [31], namely A’; e{N,C,PP,L,CF, PF}.

According to the MSS evaluation scale, the rehabilitation
status of stroke patients is divided into six grades, which are
respectively expressed as (N, I, [I1,111,1V,V):

{Ty, Ty, T3, Tq, Ts, T¢} = {N, I, II,III, IV, V}

The input features of BRB have six reference values respec-
tively, so 36 initial confidence rules can be established to
evaluate the rehabilitation level of patients. If the quantitative
data of ROM is qualitative semantic expression “N”, and the
qualitative semantic expression of SEMG is respectively “N, C,
PP, L, CF, PF”, the following rules are established according
to expert knowledge:

Ry : If (ROM is N)A (sEMG is N), Then {(0.9,0.1,0,0,0,0)}

Ry - If (ROM is N)A (sEMG is C), Then {(0.1,0.8,0.1,0,0,0)}

R3 : If (ROM is N)A (sEMG is PP), Then {(0, 0.1,0.9,0,0,0)}

Ry : If (ROM is N)A (sEMG is L), Then {(0,0,0.1,0.8, 0.1,0)}

Rs : If (ROM is N)A (sEMG is CF), Then {0,0,0,0,0.9,0.1)}

Re : If (ROM is N)A (SEMG is PF), Then {0,0,0,0, 0.1,0.9)}

Taking the above rules as an example, a systematic BRB
rehabilitation evaluation model is established. The k-th rule is
as follows:

Ry : If Range of motion is Alf/\ SEMG is AS ,
Then Rehabilitation condition is {(N,B1x), (IB2.k), (ILB3x)
(1L Bax), (IV,Bs.k), (V,Be.x)} with a rule weight 0y , attribute
weight 61, 62, ..., 86
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TABLE Ill
THE ATTRIBUTE REFERENCE VALUE OF ROM

Referential points | N C PP | L CF | PF
Referential values 180 | 150 | 120 | 90 60 30

TABLE IV
THE ATTRIBUTE REFERENCE VALUE OF sEMG

Referential points | N C PP | L CF | PF
Referential values | 40 |35 |30 |25 |20 |15

TABLE V
THE REFERENCE VALUE OF REHABILITATION STATUS

Referential points | N I II m |Iv |V
Referential values | 5 4 3 2 1 0

- Training data
*  Initial BRB model

Health status

Step

Fig. 9. The rehabilitation evaluation results by initial BRB model.

The attribute reference value of ROM and sEMG are shown
in Table III and Table IV, respectively. The reference value of
rehabilitation status is shown in Table V.

In the rehabilitation evaluation model, since there are 6 ref-
erence values for each feature, there are 36 rules in total
when evaluating the health status of the features. According to
expert knowledge, the initial confidence of two characteristic
quantities is given in Table VL.

This paper has obtained 2100 sets of data, including
1500 sets as training data and 600 sets as test data. According
to the initial parameters given by experts, the weight of
characteristic quantity is not considered. 6y and §; are both
set to 1, and the rehabilitation evaluation results are shown in
Fig. 9. The results show that that the fitting degree between
the evaluation results and the training data is not high.

In the rehabilitation evaluation model for stroke patients
based on BRB, the initial parameters of the model are given by
experts, which is highly subjective and the evaluation model is
inaccurate. To improve the accuracy of the evaluation model,
the initial BRB parameters need to be optimized. In this paper,
P-CMA-ES optimization algorithm is used to optimize BRB
model parameters. The optimized BRB parameters are shown
in Table VIL Fig. 10 illustrates the evaluation results which is
shown that the updated output of parameters can well fit the
training data.

V. COMPARATIVE ANALYSIS

To verify the effectiveness and accuracy of the methods
proposed in this chapter, this section conducts a comparative

TABLE VI
THE INITIAL PARAMETERS OF BRB
Rule Attributes Fault-degree distribution {73, T3, T4, T,
number ROM | sEMG Te} =1{5,4,3,2,1,0}
1 N N 1(0.9,0.1,0,0, 0,0)}
2 N C ((0.1,08,0.1,0,0.0)]
3 N P 1(0,0.1,0.9,0, 0.0}
3 N L {(0,0,0.1,08, 0.1,0)}
5 N CF 1(0,0,0,0.1,08,0.1)}
3 N PF 1(0,0,0,0,09,0.1)}
7 C N 1(0,0.9,0.1,0, 0.0}
8 C C {(0,0.1,08,0.1,0,0)}
9 C PP {(0,0,0.1,0.8,0.1,0)}
10 C L 1(0,0,0,0.1,09,0)}
¥ C CF 1(0,0,0,02,0.7,0.0}
2 C PE 1(0,0,0.0, 0.2,0.8)}
3 PP N {(0,0.1,0.9,0, 0,0)}
4 PP C {(0,0,0.1,038, 0.1,0)}
15 PP | PP 1(0,0,0,0.7, 03,00}
16 P L 10, 0,0,0.6,04,0)}
17 PP | CF (0,0,0.7,0.3,0.0)}
18 PP PF {(0,0,0.1,0.7, 0.2,0)}
9 L N 1(0,0,0.8,02, 0,0)}
20 L C 1(0,0,0.1,0.7,0.2,0)}
2 L P 10, 0,0.1,0.6,03,0)}
22 L L {(0, 0,0,0.6, 0.4,0)}
3 L CF {(0,0,0.1,05,0.4,0)}
24 L PF {(0,0,0,04,0.6,0)}
25 CF N {(0,0,0.1,05, 04,0)}
26 CF C (0,0,004,05,0.1)}
27 CF PP {(0, 0,0,0.2, 0.6,0.2)}
28 CF L 1(0,0,0,0.1,0.603)}
29 CF | CF 1(0,0,0,0,0.7,03)}
30 CF | PF 1(0,0,0,0, 0.8,0.2)}
31 PR N (0,0,0,0,05,05)
2 PF C 1(0,0,0,0,04,0.6)}
33 PF PP {(0,0,0,0, 0.3,0.7)}
3 PF L 1(0,0,0,0,02,0.8)}
35 PF CF {(0,0,0,0, 0.1,0.9)}
36 PF PF 1(0,0,0,0,0,1)}

analysis. First, the Back Propagation Neural Network (BPNN)
is used for comparative analysis. BPNN is widely used in diag-
nosis, classification and prediction. As with the BRB model
simulation analysis, the 1500 groups of data are also used for
training in the BPNN evaluation model, and the remaining
data are used as test data. Evaluation results based on BPNN
are shown in Fig. 11. To further verify the progressiveness of
the proposed model, Support Vector Machines (SVM) is used
to evaluate and analyze the data. The previous 1500 groups of
data are also used for training, and the rest are used as test data.
The results are shown in Fig. 12. Table VIII lists the Mean
Square Error (MSE) of BRB, BPNN and SVM health status
evaluation model. Through comparative analysis, it can be
known that the rehabilitation evaluation model based on BRB
proposed in this paper has high accuracy and effectiveness.

VI. DISCUSSION

This paper presents a rehabilitation evaluation model based
on BRB for stroke patients which combine the assessment
scale and the expert knowledge of physiatrist. To verify
the accuracy of the proposed model, BPNN and SVM are
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TABLE VI
THE OPTIMIZED BRB PARAMETERS
Rule Attributes Fault-degree distribution {71, T», T3, T4, Ts, Ts}
mum | RO | sEM ={5,4,3,2,1,0}
ber M G
1 N N {(0.7335,0.0301,0.0438,0.0501,0.0473,0.0952)}
2 N C {(0.0693,0.6547,0.0869,0.0759,0.0439,0.0693)}
3 N pP {(0.0802,0.0381,0.8442,0.0063,0.0218,0.0094)}
4 N L {(0.0126,0.0852,0.0411,0.7651,0.0562,0.0398)}
5 N CF {(0.0719,0.0923,0.0561,0.0445,0.6580,0.0772)}
6 N PF {(0.0129,0.0651,0.0369,0.0187,0.8607,0.0057)}
7 C N {(0.0156,0.9086,0.0204,0.0117,0.0437,0)}
8 C C {(0.0143,0.2414,0,0,0.7323,0.0130)}
9 C pp {(0.0763,0.0431,0.0118,0.7228,0.0537,0.0923)}
10 C L {(0.0886,0.0057,0.0675,0.0235,0.7820,0.0327)}
11 C CF {(0.3612,0.0151,0,0,0.6104,0.0133)}
12 C PF {(0.0267,0.0765,0.0193,0.0938,0.0489,0.7348)}
13 PP N {(0.0013,0.0175,0.542,0,0.0157,0.4235)}
14 PP C {(0.0374,0.0883,0.0855,0.7251,0.0065,0.0572)}
15 PP pP {(0.0093,0.0416,0.0264,0.8647,0.0413,0.0167)}
16 PP L {(0.0400,0.0636,0.0300,0.7510,0.0278,0.0876) }
17 PP CF {(0.0508,0.0998,0.0414,0.6875,0.0984,0.0221)}
18 PP PF {(0,0.0179,0.0113,0.9547,0.0132,0.0029)}
19 L N {(0,0,0,0.7023,0.0189,0.2788)}
20 L C {(0.0632,0.0410,0.0109,0.7818,0.0267,0.0764)}
21 L pp {(0.0727,0.0314,0.0420,0.8274,0.0198,0.0067) }
22 L L {(0.0444,0.0803,0.0051,0.7970,0.0544,0.0188)}
23 L CF {(0.0673,0.0926,0.7675,0.0553,0.0036,0.0137)}
24 L PF {(0,0.0024,0.0052,0.0023,0.9894,0.0007)}
25 CF N {(0.0256,0.0429,0.0596,0.7607,0.0927,0.0185)}
26 CF C {(0.7647,0.0874,0.0268,0.0388,0.0636,0.0187)}
27 CF PP {(0.0990,0.0671,0.0204,0.0841,0.6396,0.0898) }
28 CF L {(0.0764,0.0473,0.0130,0.0234,0.7646,0.0753)}
29 CF CF {(0.0494,0.0409,0.0611,0.0854,0.7430,0.0202)}
30 CF PF {(0,0.0862,0.0103,0.0013,0.8037,0.0985)}
31 PF N {(0.1140,0,0.3786,0,0.5074,0)}
32 PF C {(0.0381,0.0350,0.0204,0.0484,0.0015,0.8566)}
33 PF pp {(0.0900,0.0857,0.0288,0.0053,0.0929,0.6973)}
34 PF L {(0.0005,0.0140,0.0723,0.0338,0.0905,0.7889)}
35 PF CF {(0.0804,0.0612,0.0067,0.0506,0.0816,0.7195)}
36 PF PF {(0.0304,0.0917,0.0067,0.0006,0.0019,0.8687)}
TABLE VIII
THE MSEs OF DIFFERENT MODELS
Models Training Testing
BRB 0.0298 0.0325
BPNN 0.1736 0.2410
SVM 0.2844 0.3975

used to evaluate. Three different evaluation models are estab-
lished based on BRB, BPNN and SVM algorithms which
are evaluated the UL motor function of stroke patients. The
experimental results show that the MSE of the BRB, BPNN,
and SVM model in UL motor function are 0.0325, 0.2410 and
0.3975, respectively. Comparison of the BPNN and the SVM
model, the MSE of BRB model is small, which indicate that
the evaluation model based on BRB has better performance.
The reason why the BRB assessment results are more accurate
is that the expert knowledge of doctors has been added in the
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Fig. 12. Evaluation results based on SVM.

model. In the rehabilitation process, the period of rehabilitation
is long, and the staged data of patients collected is less, so the
purely data-driven evaluation will have disadvantages and be
inaccurate. The addition of expert knowledge can make up
for the lack of data and evaluate the rehabilitation of patients
better. Physiatrists play an important role in rehabilitation
evaluation. With the addition of expert knowledge, the model
can better simulate physiatrists’ rehabilitation evaluation of
patients. BRB is an excellent modeling method based on semi
quantitative information, which can effectively use various
uncertain information and quantitative knowledge to model
nonlinear systems.
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VII. CONCLUSION

In this paper, a rehabilitation robot has been designed which
can help patients exercise their upper limbs. A model based
on BRB has been proposed to evaluate the rehabilitation
status of stroke patients which can be applied to rehabilitation
robots. A new method of rehabilitation evaluation based on
BRB has been proposed. A time series evaluation model of
rehabilitation health characteristics based on BRB has been
established. Representative characteristic values have been
taken as health characteristics. Finally, these rehabilitation
features have been fused by ER algorithm which realizes that
the comprehensive evaluation of UL rehabilitation status of
stroke patients. In the process of using BRB for rehabilitation
evaluation, P-CMA-ES has been used to optimize the model
parameters in order to solve the subjectivity of expert knowl-
edge. The case study shown that the model can be used to
evaluate the rehabilitation of UL of patients. The results shown
that the evaluation model of UL rehabilitation state of patients
based on multi features had high effectiveness and accuracy,
compared with BPNN and SVM. The rehabilitation evaluation
applied to rehabilitation robots is helpful for the physiatrist
to evaluate the UL motor function of patients. In the future,
we will add more features in BRB model, carry out large-scale
clinical trials, and improve the rehabilitation evaluation model.
By adding new features, the UL rehabilitation status of patients
can be more comprehensively evaluated, and the accuracy of
the model can be further improved.
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