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Abstract— Electroencephalography (EEG) and surface
electromyography (sEMG) have been widely used in the
rehabilitation training of motor function. However, EEG
signals have poor user adaptability and low classification
accuracy in practical applications, and sEMG signals are
susceptible to abnormalities such as muscle fatigue and
weakness, resulting in reduced stability. To improve the
accuracy and stability of interactive training recognition
systems, we propose a novel approach called the Atten-
tion Mechanism-based Multi-Scale Parallel Convolutional
Network (AM-PCNet) for recognizing and decoding fused
EEG and sEMG signals. Firstly, we design an experimental
scheme for the synchronous collection of EEG and sEMG
signals and propose an ERP-WTC analysis method for
channel screening of EEG signals. Then, the AM-PCNet
network is designed to extract the time-domain, frequency-
domain, and mixed-domain information of the EEG and
sEMG fusion spectrogram images, and the attention mech-
anism is introduced to extract more fine-grained multi-scale
feature information of the EEG and sEMG signals. Experi-
ments on datasets obtained in the laboratory have shown
that the average accuracy of EEG and sEMG fusion decod-
ing is 96.62%. The accuracy is significantly improved
compared with the classification performance of single-
mode signals. When the muscle fatigue level reaches 50%
and 90%, the accuracy is 92.84% and 85.29%, respectively.
This study indicates that using this model to fuse EEG and
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sEMG signals can improve the accuracy and stability of
hand rehabilitation training for patients.

Index Terms— Rehabilitation training, signal fusion,
multi-scale parallel network, fusion decoding, muscular
fatigue.

I. INTRODUCTION

THE prevalence of cerebrovascular disease and the occur-
rence of frequent accidents have contributed to a rising

population of individuals with paralysis [1]. For paralyzed
patients, postoperative rehabilitation is an effective treatment
that can help improve and restore movement motor function.
Hand exercise rehabilitation training is essential when patients
relearn daily movements [2]. The widely used single mode
Electroencephalography (EEG) or Surface Electromyography
(sEMG) signals cannot fully meet the requirements of effective
patient control. Integrating surface electromyography (sEMG)
and electroencephalography (EEG) for fusion recognition and
decoding holds theoretical promise in enhancing the classifica-
tion accuracy of single-mode actions, thereby offering a novel
approach to hand sports injury rehabilitation. This method
aims to facilitate hand rehabilitation training and improve the
overall effectiveness of rehabilitation interventions for patients.

The EEG signal is the reflection on the surface of the
cerebral cortex when the brain neurons are active, which can
be used to decode action information [3]. Given that the
paralysis and stroke patients with EEG signal performances
are not compromised, the Brain-computer interface (BCI) tech-
nology can be used to control objects such as wheelchairs and
prosthetic hands to improve Patient’s lost body function [4],
[5]. Recent research has shown that BCI technology can help
paralyzed patients with motor rehabilitation, such as patients
after stroke) [6]. However, due to the limited number of
classifiable modes for a single EEG mode, precise control
of output devices is restricted. EEG signals are susceptible to
external noise interference, and the low classification accuracy
and poor user adaptability often limit the application of EEG
signals in clinical patient rehabilitation.

Multifunctional prosthetics are often used for patients with
muscle function loss to restore their lost motor function.
sEMG is a bioelectrical signal generated by neuromuscular
activity recorded from the surface of skeletal muscle through
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electrodes when the human body moves autonomously [7].
The sEMG signal contains rich neural information, which can
extract features from fewer channels that can control multiple
action modes. The sEMG signal plays a vital role in the control
of modern mobile prosthetics [8] and rehabilitation robots [9].
It is important to acknowledge that certain limitations may
arise due to variations among subjects and the specific applica-
tion environment. These limitations may include issues such as
muscle fatigue arising from prolonged usage and the inability
of subjects to generate consistent and sufficient sEMG power
due to muscle weakness or disability.

Fusing multimodal signals is a feasible method to improve
the accuracy and stability of classification. By combining
EEG signals with sEMG signals [10], sufficient information
is provided for motion decoding. According to the level of
information fusion, the fusion methods can be categorized
into three groups: data layer fusion, feature layer fusion, and
decision layer fusion. The first group is data layer fusion,
which involves directly fusing the EEG signal and sEMG
signal data obtained from different acquisition sensors, and
then feature extraction and classification are performed on
the fused signal data. The obtained information has a certain
degree of redundancy. The information loss of data layer
fusion is the smallest, but the fault tolerance is the smallest and
the anti-interference ability is the worst. The second group is
feature layer fusion, where feature vectors are extracted from
the obtained EEG and sEMG signals, followed by feature
data fusion processing. Finally, the fused features are used
for the decision-making of system classification. The feature
layer fusion extracts effective features from various channels
of EEG and sEMG data, preserving useful information while
compressing it, resulting in high accuracy. Yang et al. [11]
proposed a method based on graph theory as a multimodal
fusion strategy for EEG and sEMG. Functional connectivity,
often considered as the weight of edges, enhances the robust-
ness and accuracy of hand motion recognition. The third group
is decision layer fusion, which involves separately processing
and classifying EEG and sEMG signals for decision-making.
Both EEG and sEMG signals are required to have independent
decision-making capabilities, with the greatest information
loss, ignoring the synergistic complementarity between EEG
and sEMG. Tryon et al. [12] proposed a decision layer fusion
strategy based on EEG and sEMG sources, which achieved
flexion–extension motion recognition and improved the accu-
racy and stability of the system.

At present, feature extraction plays a very important role
in the research of EEG and sEMG signals. Ji et al. [13]
proposed a feature extraction method based on discrete wavelet
transform (DWT) and empirical mode decomposition (EMD)
to improve the effectiveness of EEG signals. Li et al. [14]
proposed an effective feature fusion method TS-SEFFNet to
enhance the temporal and spectral dependencies in MI-EEG.
Zhu et al. [15] designed a network framework that combines
CWT with AlexNet, and collected sEMG signal data from
various gesture actions to extract rich time-frequency domain
features of sEMG signals.

With the continuous development of brain science tech-
nology, multiple researchers have proposed the hybrid BCI

system that combines EEG signals and sEMG signals. The
proposal compensates for the shortcomings of existing brain-
computer interfaces. Li et al. [16] merged EEG and sEMG
into parallel control inputs, extracted four time-domain fea-
tures, and inputted them into the linear discriminant analysis
(LDA). Combined with the sequential forward selection (SFS)
algorithm to optimize performance, the highest recognition
accuracy was 87.0%. Chowdhury et al. [17] used the cor-
relation between power-limited time processes as the fusion
feature of EEG and sEMG to classify hand movements. For
the disabled patient group, the accuracy was 84.53 Â± 4.58%.
Shi et al. [18] proposed a multimodal enhanced fusion network
based on a dense non-attention mechanism and introduced
the Joint attention structure with an accuracy of 88.44%.
However, existing methods all have some shortcomings. First,
the coherence and functional coupling relationship between
EEG signals and sEMG signals are ignored [19]. Secondly,
feature extraction is mostly a machine learning method, which
can result in the loss of some features [20]. In this work,
we propose the Attention Mechanism-based Multi-Scale Par-
allel Convolutional Network (AM-PCNet) for recognizing and
decoding fusion signals to improve the effective control of
patient rehabilitation training.

The four main contributions of this paper can be summa-
rized as follows:

1) We propose an EEG channel selection method based on
ERP-WTC analysis. Three channels of EEG signals are
selected and fused with sEMG signals in the feature layer
to obtain time-frequency domain fusion features of EEG
and sEMG signals.

2) We propose a novel AM-PCNet for EEG and sEMG
fusion decoding, which uses a parallel structure to extract
features in the time, frequency, and mixed domains.
In this way, the loss of multi-domain representations in a
single-branch network is preserved.

3) Pyramid Split Attention (PSA) and Squeeze Excitation
(SE) attention mechanisms, which enable the network
to extract fine-grained multi-scale features of EEG and
sEMG signals effectively, are introduced to establish
long-distance channel dependencies and enhance infor-
mation exchange between EEG and sEMG signals.

4) We design a synchronous collection scheme for the EEG
and sEMG signals. Experiments are conducted on the
dataset collected in the laboratory, and the rationality and
effectiveness of the multimodal fusion decoding method
are analyzed and verified.

II. METHODS

To integrate the advantages of human-machine interaction
between a single EEG and sEMG modality and improve
system performance, we researched the fusion and recognition
of EEG and sEMG signals based on attention mechanism
multi-scale parallel convolutional neural networks.

A. The Design of Synchronous Collection Scheme for
EEG and sEMG Signals

We independently designed a synchronous acquisition
scheme for EEG signals and sEMG signals, achieving
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Fig. 1. Synchronous collection of EEG and sEMG signals (a) Distribu-
tion map of electroencephalogram electrodes, (b) The EEG and sEMG
collection system, (c) Muscle position distribution map.

synchronous triggering and collection of EEG and sEMG sig-
nals and storing real-time signals. This scheme is implemented
by a set of sensor devices for collecting sEMG and EEG
signals, a device for signal visualization and storage, and a
computer for displaying experimental paradigms and sending
trigger signals. During the synchronous collection process, the
E-prime software synchronously sends a serial signal at the
beginning of the action. Then it sends it to the sEMG signal
collection device through a trigger. When the trigger command
is received, the EEG and sEMG signals start recording and
storing synchronously. The synchronous collection process of
electroencephalogram signals is shown in Fig. 1(b). In the
experiment, Brain Products equipment was used to collect
EEG signals, and 31 channels of EEG signals were recorded
from the scalp electrode of the EEG. The channel position
information is shown in Fig. 1(a). We select the Delsys device
to collect sEMG signals and record three channels of sEMG
signals from the Delsys wireless acquisition sensor. Fig. 1(c)
shows the muscle selection positions, where Ch1 represents
the flexor carpi brevis, Ch2 the palmaris longus, and Ch3 the
flexor carpi ulnaris.

B. Screening of EEG Channels Based on ERP-WTC
Although BCI systems with a large number of electrodes

can record more working features of brain regions, it is nec-
essary to consider the response of EEG electrodes to different
types of stimuli and the coherence between EEG and sEMG
signals [19], in fusion motion recognition systems. We screen
EEG channels to achieve the optimal combination of EEG and
sEMG signals channels and prepare for subsequent fusion at
the feature layer.

1) ERP Analysis: ERP (Event Related Potential) refers to
the potential changes in the brain area caused by applying
a specific stimulus to the sensory system or a certain part
of the brain when the stimulus is given or withdrawn [21].
For the hand movements in the experiment, We use the ERP
topographic map analysis to select activated brain regions. The
activation status at the spatial scale corresponding to the peak
of the ERP waveform can be observed in the ERP2D or 3D
brain topographic map shown in Fig. 2. ERP2D and 3D brain
topographic maps can select activated brain regions and detect
faulty or noisy electrodes, so we preliminarily select the two
activated regions of interest in the red box in Fig. 1(a). Based
on the specific analysis of the ERP waveform curve in Fig. 2,

Fig. 2. The activation of EEG channels (a) FT9 channel, (b) FC6
channel, (c) F7 channel.

six channels, FT9, F7, C3, FC6, F8, and F4, were preliminarily
selected from the two activated regions.

2) WTC Analysis: In the EEG and sEMG signals fusion
motion recognition system, the brain’s motor cortex sends
commands to control the limbs and completes the muscles
through the brain stem and the spinal cord along the motor
nerve pathway exercise [19]. Simultaneously, the limb signals
are sent back to the cerebral cortex along the sensory nerve
pathway for fusion analysis. This interaction between cerebral
cortex activity and muscle movement can be evaluated through
the consistency of EEG and sEMG. Thus, it is possible to
screen the EEG channels most relevant to sEMG signals
of different muscle movements. Wavelet coherence analysis:
spectral coherence [19] measures the correlation degree of two
signals in the frequency domain. The formula is as follows:

Cohxy =
|Pxy( f )|2

Pxx( f ) • Pyy( f )
(1)

Pxy refers to the cross-spectral density of EEG and sEMG
signals, Pxx and Pyy refer to the self spectral density of x and
y respectively, that is, the power spectral density. The range
of Cohxy values is [0,1], and the larger the value, the greater
the degree of correlation between EEG and sEMG signals at
frequency f. The coherence analysis reflects the consistency of
the EEG and sEMG signals. Informed by coherence analysis,
FT9, F7, and FC6 EEG channels are finally selected.

C. Extracting Synchronous Features of the EEG and
sEMG Signals

We comprehensively consider the common features infor-
mation of EEG and sEMG signals and use time-frequency
spectrogram images to demonstrate the signal oscillation
behavior of EEG and sEMG signals. By maximizing the
preservation of multi-domain information of EEG and sEMG
signals, the fusion of EEG and sEMG feature layers is
achieved. We use short-time Fourier transform [22], wavelet
transform [15], and Stockwell transform [23] to perform
time-frequency transformation on the EEG and sEMG signals
in each channel.
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Fig. 3. The EEG and sEMG fusion strategy based on AM-PCNet (a)The Overview of EEG and sEMG fusion strategy, (b) The structure of
AM-PCNet.

1) Short Time Fourier Transform: As non-stationary signals,
the internal characteristics of sEMG and EEG can be fully
characterized by STFT. STFT divides the signal into smaller
segments, computes the Fourier transform of each segment,
and visualizes the frequency characteristics over time. Fourier
transform can be applied to the sliding window to obtain the
following local spectra:

ST FTx (τ, f ) =

∫
+∞

−∞

[x (t) w (t − τ)] e− j2π f t dt (2)

where x(t) ∈ L2(R) is the original signal, t, τ ∈ R refer
to time, f ∈ R is the frequency, and w(t) ∈ L2(R) is the
applied window function. The selected window in STFT is
the Hanning window.

2) Continuous Wavelet Transform: The ψ in the continuous
wavelet transform is called the fundamental wavelet or mother
wavelet. The continuous wavelet transform can be expressed
as follows:

(Wψ f )(a, b) =
〈
f, ψa,b

〉
=

√
a

∫
+∞

−∞

ψ̄

(
t − b

a

)
dt (3)

In formula 3, a represents frequency, while b represents time
or spatial position. The reciprocal of scale 1/a corresponds to
frequency ω.

3) Stockwell Transform: We attempt to use Stockwell trans-
form for time-frequency feature extraction of EEG and EMG.
The Stockwell transform formula for continuous signal x(t) is:

Sx (τ, f ) =

∫
+∞

−∞

x(t)
| f |

√
2π

e
− f 2(τ−t)2

2 e−i2π f t dt (4)

We preserve the frequency domain information of EEG
signals ranging from 8-30Hz and the effective frequency
domain features of sEMG signals ranging from 10-200Hz.
Due to the synchronous collection of EEG and sEMG, the
EEG and sEMG are synchronized in the time dimension
after time-frequency transformation. We concatenate the EEG
time-frequency image and the sEMG time-frequency image in
the frequency domain dimension, with the three channels of
sEMG on top of the three channels of EEG. The fused features
of EEG and sEMG are saved as concatenated time-frequency
images, as shown in Fig. 3.

D. Proposed AM-PCNet Structure

As shown in Fig. 3, we used the spectrogram images of the
spliced EEG and sEMG signals as the input of AM-PCNet.
We selected three different scales of convolutional kernels,
namely 1×10, 10×1, and 5×5, to obtain the time-domain fea-
tures, frequency-domain features, and time-frequency mixed



216 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 32, 2024

Fig. 4. The specific composition structure of PSA attention module.

domain features of the input feature map to better obtain rich
network features [24].

1) The Design of the Time-Conv Block: The EEG and
sEMG fusion spectrogram images contain a large amount of
time-domain feature information, so a 1 × 10 convolutional
kernel is first selected in this block to extract time-domain
features. To further explore deeper time-frequency features,
continuous convolutional units on the time dimension are
used. The Time-Conv block in Fig. 3 includes two successive
Temporal Conv Units, and the structure of the units is shown
in Fig. 3. Each unit starts from a 1 × 3 convolution kernel,
with a convolution stride size of (2,15). The Temporal Conv
Unit is only convolved at the time scale, which can extract the
internal time-domain features of the EEG and sEMG fusion
spectrogram images without damaging the EEG-sEMG signals
in each channel. In addition, dropout and batch normalization
operations are used in each unit to minimize overfitting.

Time-Conv block arranges all units in order and extracts
deeper feature representations from basic shallow time domain
features. The number of units and the size of the kernel will
be verified by subsequent related experiments.

2) The Design of the Freq-Conv Block: We concatenate the
spectrogram images of EEG and sEMG signals in the fre-
quency domain dimension. We design the Freq-Conv block to
extract frequency domain features of EEG and sEMG signals
while establishing long-range EEG channel dependencies.
We select a 10 × 1 convolution kernel with a convolution
step size of (2,15) and then perform dropout and batch
normalization operations.

3) The Design of the TF-Conv Block: In the TF-Conv block
of Fig. 3, a 5×5 convolutional kernel is first selected to extract
the neighborhood features of each pixel in the spectrogram
image. The time and frequency channels are mixed to extract
the contextual features of the EEG and sEMG spectrogram
images. In the TF-Conv block layout, there are two successive
TF Conv Units, and the structure of each unit is shown
in Fig. 3. Each unit starts from two successive convolution
kernels with the size of 3 × 3, which perform convolution
simultaneously in both time and frequency domains. It can
extract correlation time-frequency features between each chan-
nel. The convolution stride is (2,15). The activation function is
ReLu. In addition, dropout and batch normalization operations
are used in each unit to reduce overfitting. The TF-Conv
block arranges all units to extract time-frequency deep feature
information further.

4) Attention Module: In the study of decoding sEMG-EEG
signals, we aim to extract features with high discriminabil-

ity and robustness. We introduce two attention models:
SE (Squeeze Excitation) [25] and PSA (Pyramid Split
Attention) [26].

We add the SE attention model to the Time-Conv block
and Freq-Conv block, enabling the network to selectively
amplify valuable time-domain and frequency-domain charac-
teristic channels based on global information.

We added the PSA attention module to the TF Conv block.
First, each group is convolved with different convolution
kernel sizes through group convolution to obtain the Receptive
field of different scales and extract information about different
scales. The SPC module structure is demonstrated in Fig. 4.

Fi = Conv(ki × ki ,Gi )(X i ) (5)

where the number of groups is set at 4, so i=0,1,2,3.
Next, through the SE attention module, we extract the

weighted values of each group of channels and obtain spatial
information of multi-scale input spectrogram images.

Zi = SEW eight (Fi ) (6)
atti = Sof t max(Zi ) (7)

We multiply the feature map of the corresponding scale with
the attention vector at the channel-wise level. We concatenate
the weighted feature maps into dimensions, and the PSA
module Output is shown in Fig. 4:

Out = Cat ([Y0, Y1, · · · , YS−1]) (8)

where the number of S is set at 4, and Y is the output of the
PSA module corresponding to the convolutional weighting of
different scale groups.

The Time-Conv block and Freq-Conv block focus on some
information in the spectrogram image, while the information
obtained in the TF-Conv block is a mixture of time and
frequency channel features. We use the similarity between
time-domain and frequency-domain features to weight the
attention of the time-frequency convolution module [27] so
that the time-frequency convolution module focuses on time-
frequency features, improves the interaction between the three
parallel network branches, and enhances the accuracy and
stability of the network.

atti = Sof t max(XTi X Fi
T ) =

exp(XTi X Fi
T )∑K−1

i=0 exp(XTi X Fi
T )

(9)

XT Fi = xT Fi ⊙ atti (10)

where the number of K is set at 4, so i=0,1,2,3. Where XTi

is the output of Time-Conv Block, X Fi is the output of Freq-
Conv Block, and XT F i is the output of TF-Conv Block.
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Fig. 5. Four hand movements in the EEG and sEMG acquisition
experiments.

Fig. 6. Experimental scheme for synchronous acquisition of the EEG
and sEMG signals.

5) The Design of Classification Block: We flatten the feature
maps of three blocks into one-dimensional feature vectors and
then perform feature stitching on them.

{YT , YF , YT F } = f latten {XT , X F , XT F } (11)
Out = Cat ([YT , YF , YT F ]) (12)

We send the concatenated feature vectors Out to two fully
connected layers connected in series. Finally, the Softmax
function converts the output into classification probability.

III. EXPERIMENTS

A. Acquisition Experiments of EEG and sEMG Signals
Eight subjects were recruited to collect their EEG and

sEMG signals. They were all healthy students with an average
age of 23.5 years old. They are right-handed. Before the
experiment, all the subjects signed a written informed consent
form. This experiment was performed in a quiet room. The
subject sat on a chair and waited for the start of the experiment.
They perform the four common hand movements, as shown
in Fig. 5. The specific process of the experimental paradigm
in Fig. 6 is as follows:

• 0-2s : When the computer is heard, a “+” picture appears
in the computer screen, reminding the subject to prepare
to perform the corresponding actions.

• 2-5s : The subject can see the corresponding action pic-
ture in the middle of the computer screen, and then the

Fig. 7. Analysis of EEG and sEMG wavelet coherence (a) The EEG
and sEMG strong coherence, (b) The EEG and sEMG weak coherence.

screen is in a black screen state. The subjects perform
corresponding unilateral upper limb hand movements and
EEG motor imagination. The entire action is completed
within 3s.

• 5-8s : The subjects relax and return to their position
prior to the experiment, getting ready for the following
experiment.

The EEG and sEMG signal preprocessing steps are as
follows:

• EEG : Firstly, the EEG signal needs to be band-pass
filtered and 50Hz power frequency interference removed.
Then, the original collected EEG signal needs to be
channel selected and baseline interference removed. Next,
the EEG signal needs to be segmented to obtain the
corresponding action response signal.

• sEMG : Firstly, the original sEMG signal is filtered to
retain the signal information in the 10-200Hz frequency
band. Then, the action segment signal is extracted, and
finally, the sEMG signal is downsampled to facilitate
synchronous feature extraction with the EEG signal.

In the experiments, the first four rounds of 400 trials were
used as a training set, and the 96 trials of the last round
were used as the test set data. Tensflow1.15.0 is used to build
the AM-PCNet network. The loss function uses cross-entropy.
The dropout probability is 0.25. The Adam method is used to
optimize our network. The learning rate is 0.0001. The batch
size is 32, and 300 epochs are trained. we used classification
accuracy (ACC) [28], kappa coefficient (K) [29], F1 score (F1)
[30], and Recall [28] to evaluate the proposed AM-PCNet.

B. Comparison of EEG Channels Selection
Fig. 7 is a time-frequency map of wavelet coherence

coefficients for different channel combinations of EEG and
sEMG, reflecting the differences in coherence coefficients
between different EEG and sEMG channels. Fig. 7(a) shows
strong coherence in combination, and Fig. 7(b) shows weak
coherence in combination. The comparison of strong and
weak coherence provides theoretical support for improving the
accuracy and stability of EEG and sEMG fusion. Eventually,
we chose the FT9, FC6, and F7 channels.
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TABLE I
COMPARISON OF CLASSIFICATION ACCURACY(%) BETWEEN DIFFERENT TIME-FREQUENCY TRANSFORMS AND BASELINE NETWORKS

TABLE II
COMPARISON OF CLASSIFICATION PERFORMANCE OF DIFFERENT

COMBINATIONS OF THE EEG AND SEMG CHANNELS

We fuse the EEG channels (FT9 / F7 / FC6) and EEG
channels (C3 / CP1 / F8) with sEMG signals at the feature
layer, and the classification results are shown in Table II. The
average classification accuracy of a strong coherent combi-
nation is 96.62%, while the average classification accuracy
of a weak coherent channel combination is 94.4%. After
screening, the accuracy has increased by 2.22%, and the Kappa
value has increased by 0.038. Screening of EEG channels
suggests that each subject showed improvements in accuracy,
Recall, F1, and Kappa. The result shows that the stronger the
coherence between EEG and sEMG channels, the better the
fusion classification performance. The conclusion presented in
Table II also proves that reasonable screening of EEG channels
can effectively enhance the coupling correlation between EEG
and sEMG signals and improve the accuracy and stability of
hand motion decoding.

C. Comparison of Feature Extraction for Different EEG
and sEMG Signals

Table I summarizes the accuracy obtained by eight subjects
in different time-frequency methods and classification meth-
ods. The three network structures used are:

• AM-PCNet : Multi-scale parallel convolutional network
based on attention mechanism.

• TFCNN : TF-Conv Block branch module in AM-PCNet.
• TFCNN-LSTM : TFCNN connects LSTM network.
According to the comparative results, the best combina-

tion, which employs STFT to extract time-frequency features
and the AM-PCNet network as the classifier, achieves an

Fig. 8. (a) Accuracy comparison of different network structure in AM-
PCNet. The number before “-” represents the unit numbers and the
number after “-” indicates the convolution kernel sizes, (b) Accuracy
comparison of AM-PCNet, Time-ConvNet, and TF-ConvNet.

average accuracy of 96.62%. The Table I indicates that the
performance of STFT is slightly better than that of Stockwell
and CWT, boosting accuracy by 3% and 0.78%, respectively,
in the AM-PCNet network. The result shows that by selecting
the window width, STFT adapts to signal frequency con-
tent changes and improves the extraction feature’s quality.
In Table I, subject 5 performs the best with the combination of
CWT and TFCNN-LSTM, with an accuracy rate of 94.79%.
The other subjects obtain the best classification accuracy
with the combination of STFT and AM-PCNet. The subject
standard deviation of the STFT+AM-PCNet combination in
Table I is 3.19. The results indicate that the STFT+AM-PCNet
method we selected is the most robust.

D. Network Parameter and Structure Comparison
Experiment

Section II-D mentions that the size of convolutional kernels
and the number of units connected in series significantly
impact the performance of network structure. We consider
selecting two values to explore the optimal network struc-
ture [31]. Temporal Conv Unit convolution size is 1 × K.
TF Conv Unit Convolutional Size is K × K. K takes three
values, i.e., 3, 5, and 7. We set the number of units in series
to M, and select M from 2, 3, and 4. We have considered a total
of 9 network structures. We randomly choose two subjects for
testing.

In Fig. 8(a), it can be observed that when M is 2 and K
is 3 (with a horizontal coordinate of “2-3”), the accuracy
is the highest, reaching 98.96% and 97.92%, respectively.
The accuracy rate gradually decreases with the increase in
the number of series units, and overfitting occurs. Therefore,
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Fig. 9. Accuracy comparison of different attention mechanisms.

we choose the “2-3” parameter combination in the subsequent
experiments.

To evaluate the classification effectiveness of each network
branch in the model, we remove the other two network
branches from the proposed model to compare decoding
accuracy. The input images are EEG and sEMG Spectrogram
images (time–frequency domain). A comparison classification
method uses the Time-Conv branch network, where the con-
volutional kernel is only convoluted through the time of the
input images. The other uses the TF-Conv branch network to
simultaneously perform convolution operations on both time
and frequency. The comparative results are shown in Fig. 8(b).
Our proposed AM-PCNet network model exhibits the best
performance, with an average accuracy of 96.6%. When using
the Time-Conv branch network for classification, the average
accuracy is 92.2%, while using the TF-Conv branch network
for classification has an average accuracy of 91%. Compared
with Time-Conv and TF-Conv independent networks, the
AM-PCNet designed in this paper combines the advantages of
each branch network and incorporates attention-based branch
module interaction. The results verify the effectiveness of the
AM-PCNet network and the importance of module interaction.

E. Comparison of Attention Mechanisms
To evaluate the effectiveness of introducing attention mech-

anisms in the model, we compare decoding accuracy by
removing one or two attention mechanisms from the proposed
model. We conducted the following ablation experiments with
M-PCNet as the baseline model for four experiments. The
EEG and sEMG feature fusion time-frequency images are
used as input for the network. Experiment 1: M-PCNet (Multi-
scale Parallel Convolution). Experiment 2: M-PCNet+ Squeeze
Exception. Experiment 3: M-PCNet+ Pyramid Split Attention.
Experiment 4: M-PCNet+ Squeeze Exception + Pyramid Split
Attention(in TF-Conv Block). Experiment 5: M-PCNet + Pyra-
mid Split Attention + Squeeze Exception(in TF-Conv Block).

The results of the average accuracy are presented in
Table III. Fig. 9 displays the classification accuracy results
of the ablation experiments for each subject. In the results,
the average gesture recognition accuracy of 8 subjects using
the baseline method M-PCNet was 92.06%; Adding SE to
M-PCNet can improve the average recognition accuracy by

TABLE III
COMPARISON OF AVERAGE PERCENTAGE CLASSIFICATION ACCURACY

WITH DIFFERENT ATTENTION MECHANISMS

1.17%; Introducing PSA in M-PCNet improves accuracy by
1.6%; Simultaneously introducing both SE and PSA improves
accuracy by 4.56%. In Table III and Fig. 9, we can see
that the classification accuracy decreased by 2.74% after
swapping the positions of the SE module and PSA module.
This is mainly because the SE attention mechanism is not
effective in extracting effective features in the two-dimensional
time-frequency domain. By using the grouping convolution
principle of PSA, the most suitable convolution kernel size
can be obtained, effectively extracting finer-grained multi-
scale two-dimensional spatial information of EEG and sEMG
fusion. The above results indicate that the introduction of
attention modules enables the network to effectively extract
fine-grained multi-scale spatial information from EEG and
sEMG fusion, amplify valuable EEG and sEMG fusion feature
channels, and establish longer distance EEG and sEMG chan-
nel dependency. For these reasons, the accuracy and stability of
EEG and sEMG fusion recognition classification are improved.

IV. DISCUSSIONS

A. Comparison of Different Decoding Methods
To demonstrate the advantages of our model, we conducted

a comparative analysis between the AM-PCNet network recog-
nition model and other models investigated in recent years.
Here is a concise introduction to these methods:

• DeepNet [32] : A deep-level model that uses more than
three convolutional layers between time dimensions.

• EEGNet [33] : A compact EEG analysis Convolutional
neural network uses deep convolution and separable con-
volution to construct the network model.

• ShallowNet [32] : A deep learning model with two simple
convolutional layers and one mean pooling layer.

• EEG-TCNet [34] : A new time convolutional network
(TCN) that achieves excellent accuracy with minimal
trainable parameters.

• TCNet-Fusion [35] : A network structure that utilizes time
convolutional networks, separable convolutions, and deep
convolutional layer fusion to improve the interactivity of
classification systems.

• ATCNet [36] : A network structure that uses a multi-
head self-attention method and time convolution to extract
advanced temporal features.

Table IV compares the AM-PCNet model with several state-
of-the-art models on the laboratory dataset. Compared with
the ShallowNet method, the AM-PCNet method has improved
classification accuracy by 6.38% on average. Table IV shows
that our proposed method outperforms other models among
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TABLE IV
COMPARISON OF THE AVERAGE PERCENTAGE CLASSIFICATION ACCURACY(%) OF DIFFERENT MODELS

TABLE V
COMPARISON OF THE AVERAGE PERCENTAGE CLASSIFICATION

ACCURACY(%) OF DIFFERENT FUSION MODELS

all subjects except for subject 5. Compared with ATCNet,
our method considers both time-domain, frequency-domain,
and neighborhood features, and introduces multiple attention
mechanisms, improving 3.39% of accuracy. The results indi-
cate that AM-PCNet can decode multi-task EEG and sEMG
fusion signals more accurately and effectively. The standard
deviation of the model between subjects reached 3.19, indi-
cating that the model performed stably among all participants
and had good decoding effects on hand movements.

B. Comparison of Different EEG and sEMG Fusion
Methods

To demonstrate the advantages of our EEG and sEMG signal
fusion method, we conducted a comparative analysis with
other fusion methods investigated in recent years. Here is a
concise introduction to these methods:

• DCA Fusion [37] : A feature layer post-fusion method,
which first extracts the time-domain features of EEG
signals and sEMG signals separately, and then fuses and
classifies them in the later stage of the feature layer.

• Decision-Level Fusion [12] : A decision-level fusion
method for EEG signals and sEMG signals, which
decodes and classifies the EEG and EMG signals sep-
arately and then fuses the classification results using the
decision-level fusion.

• GFSEs [11] : A method based on graph theory as a mul-
timodal fusion strategy for EEG and sEMG. Functional
connectivity, often considered as the weight of edges,

enhances the robustness and accuracy of hand motion
recognition.

We compared the proposed EEG signals and sEMG signals
fusion decoding method with the three aforementioned fusion
methods, and the results are shown in Table V.

In Table V, we can see that using the dataset collected in
the laboratory and comparing it with the other three EEG
signals and sEMG signals fusion methods, our proposed
fusion classification result is the highest. Compared with DCA
Fusion in the later stage of feature layer fusion, our accuracy
has improved by 5.99%. Compared with the Decision-Level
Fusion method, our EEG and sEMG signal feature layer
spectrum concatenation method improved the accuracy by
4.17%. Compared with GFSEs using functional connectivity
node features between EEG and sEMG signals, our method
focuses more on the common frequency domain features of
EEG and sEMG signals, with an accuracy improvement of
2.48%. In summary, our proposed ERP-WTC EEG chan-
nel screening method and early feature layer fusion using
common time-domain and frequency-domain features of EEG
and sEMG signals achieved maximum expression of common
features of signals. The final results also indicate that our
proposed method has stronger capabilities in feature fusion
and extraction.

C. Single-Mode Signal Classification and Decoding
We compare the decoding performance of single-mode EEG

signals with sEMG signals for action classification. Table VII
shows the classification performance of single-mode sEMG
signals for each subject. Table VIII displays the classification
performance of single-mode EEG signals for each subject in
different combinations of EEG signals. Table VIII indicates
that the classification accuracy of the strong coherent combi-
nation of EEG is 5.34% higher than that of the weak coherent
combination, which once again verifies the effectiveness of the
EEG channel screening method.

In Table VII and Table VIII, the action classification meth-
ods utilizing sEMG signals demonstrate superior accuracy
compared to those relying on EEG signals. The result indi-
cates that sEMG signals contain more information related to
unilateral upper limb movements, while EEG signals poorly
classify fine hand movements.

In Table VII, Table VIII, and Table IV, the classification
results of single-mode signals were compared with those of the
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TABLE VI
COMPARISON OF CLASSIFICATION PERFORMANCE OF THE EEG AND SEMG FUSION UNDER MUSCLE FATIGUE

TABLE VII
CLASSIFICATION PERFORMANCE OF DIFFERENT SUBJECTS UNDER

SEMG SIGNAL MODALITY

fusion of EEG and sEMG signals. The average classification
accuracy of electroencephalogram fusion was 96.62%, and the
average classification accuracy of single-mode sEMG signals
and EEG signals was 95.58% and 38.28%, respectively. After
the fusion of EEG and sEMG signal features, the synergy
and complementarity between signals were reflected, and the
recognition rate was higher than that of single sEMG features
and EEG features, with strong generalization. The results
indicate that the accuracy, stability, and model robustness
of action intention recognition can be improved through the
complementary fusion of multiple features.

D. EEG and sEMG Fusion Decoding Under Muscle
Fatigue

When sEMG signals are used alone, muscle fatigue issues
may occur due to differences in subjects and application envi-
ronments. Due to muscle fatigue, signal quality deteriorates,
and classification accuracy decreases. We conduct multimodal
fusion analysis using EEG and sEMG signals to alleviate the
adverse effects of muscle fatigue.

In this study, we use simulation methods to represent the
degree of muscle fatigue. We study fatigue sEMG signals
of varying degrees from 0% to 90%. As the fatigue level
increases, the sEMG amplitude decreases, the variance of the
amplitude increases, and its root mean square increases [38].
We simulated fatigue signals by reducing the amplitude of sur-
face sEMG signals and adding Gaussian noise, where reducing
the amplitude simulated the exhaustion of the subjects.

As the degree of muscle fatigue increases, the changes in
various indicators after EEG and sEMG fusion are shown in
Table VI. In Table VI, the classification accuracy decreases

TABLE VIII
CLASSIFICATION PERFORMANCE OF DIFFERENT EEG CHANNEL

COMBINATIONS UNDER EEG SIGNAL MODALITY

as the degree of muscle fatigue increases. with 0% of muscle
fatigue, the accuracy of EEG and sEMG signals fusion stands
at 96.62%. When the degree of muscle fatigue reaches 20%,
the classification accuracy after fusion is 94.14%, and the
K-score is 0.922, indicating good network recognition perfor-
mance. When the simulated fatigue sEMG signal amplitude
is 50%, the recognition accuracy is 92.84%. Still, when the
degree of muscle fatigue reaches 90%, the recognition rate of
EEG and sEMG signals fusion significantly decreases, with
accuracy and K-value being 85.29% and 0.798, respectively.
The results indicate that the approach is robust even in weak
sEMG signals, reducing the impact of partial loss of motor
function and exercise fatigue in subjects. The fusion classi-
fication network we have constructed effectively utilizes the
synergistic complementarity between EEG and sEMG signals
to improve system stability, and recognition accuracy.

V. CONCLUSION

We propose a new attention mechanism-based multi-scale
parallel convolutional network (AM-PCNet) for identifying
and decoding EEG and sEMG fusion signals. We save the
selected EEG and EMG signals in the form of time-frequency
map concatenation and use AM-PCNet to extract their time-
domain, frequency-domain, and mixed-domain information.
We introduce attention mechanisms to effectively extract finer-
grained multi-scale EEG feature information, improve the
expression ability of the network model, and thus improve
the accuracy and stability of signal fusion recognition.

We conduct experiments on the dataset collected in the lab-
oratory to evaluate the effectiveness and generalization of the
proposed method. Our proposed AM-PCNet network outper-
forms other state-of-the-art methods in accuracy, Kappa value,
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Recall, and F1 value. The experiment and discussion also
illustrate that our proposed method effectively improves the
accuracy of recognition classification compared to single-mode
decoding approaches, ensures decoding stability during mus-
cle fatigue, and improves the accuracy and stability of the
interactive recognition system.
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