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B2-ViT Net: Broad Vision Transformer Network
With Broad Attention for Seizure Prediction

Shuiling Shi and Wenqi Liu

Abstract— Seizure prediction are necessary for epileptic
patients. The global spatial interactions among channels,
and long-range temporal dependencies play a crucial role
in seizure onset prediction. In addition, it is necessary to
search for seizure prediction features in a vast space to
learn new generalized feature representations. Many previ-
ous deep learning algorithms have achieved some results
in automatic seizure prediction. However, most of them do
not consider global spatial interactions among channels
and long-range temporal dependencies together, and only
learn the feature representation in the deep space. To tackle
these issues, in this study, an novel bi-level program-
ming seizure prediction model, B2-ViT Net, is proposed for
learning the new generalized spatio-temporal long-range
correlation features, which can characterize the global
interactions among channels in spatial, and long-range
dependencies in temporal required for seizure prediction.
In addition, the proposed model can comprehensively learn
generalized seizure prediction features in a vast space
due to its strong deep and broad feature search capabil-
ities. Sufficient experiments are conducted on two public
datasets, CHB-MIT and Kaggle datasets. Compared with
other existing methods, our proposed model has shown
promising results in automatic seizure prediction tasks,
and provides a certain degree of interpretability.

Index Terms— Automatic seizure prediction, electroen-
cephalogram (EEG), vision transformer (ViT), multi-head
self-attention, broad attention, broad learning system
(BLS).

I. INTRODUCTION

EPILEPSY is a chronic non-infectious disease caused
by paroxysmal abnormal super-synchronous discharge

activity of brain neurons. It is one of the most common
neurological diseases worldwide and covers all age groups,
around 50 million epileptic patients worldwide [1]. Epilepsy
is associated with adverse outcomes, including serious comor-
bidities, injury and death [2]. The central problem of epilepsy
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is the unpredictability of seizures, which can have a persistent
negative impact on patients’ life.

If seizures can be predicted a few minutes before onset,
patients will be able to take precautions against injury and
open the door to new and timely treatment for the prevention or
control of impending seizures [3]. In addition, doctors usually
provide treatment plans for patients with epilepsy based on
the type and number of seizure onset recorded by patients.
But, epilepsy data recorded by patients and their caregivers
are often unreliable. It takes a lot of time and energy for
doctors to detect seizures from long-term electroencephalo-
gram (EEG) records. To make effective treatment plans, it is
necessary to use seizure prediction algorithms to identify
seizure events automatically. Therefore, an automatic seizure
prediction algorithm is vitally important for patients with
epilepsy. EEG is generated by synchronous activity of a large
number of neurons in the brain, which is consistent with the
super-synchronous discharge mechanism of epilepsy, so EEG
is an indispensable source of data for predicting seizures.
These seizure prediction algorithms usually have two main
functions: (1) They can be integrated into wearable technology
and combined with an online alarm system to start therapeutic
interventions [4], [5]. (2) It can assist medical workers in
reviewing offline long-term EEG records to detect seizures
automatically [6].

A complete seizure often includes interictal, preictal, ictal
and postictal [7], [8]. The seizure prediction tasks can be
simplified as a classification of interictal and preictal. When
a certain amount of preictal data is predicted, it can provide
early warning for the impending seizure onset.

In recent years, deep learning algorithms have attracted
extensive attention in various fields because of their great
generalization ability and more automatic feature extraction
ability, encouraging their application in the field of seizure
prediction. Truong et al. [9] used short-time fourier transform
(STFT) to extract EEG features from the original EEG signals
and used convolutional neural network (CNN) [10] to classify
the interictal and preictal. Ozcan and Erturk [11] extracted
spectral band power, statistical moment and hjorth parameters
to reveal the frequency and time domain features of the EEG
signals. The features are given as input to a 3D CNN [12].
Daoud and Bayoumi [13] used deep convolutional neural
network (DCNN) and concatenated with a bidirectional long
short-term memory (Bi-LSTM) network as the back-end of
model to classify.
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Many studies have shown that seizures involve not only the
seizure onset zone and its surroundings, but also the brain areas
far away from seizure onset zone [3], [14]. Abnormal interac-
tions among different brain areas may lead to seizure onset.
To characterize interactions among different brain areas within
a whole-brain range, recent studies generally construct brain
functional connectivity networks based on scalp EEG using
channels as nodes [15], [16], [17]. According to the inter-
national standard electrode positions, in multi-channel EEG
data, different channels correspond to different brain regions,
so abnormal interactions among different brain regions can
be reflected by the interactions among different channels.
Furthermore, seizures do not occur randomly and have been
shown to have long-range temporal dependencies [3], [18],
[19]. In summary, the global channel interactions in spatial,
and long-range temporal dependencies are crucial to seizure
prediction algorithms. However, most of the previous tradi-
tional deep learning algorithms, such as CNN, they can only
capture local channel interactions in spatial and short-range
temporal dependencies due to the regular and local receptive
field of convolution operators, without considering global
channel interactions and long-range temporal dependencies
together, resulting in the lack of interpretability of the model
and the common results.

In fact, vision transformer (ViT) [20] algorithm based on
global attention mechanism can achieve the global chan-
nel interaction in spatial, and obtain long-range temporal
dependence features required for seizure prediction. But ViT
only considers the deep features of the last transformer
modules, transformer modules with different depths may
contain complementary features related to seizure prediction
tasks [21]. The complementary features can be obtained
through the broad connection of shallow and deep transformer
modules. But these complementary features are redundant
and complicated. By applying attention mechanisms to these
complementary features, we can further extract critical spatio-
temporal long-range correlation complementary features that
are beneficial to seizure prediction. However, the broad con-
nection above is only used for the attention mechanism
part to extract connected attention information from differ-
ent transformer modules, instead of mapping all features
together into a new vast space to learn new generalized
features. It is necessary to search for seizure prediction features
in a vast space, so as to learn new generalized spatio-
temporal long-range correlation features that help predict
seizures [22].

Therefore, according to the neuroscience mechanism of
seizure, a novel bi-level programming seizure prediction
model, broad vision transformer network with broad atten-
tion, called B2-ViT Net, is proposed for learning the new
generalized spatio-temporal long-range correlation features,
which can characterize the global channel interaction features
in spatial and long-range dependence features in temporal,
captures generalized features that are beneficial to seizure pre-
diction, thus improving the prediction performance. Compared
with other black box deep learning models, our model can
quantify the interaction weights among channels, and evaluate

the importance of each channel at any time, thus providing a
certain degree of interpretability.

Specifically, the contributions of our proposed method can
be summarized in the following aspects.

1) Based on the neuroscience mechanism of seizure
onset, we proposed a novel bi-level programming
seizure prediction model B2-ViT Net, which consid-
ers the global spatial interactions among channels and
long-range temporal dependencies together through the
global attention mechanism, called spatio-temporal long-
range correlations. The global attention mechanism here
can innovatively quantify the interaction weights among
channels, and evaluate the importance of each channel at
any time.
2) Both deep and broad features are crucial for seizure
prediction tasks. Previous seizure prediction algorithms
only focused on deep features while ignoring the gener-
alized features that combine deep and broad. Generalized
features are characterized through linear and nonlinear
random mappings in our model. Our proposed model can
comprehensively learn generalized spatio-temporal long-
range correlation features that are conducive to automatic
seizure prediction in a vast space, improve the prediction
performance.
3) Sufficient experiments are conducted on two pub-
lic datasets, CHB-MIT and Kaggle datasets. Compared
with other existing methods, our proposed method has
achieved promising results in automatic seizure prediction
tasks, obtains the highest AUC and the lowest FPR.
On CHB-MIT dataset, B2-ViT obtains 0.923, 93.3%,
and 0.057/h on AUC, sensitivity and FPR, respectively.
On the Kaggle dataset, the proposed model reached
0.816, 85.2%, and 0.013/h on AUC, sensitivity and FPR,
respectively.

II. PRELIMINARY KNOWLEDGE

This section introduces the preliminary knowledge of ViT
and BLS, which helps to build B2-ViT Net.

A. ViT: Vision Transformer

Transformer is a deep neural network mainly based on
self-attention mechanism, which is initially applied in nat-
ural language processing. Inspired by its powerful global
presentation ability, researchers extend transformer to com-
puter vision tasks, which is called ViT [20]. Compared with
other networks (such as CNN), the model shows competitive
performance on various benchmarks. The model follows the
following steps: (1) Converting image data to sequences form
as transformer input; (2) applying linear projection to the
sequences; (3) adding extra learnable classification token,
adding positional embedding; (4) a transformer encoder is
applied to the processed data, which mainly includes multi-
head self-attention mechanism (MHSA) block and multi-layer
perceptron (MLP) block.
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Fig. 1. Definition of interictal, preictal, SIH, SPH, SOP and seizure period (from the file chb01_03.edf).

TABLE I
SUMMARY OF CHB-MIT DATASET

TABLE II
SUMMARY OF KAGGLE DATASET

B. BLS: Broad Learning System

BLS [23] has a strong ability to search broad features.
It consists mainly of feature nodes and enhancement nodes.
The feature nodes are obtained by a random mapping, and then
the feature nodes are mapped to a possible high-dimensional
vector space to obtain enhancement nodes, so that the model
can automatically search features related to specific tasks in a
vast vector space. Both two features yield the final output.

III. DATASETS AND METHODOLOGY

This section thoroughly introduces the datasets, data
preprocessing, the modeling method of B2-ViT Net, and
postprocessing. In addition, the model frame diagram and
algorithm table are also provided. The structure of B2-ViT is
shown in Fig. 2, the detailed implementation steps of B2-ViT
are summarized in Algorithm 1.

A. Datasets
1) CHB-MIT Dataset: The CHB-MIT seizure EEG

dataset [24] is obtained from Boston Children’s Hospital and
included in the EEG database of the Massachusetts Institute
of Technology. It contains 23 records from 22 subjects
(chb21 is recorded again of chb01 subjects after 1.5 years).
Each subject has 9-24 recordings lasting for 1 hour (some
of which are long records of 2-4 hours), and the dataset
includes 884 hours of continuous scalp EEG recordings
and 163 seizures. All EEG data are collected using 10-20
international standard electrode positions, EEG is recorded
using 18/23 lead, and the sampling frequency is 256 Hz.

2) Kaggle Dataset: The American Epilepsy Society Seizure
Prediction Challenge of Kaggle dataset [25] has iEEG data
from 5 dogs and 2 patients, with 48 seizures and 627.7 hours
interictal records, which is simply denoted as Kaggle dataset.
Intracranial EEG (iEEG) data of 5 dogs are recorded from
16 implanted electrodes, and the sampling rate is 400 Hz.
Recorded iEEG data of 2 patients from 15 deep electrodes
(Patient 1) and 24 subdural electrodes (Patient 2), and the
sampling rate is 5 kHz. The calculation is difficult due to the
patients’ high sampling rate of the Kaggle dataset, so the two
patients’ iEEG data are not considered, which is consistent
with [9], [26], [27]. These two datasets are used in most
seizure prediction tasks [8], [9], [26], [28].

B. Preprocessing

As shown in Fig. 1, a complete seizure can be divided into
preictal, interictal, seizure interictal horizon (SIH), seizure pre-
diction horizon (SPH), and seizure occurrence period (SOP).
SPH is the prediction period before the seizure, during which
appropriate measures can be used to prevent or control the
impending seizure in advance. SOP is the interval where the
seizure is expected to occur. SIH is defined as EEG signals
about 4 hours before and 4 hours after the seizure [29], which
can reduce the interference caused by the near seizure state.
To predict correctly, seizures must be after SPH and within
SOP. This paper follows the definitions of SOP and SPH
proposed by [30]. In this work, SPH is set to 5 minutes
and SOP is set to 30 minutes, which is consistent with
most studies. CHB-MIT dataset has many seizures in a short
time. For seizures less than 30 minutes from the previous
seizure, we assume that there are only the leading seizure
exists. In addition, this work only considers patients with
seizures less than 10 times a day, because it is not very
necessary to perform this task for patients who have seizures
every 2 hours on average. Based on the above definition and
consideration, this work evaluated 64 seizures in the CHB-MIT
dataset and 42 seizures of 5 dogs in the Kaggle dataset. These
two datasets’ available data are summarized in Table I and
Table II.

Classification tasks often face the problem of class imbal-
ance, automatic seizure prediction tasks are no exception,
interictal data is far more than preictal data. To solve this
problem, the sliding overlap technique with step size s is used
to obtain more preictal data. the number of extra preictal data
N after oversampling is computed as:

N =
(P − w)

s
+ 1 (1)
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Fig. 2. The architecture of B2-ViT Net. (a) The feature pre-extraction part using STFT. (b) The architecture of bi-level programming B2-ViT model.

where w is the sliding window length, P is the total length of
preictal data, I is the total length of interictal data, R is the
ratio of the total length of preictal data to the total length of
interictal data and s = w × R.

In this paper, STFT [31] is used to preprocess the raw
EEG data to extract time-frequency features, which converts
the original EEG signal into a time-frequency matrix. The
window length of STFT is 30s. STFT is chosen because it
can capture the dynamic changes of the frequency charac-
teristics of EEG signals of epileptic patients, and compared
with wavelet transform (WT) [32] and other signal analysis
methods, it has a shorter processing time of time series, which
is helpful for real-time seizure prediction. Besides, it is widely
used in EEG processing, retains most of the information in the
original signal, and many studies have shown its advantages in
EEG [9], [33]. The datasets used are contaminated with 60 Hz
power line noise, so components in the 57-63 Hz and 117-
123 Hz frequency ranges are excluded to eliminate power line
interference, and the DC component (0 Hz) is also removed.

C. Proposed Method
B2-ViT Net is a novel bi-level programming problem for

seizure prediction. It considers the spatio-temporal long-range
correlation features required for seizure prediction. In addition,
it has strong global deep and broad feature search capabilities,
which can comprehensively learn generalized spatio-temporal
long-range correlation features that are conducive to automatic
seizure prediction in a vast space, thus improving the predic-
tion performance.

For a given preprocessed image I ∈ RL×C1×W , L is the
length of sequence, C1 and W are the number of channels

and width of image patches, which can be processed directly
by the standard transformer. To get the input x1 ∈ RL×C×D

of the first transformer layer, linear projection is adopted for
satisfying the required dimension D of transformer, C1 is
additionally added with classification token, which is recorded
as C . After processing the input data, the model is first divided
into two parts, one is ViT backbone to obtain deep features
Out Deep, and the other is broad attention to obtain local broad
features Out Broad . The transformer layer includes two blocks:
MHSA and MLP. In addition, residual connections are used
in MHSA and MLP blocks, and LayerNorm (LN) is applied
before each block. Next, the calculation process of MHSA,
MLP and broad attention is introduced in detail.

Multi-Head Self-Attention: Given the input xi ∈ RL×C×D

of i-th layer. Then query qi ∈ RL×C×(h×dq ), key ki ∈

RL×C×(h×dk ) and value vi ∈ RL×C×(h×dv) are obtained by
chunking xi into three tensors and rearranging them, h is the
number of head, where dq , dk and dv are the dimension of
qi , ki and vi , respectively, i ∈ [1, l], where l is the number of
transform layers. Then inner product, softmax and the second
linear projection are performed. The output of MHSA can be
obtained by the following:

MHSA(xi ) = softmax(qi , ki , vi )w
o

= softmax(
qi kT

i√
dq

)viw
o (2)

where

qi = [[q1
i ], [q

2
i ], . . . , [q

h
i ]], q j

i ∈ RL×C×dq

ki = [[k1
i ], [k

2
i ], . . . , [k

h
i ]], k j

i ∈ RL×C×dk
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Algorithm 1 Implementation Process of the B2-ViT Algorithm
Require: Input seizure EEG data X and label YT;
Ensure: Prediction matrix YP for for seizure detection;
Parameters: Wp1, bp1, Wp2, bp2: Linear projection parameters;

Wc, Wp: the class token and positional embedding matrices;
Wi : multi-head attention parameters for layer i ; γ 1

i , β
1
i ,γ 2

i , β
2
i :

two sets of layer-norm parameters for layer i ; d: the dim of one
head; Wi

1l, bi
1l, Wi

2l, bi
2l: MLP parameters for layer i ; l: the depth

of transformer block; γ : the coefficient factor; the regularization
coefficient of BLS λ1.

1: Fed X into the STFT to obtain the initial features Xs ;
2: Xp ← Wp2 GELU(Wp1Xs+bp11T )+bp21T

3: x1 ← cat(Wc, Xp) + Wp
4: for i = 1, 2, . . . , l do
5: MHSA(xi ), qi , ki , vi ← MHSAttention(xi |Wi )
6: ŷi ← xi + MHSA(xi )
7: for t ∈ [i]: ŷi [:, :, t] ← layer_norm(ŷi [:, :, t]|γ 1

i , β
1
i )

8: yi ← ŷi + Wi
2lGELU(Wi

1lxi + bi
1l1

T ) + bi
2l1

T

9: for t ∈ [i]: yi [:, :, t] ← layer_norm(ŷi [:, :, t]|γ 2
i , β

2
i )

10: xi+1 = yi
11: end for
12: OutDeep ← yl
13: Q ← q1 ∪ q2 ∪ . . . ∪ ql
14: K ← k1 ∪ k2 ∪ . . . ∪ kl
15: V ← v1 ∪ v2 ∪ . . . ∪ vl
16: Attend(Q, K, V) ← Softmax(QKT /

√
d)V

17: Re ← Rearrange(Attention(Q, K, V) |bhnd → bn(hd))
18: OutBroad ← AdaptivePool(Re)
19: OutDB = OutDeep + γ ×OutBroad
20: for i = 1, 2, . . . , n do
21: Random Wzi , βzi ;
22: Caculate Zi = φi (OutDBWzi + βzi )
23: end for
24: Stack all the mapping feature nodes as

Zn
= [Z1, Z2, . . . , Zn]

25: for j = 1, 2, . . . , m do
26: Random Wh j , βh j ;
27: Caculate H j = ξ j (ZnWh j + βh j )
28: end for
29: Stack all the enhancement nodes as

Hm
= [H1, H2, . . . , Hm ]

30: Calculate the weight connected the hidden layer and output layer
w2 by: w2 = (AT A+ λ1 I)−1AT YT

31: Get the prediction matrix for seizure detection
YP = [Zn

|Hm
]w2

vi = [[v
1
i ], [v

2
i ], . . . , [v

h
i ]], v

j
i ∈ RL×C×dv

where q j
i , k j

i , v
j
i are the corresponding value of j-th head

in i-th layer of qi , ki , vi , wo is the weight matrix of the
second linear projection. Because of the residual connection
between the layers, the hidden layer’s output ŷi in i-th layer
is formulated by

ŷi = xi +MHSA(xi ) (3)

Multi Layer Perceptron: MLP has two fully connected
layers and an activation function layer, the activation function
used in this paper is GELU. The output of MLP can be denoted
as

MLP(ŷi ) = GELU(ŷiw1l + b1l)w2l + b2l (4)

where w1l , b1l , w2l , and b2l are the weights and bias of the
corresponding linear layers. The output yi in i-th layer is

formulated as

yi = ŷi +MLP(ŷi ) (5)

The output yi of i-th layer is the input xi+1 of (i+1)-th layer,
so the deep feature Out Deep is the output of last layer:

Out Deep = yl (6)

Broad Attention: Queries, keys and values of different layers
are concatenated respectively as below:

Q = [q1, q2, . . . , ql ], Q ∈ RL×h×C×(l×dq )

K = [k1, k2, . . . , kl ], K ∈ RL×h×C×(l×dk )

V = [v1, v2, . . . , vl ], V ∈ RL×h×C×(l×dv)

Self-attention is performed on the concatenated query Q,
key K and value V to get Attention(Q, K , V ). In this
paper, 1D adaptive average pooling is introduced to solve the
problem of dimension inconsistency between OutDeep and
Attention(Q, K , V ). The output features OutBroad of broad
attention can be denoted as:

MHSA(xi ) = AdaptivePool(Attention(Q, K , V ))

= AdaptivePool(softmax(
QK T
√

d
)V ) (7)

where d is the hidden dimension of transformer layer.
Combining the deep feature OutDeep and local broad feature

OutBroad , the final output feature OutDB of BViT is computed
as:

Out DB = OutDeep + γ × OutBroad (8)

where γ can be used to adjust the weights of two types
of features. Finally, the probability of categories is calcu-
lated by a softmax function. So far, we have obtained the
spatio-temporal long-range correlation features required for
seizure prediction. The feature data and its labels are denoted
as

{
(Out DB, YT )|Out DB ∈ RL×(C×D), YT ∈ RL×M}

from M
classes.

It is necessary to search for seizure prediction features in a
vast space to learn new generalized spatio-temporal long-range
correlation features that help predict seizures. Therefore, the
above algorithm is extended to a vast space through BLS to
learn generalized features, so as to improve the performance
and representation ability of seizure prediction tasks. Firstly,
OutDB are randomly extended to a vast space via a linear
random mapping, that is:

Zi
1
= φi (OutDB Wzi + βzi ), i = 1, . . . , n (10)

where Wzi and βzi are generated by a random mapping φi .
Then the set of n groups of feature nodes can be defined as
Zn 1
= [Z1, Z2, . . . , Zn].

Secondly, the j-th group of enhancement nodes can be
constructed by

H j
1
= ξ j (ZnWh j + βh j ), j = 1, . . . , m (11)

similarly, both Wh j and βh j are generated by the nonlinear
random mapping ξ j . The set of m groups of enhancement
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TABLE III
OVERALL PERFORMANCE COMPARISON ON CHB-MIT DATASET

TABLE IV
OVERALL PERFORMANCE COMPARISON ON KAGGLE DATASET

nodes can be defined as Hm 1
= [H1, H2, . . . , Hm], ξ j is the

tansig function here, tansig is a hyperbolic tangent s-type
nonlinear function, which is defined as:

tansig(x) =
2

1+ e−2x − 1 (12)

Therefore, the output YP of the improved algorithm with
BLS can be constructed by the following formula:

YP = [Zn
|Hm
]w2

= Aw2 (13)

w2 can be obtained by solving the ridge regression problem:

w2 = (λ2 I + AAT )−1 AT YT (14)

where λ2 is the regularization coefficient.
Our proposed model B2-ViT is a novel bilevel programming

problem, the goal of the model is shown in Eq. (9), shown at
the bottom of the page, where x1 is the input data, YT is
the true label, w1,r is the corresponding weight of the front r
layer of our proposed model, Wz and βz are the corresponding
weight and offset of the feature nodes, Wh and βh are the
corresponding weight and offset of the enhancement nodes, φ

and ξ are random mappings used to generate feature nodes
and enhancement nodes, L is the length of x1, f (x1;w1,r )

is a BViT function of input x1, which is parameterized by a
weight vector w1,r , l is the loss function of BViT, OutDB can

be denoted as f (x1, w1,r−1), λ1∥w1,r∥
2
2 is the regularization

term that penalizes the complexity of weights, softmax is a
classification function.

D. Postprocessing

In this work, the k-of-n method is used to predict seizure
as in [9], [11], an alarm is set only when at least k of the n
predictions are positive, we set k to 4 and n to 5. In addition,
to avoid the increase of False Prediction Rate (FPR) caused by
multiple alarms in a short time, we set the refractory period
to 30 min, that is, the reoccurring alarm within 30 min after
the alarm occurs will be ignored.

IV. EXPERIMENTAL RESULTS

A. Experimental Settings and Evaluation Metrics

In this work, Area Under Curve (AUC), Sensitivity (Sn),
FPR, p-value are choosen as the evaluation metrics of the
proposed method. AUC is a performance metric to measure
the quality of the classifier. The closer to 1, the better the
effect. Sn is the ratio of correctly predicted seizures to all
seizures. FPR is the number of mispredictions per hour.
p-value is the probability of predicting at least m of
M seizures, which can be obtained by the following

min
w2
∥[φ(x1, w1,r−1;Wz, βz), ξ(x1, w1,r−1;Wz, βz, Wh, βh)]w2 − YT ∥

2
2 + λ2∥w2∥

2
2

w1,r = arg min
w1,r

L∑
i=1

l(YT,i , f (x1,i , w1,r ))+ λ1∥w1,r∥
2
2

w1,r = [w1,r−1, softmax]

(9)
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TABLE V
PERFORMANCE COMPARISON OF VIT, B-VIT AND B2-VIT ON CHB-MIT DATASETS

TABLE VI
PERFORMANCE COMPARISON OF VIT, B-VIT AND B2-VIT ON KAGGLE DATASETS

TABLE VII
COMPUTATIONAL COMPLEXITY EVALUATION METRICS OF VIT, B-VIT AND B2-VIT ON CHB-MIT AND KAGGLE DATASETS

formula [9], [11]:

p =
∑
i⩾m

(
i
M

)
P i (1− P)M−i (15)

where P ≈ 1 − e−FPR×SOP, SOP is the seizure occurrence
period, is set to 30 min. If p < 0.001, it can be consid-
ered that our model is superior to random prediction at the
0.001 significance level.

To make the results more reliable, the leave-one-out cross-
validation (LOOCV) method is used for each subject. If the
subject has M seizures, M − 1 seizures will be used for
training, and the rest seizure will be used for testing. Each
seizure will be taken as the testing set in turn. In addition,
to monitor whether the model is overfitting in real-time and
adjust the parameters of the model, M − 1 seizures data for
training are divided into training set and validation set, the
proportion of validation set is set to 25% as in most seizure
prediction studies. The number of transformer blocks l is 6,
the number of self-attention heads h is 8, the dimension of
one self-attention head is 64, the hidden layer size is 512.

Our experiments are based on PyTorch 1.11.0, which is
implemented using Python 3.8 and Cuda 11.3.0. The loss is
optimized by the Stochastic Gradient Descent (SGD) optimizer
(learning rate = 0.001, momentum = 0.9, weight decay =
5e−5), the cosine scheduler is used to optimize the learning
rate, the epoch of training is set to 100, the loss function is
Cross Entropy Loss. The early stopping method with patience
10 is used to obtain better generalization performance and

avoid over-fitting. Two GeForce RTX 3090 Ti are used that
approximately need 64 GB GPU memory in total.

B. Overall Performance Comparison
The overall performance of B2-ViT Net is evaluated in the

following methods. CNN [9] is a forward neural network
with deep structure and convolution calculation, which is
one of the representative algorithms of deep learning and
has achieved good results in computer vision and natural
language processing in recent years. It is one of the most
popular in deep learning methods currently designed for EEG
decoding [41]. DCNN+Bi-LSTM [13] used DCNN to extract
spatial features, and Bi-LSTM was used as a classifier to
improve classification accuracy, which is typically designed
to predict EEG seizures. Vision Transformer [20] is the
application of transformer in the field of computer vision,
achieving performance beyond CNN in most visual tasks.
AdderNet [8] proposed a simple and effective end-to-end adder
network and supervised contrastive learning, used addition
instead of multiplication significantly reduces computational
costs. Multi-scale ProtoPNet [26] proposed a deep learning
model for patient-specific seizure prediction, it attempted to
measure the similarity between the inputs and prototypes
(learned during training) as evidence to make final predictions.

From Table III, Table IV and Fig 3, the proposed B2-ViT
scheme yields an average AUC of 0.923 while other methods
only achieve an average AUC of 0.834, 0.824, 0.861, 0.917,
0.843 on the CHB-MIT datasets and an average AUC of
0.816 while other baseline methods only achieve an average
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TABLE VIII
EXPERIMENTAL SETUP AND PERFORMANCE RESULTS OF EXISTING METHODS ON CHB-MIT AND KAGGLE DATASETS

AUC of 0.792, 0.806, 0.759, 0.794, 0.764 on the Kaggle
datasets, which shows that our proposed method has good
classification ability. In particular, patients 1, 19, 20 and 23 of
CHB-MIT reach an AUC greater than 0.99, which proves the
effectiveness of our method in distinguishing preictal EEG
signal from interictal EEG signal. In addition, our seizure
prediction method is superior to other compared methods by
successfully warning 60 seizures out of 64 on the CHB-
MIT dataset, 37 seizures out of 42 on the Kaggle dataset.
Meanwhile, our method achieves a remarkably low FPR.

As a result, the bi-level programming model B2-ViT Net
obtains the promising AUC, Sn and FPR, which indicates the
effectiveness of our proposed method in automatic seizure
prediction. In addition, for all subjects in CHB-MIT and
Kaggle datasets, the p-value is less than 0.001, this shows that
our seizure predictor is significantly better than the random
predictor under 99.9% confidence interval (0.001 significance
level), which is statistically significant, providing significantly
excellent performance in automatic seizure prediction of our
proposed B2-ViT framework.

V. DISCUSSIONS

A. Ablation Studies
To verify the effectiveness of our proposed B2-ViT model,

we conducted further ablation experiments, and the results are
shown in Table V, VI and Fig. 4. It can be seen that on the
CHB-MIT dataset, all the evaluation metrics of BViT model
are higher than ViT, AUC is increased by 1%, Sn is increased
by 4.9%, FPR is decreased by 0.004, and the p-value under the
significance level of 0.001 is increased from 11/13 to 12/13.

Fig. 3. The AUC for each seizure prediction on the (a) CHB-MIT and
(b) Kaggle datasets. Each bar represents one seizure. Correct and
incorrect predictions of seizure are given with ▲ and △, respectively.

The evaluation metrics of B2-ViT are significantly higher than
those of BViT, with AUC increased by 4.2%, Sn increased
by 8.2%, FPR decreased by 0.024, and the p-value under
the significant level of 0.001 increased from 12/13 to 13/13.
Similar results can be obtained on the Kaggle dataset. As can
be observed, the results prove the effectiveness of B2-ViT
model, B2-ViT model consistently outperforms ViT and BViT
models. Moreover, Table VII shows the params and training
time of different algorithms, which indicates that our method
achieves high performance improvement in a small increment
of training time without increasing trainable parameters.

B. Effects of Different Window Lengths of EEG Signals
An appropriate window length is expected to achieve better

performance. We evaluate the effect of different window
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Fig. 4. (a) AUC comparison (left column) and (b) Sn comparison (right
column) of ViT, B-ViT and B2-ViT on CHB-MIT and Kaggle Datasets.

TABLE IX
PERFORMANCE COMPARISON OF DIFFERENT WINDOW LENGTHS

ON THE CHB-MIT DATASET

lengths on the experimental results using the baseline method
ViT, and find that the window length of 30s is more appro-
priate. The results are shown in table IX. Within 30s, with
the increase of window length, ViT contains more and more
distinctive feature information, and its performance is getting
better and better. When the window length exceeds 30s, all
evaluation metrics decline, and the classification performance
reaches the bottleneck. This shows that the window length
of 30s contains enough feature information for classification,
so the window length of 30s is chosen for seizure prediction.

C. Effects of Parameter Settings in BLS
Relevant parameter settings in BLS may affect the experi-

mental results of our proposed model, the number of feature
nodes and enhancement nodes can be adjusted according to
different experimental scenarios. To verify the robustness of
our proposed model, the influence of important experimental
parameters of BLS on AUC is analyzed. Fig. 5 shows the
corresponding AUC under different mapping feature nodes and
enhancement nodes. The range of the feature nodes’ groups is
set to 10-15, and the number of enhancement nodes is set to 1,
100, 500, 1000, 5000. It can be seen that the best experimental
results can be obtained when the mapping feature nodes and
enhancement feature nodes are 165 and 100 respectively on
patient 1 of the CHB-MIT dataset. The AUC of B2-ViT is
relatively stable, and good experimental results are obtained.
Therefore, the automatic seizure prediction performance of
B2-ViT does not fluctuate obviously due to the change of
parameters of BLS, which shows that our proposed method
has good robustness in BLS module.

D. Performance Comparison of the Existing
State-of-the Art Methods

Table VIII shows the experimental settings and performance
results of the existing state-of-the-art methods on CHB-MIT

Fig. 5. The impact of feature nodes and enhancement nodes on the
B2-ViT Net (chb01).

Fig. 6. Left: attention weights among channels. Channel 15 show
strong abnormal connections with other channels, so channel 15 may
be located in the seizure zone, where 0 represents channel 1. The
heatmap below represents the sum of attention for each channel. Right:
channels’ attention weights of preictal and interictal. In preictal, channel
12, 13, 14, 16, 20 are assigned lower attention weights and other
channels are assigned higher attention weights, where 0 represents the
classfication token, 1 represents channel 1 (This figure originates from
chb01).

and Kaggle datasets, where NR is not reported values. It is
necessary to point out that it is difficult to compare our
method directly with the existing methods due to the different
experimental settings, such as the Interictal distance-Preictal
length and validation scheme. Compared with our LOOCV
strategy, the no-cv and k-fold cv in [34], [35], [36], and [37]
are much less challenging and stable, and the intrapatient
variation of seizures is ignored. In addition, although statistical
significance research has always been emphasized, only [9],
[11], [26], [34], and [42] have statistical evaluation. More-
over, deep learning method is usually a black box, and the
interpretability of the model is an important research direction
at present, but few studies give interpretability in specific
scenarios.

As a result, compared with other methods, our bi-level
programming model B2-ViT Net yields a competitive AUC,
Sn , FPR and p-value. The AUC, FPR and p-value has
reached SOTA, only the Sn lower than [37]. Although [37]
achieved very high sensitivity on the CHB-MIT dataset, they
adopted a complex time-consuming feature extraction method
and 10-fold CV instead of LOOCV. Because each seizure
is independent in LOOCV, it is more realistic and useful in
clinical application. What’s more, our model uses the attention
mechanism to explain the global spatial interactions among
channels and long-range temporal dependencies required for
seizure prediction, so that the model has a certain degree of
interpretability.
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E. Limitations and Future Directions

Although our proposed seizure prediction algorithm
achieves strong prediction performance, some limitations still
remain in the current work. On the one hand, due to the
lack of detailed information on the patient’s epileptogenic
zone and corresponding biomarkers, the results were not
validated through neuroscience experiments. For example,
channels located in the epileptogenic zone may show strong
abnormal connections with other channels, channels located in
the epileptogenic zone are assigned attention weights higher
than other channels. Besides, the neural links between brain
regions assigned high attention weights were not captured.
Fig. 6 shows some of our conjectures.

On the other hand, our method is based on patient-
dependent, meaning that both the training and test sets
come from the same patient. It cannot be directly used for
patient-independent seizure early warning tasks, i.e., the model
trained by one patient cannot be applied to another patient.
This is mainly because our method lacks the ability to handle
the different distribution between the training and test sets.
Therefore, transfer learning strategies [43], [44] will be con-
sidered to improve the performance of patients-independent
seizure prediction tasks in our future work. In addition, we will
try to cooperate with medical institutions, further explore the
biomarkers of the epileptogenic zone, the neural links between
the brain regions assigned high attention weights, and apply
our proposed method to the realistic seizure prediction tasks
in the future.

VI. CONCLUSION

Based on neuroscience mechanisms, we consider the global
channel interactions in spatial, long-range dependencies in
temporal together, and explore the generalized spatio-temporal
long-range correlation features required for seizure predic-
tion in a vast space. A novel bilevel programming model
B2-ViT Net is proposed for extracting generalized spatio-
temporal long-range correlation features for automatic seizure
prediction. The proposed model has strong generalized feature
search capability, which can comprehensively learn gener-
alized spatio-temporal long-range correlation features that
are conducive to automatic seizure prediction in a vast
space, improving feature representation ability. In addition,
the attention mechanism of our proposed model can calculate
the interaction weights among channels, and evaluate the
importance of each channel at any time. We evaluated the
performance of B2-ViT model on the CHB-MIT and Kaggle
datasets, the model yields promising results in terms of AUC,
Sn, FPR and p-value, where the AUC, FPR and p-value
have reached SOTA. Experimental results illustrate that our
proposed method can predict seizures efficiently, help patients
prevent or control the impending seizure, and improve their
quality of life.
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