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Regional-Asymmetric Adaptive Graph
Convolutional Neural Network for Diagnosis of

Autism in Children With Resting-State EEG
Wanyu Hu, Guoqian Jiang , Member, IEEE, Junxia Han, Xiaoli Li , and Ping Xie

Abstract— Currently, resting-state electroencephalogra-
phy (rs-EEG) has become an effective and low-cost eval-
uation way to identify autism spectrum disorders (ASD)
in children. However, it is of great challenge to extract
useful features from raw rs-EEG data to improve diag-
nosis performance. Traditional methods mainly rely on
the design of manual feature extractors and classifiers,
which are separately performed and cannot be optimized
simultaneously. To this end, this paper proposes a new
end-to-end diagnostic method based on a recently emerged
graph convolutional neural network for the diagnosis of
ASD in children. Inspired by related neuroscience find-
ings on the abnormal brain functional connectivity and
hemispheric asymmetry characteristics observed in autism
patients, we design a new Regional-asymmetric Adaptive
Graph Convolutional Neural Network (RAGNN). It utilizes
a hierarchical feature extraction and fusion process to
learn separable spatiotemporal EEG features from differ-
ent brain regions, two hemispheres, and a global brain.
In the temporal feature extraction section, we utilize a
convolutional layer that spans from the brain area to the
hemisphere. This allows for effectively capturing temporal
features both within and between brain areas. To better cap-
ture spatial characteristics of multi-channel EEG signals,
we employ adaptive graph convolutional learning to cap-
ture non-Euclidean features within the brain’s hemispheres.
Additionally, an attention layer is introduced to highlight
different contributions of the left and right hemispheres,
and the fused features are used for classification. We con-
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ducted a subject-independent cross-validation experiment
on rs-EEG data from 45 children with ASD and 45 typically
developing (TD) children. Experimental results have shown
that our proposed RAGNN model outperformed several
existing deep learning-based methods (ShaollowNet, EEG-
Net, TSception, ST-GCN, and CGRU-MDGN).

Index Terms— Autism spectrum disorders (ASD),
resting-state electroencephalography (EEG), graph
convolutional network, deep learning, computer-aided
diagnosis.

I. INTRODUCTION

AUTISM spectrum disorders (ASD) are a neurodevelop-
mental disorder characterized by impaired language and

social interaction and have limited, repetitive, and stereotyped
behavior patterns [1], [2]. It is usually delayed brain devel-
opment before the age of 3 years and before the child’s
behavioral abnormalities appear. The rate of its incidence has
increased rapidly, from 1 in 56 nationwide in 2016 to 1 in
44 nationwide in 2018 [3], [4]. With the exposure of the media
and the high incidence of autism, more and more parents are
aware of the early signs and harms of autism, and at the same
time, the requirements for diagnostic efficiency have increased.
As a neurodegenerative disease, it is better to diagnose as
early as possible and cooperate with treatment, and mild
patients can be no different from ordinary people. Considering
the complex and lengthy diagnostic steps of existing clinical
diagnosis, efficient auxiliary diagnostic tools are extremely
necessary to greatly promote the screening of early diagnosis
of autism. In the future, with the support of technologies
such as artificial intelligence (AI) and medical internet of
things, smart healthcare holds great promise for improving
the uneven distribution of medical resources and promoting
medical fairness.

From a structural and functional point of view, normally,
the human brain has hemicerebral lateralization. As early as
1981, Roger Sperry confirmed the “left and right hemisphere
division theory” of brain function lateralization through the
famous split-brain experiment. The brain development of chil-
dren in general has the functional specificity of the cerebral
hemispheres, the left bias of language function [5], and the
right deviation of the visual space [6], [7]. The brain also
exhibits distinct asymmetrical characteristics in gray matter
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morphology [8], white matter attributes, cortical thickness, and
surface area [9], [10], [11], [12], [13]. Studies have shown
that with age, the asymmetry of the left and right brains will
become more significant [14]. Normal children tend to be
symmetrical from significant salinization of the hemispheric
white matter network in childhood to sound development in
adolescence [14], [15].

For children with autism, various neuroscience findings
indicate that in the early stages, these children will exhibit
relatively symmetrical atypical characteristics [16]. Simultane-
ously with abnormalities in long-range white matter pathways,
there are also abnormalities in functional connectivity between
hemispheres [17]. Anderson et al. demonstrated a sustained
reduction in interhemispheric connectivity in ASD patients by
evaluating neural synchronization between homologous vox-
els [18]. Moreover, the abnormality also manifests in the early
brain structural development of patients with autism, which
develops too quickly but tends to normalize in adulthood [19].
Cardon et al. found through structural magnetic resonance
imaging that the covariance of brain structure volume in
the left and right hemispheres of individuals with ASD is
significantly reduced in the somatosensory cortex [20]. At the
same time, resting-state electroencephalograph (EEG) of chil-
dren with autism shows excessive power in the low-frequency
delta (δ) and theta (θ) bands and high-frequency beta (β)
and gamma (γ ) bands compared to normal children, while
exhibiting reduced characteristics in the medium-frequency
alpha (α) band [21], [22], [23], [24]. Obviously, compared
to typically developing children, the asymmetry of the left
and right hemispheres and the inverted U-shaped frequency
characteristics of autistic children can be used effectively to
distinguish between autism and typical children.

Most early diagnosis of autism is based on imaging such
as functional magnetic resonance imaging (fMRI) [25], [26],
magnetoencephalogram (MEG) [27], [28] and eye tracking
technology [29], [30]. Compared with the above ways, non-
invasive EEG has the advantages of high temporal resolution
and low cost, and resting-state EEG is suitable for young
children with poor task coordination [31], [32]. One option
is to use EEG signals as stationary random signals and
process them using time-frequency transformations for time
series analysis [33], [34], [35]. To maintain the non-random
and non-stationary characteristics of EEG signals and extract
nonlinear dynamic features from them, undoubtedly, deep
learning networks could be used. The classical analysis of
EEG and functional connectivity, as well as the analysis of
symmetric indices in classical graphs, require manual selection
and feature extraction from raw data. On the other hand, deep
learning models can automatically extract features from raw
data, reducing the workload and subjectivity of manual feature
engineering. In addition, deep learning models can learn more
abstract and advanced feature representations from raw data,
which is particularly helpful for complex pattern recognition
in disease diagnosis. Deep learning models also have powerful
classification abilities and can improve classification accuracy
by training large-scale neural networks. In the future, deep
learning models can effectively handle large-scale data, which

is important for training on large sample sizes and high-
dimensional data.

By considering the non-Euclidean nature of the spatial
relationship between electrodes, more and more graph theory
methods are applied in brain networks [36]. Emotion recogni-
tion is a widely studied topic and various forms of graph neural
networks have been applied, including regularized graph neu-
ral networks [37], dynamic graph convolution [38], graph
convolutional neural networks combined with long short-term
memory (LSTM) [39], and DialogueGCN [40]. In the field of
disease diagnosis, it is common to use graph theory methods to
analyze brain connectivity, such as in the case of Alzheimer’s
disease [41]. Factor graph-based models have been utilized
in diagnostic methods to identify the specific brain regions
involved in epileptic seizures [42]. Asadzadeh et al. [43]
proposed using a neural network model to detect and classify
epileptic seizures through image generation. Graphs describe
the structural and functional connections between neurons,
whereas sparse structural networks are currently used in most
graph theory applications, and an inherent simplification is
an assumption that “all nodes and edges are identical and
homogeneous in a given network representation”. Overall,
extracting abnormal structural features of the brains of indi-
viduals with autism using graph convolutional neural networks
based on resting-state electroencephalograms presents a signif-
icant challenge.

Motivated by the successful achievements of convolutional
neural networks (CNN) and graph convolutional neural net-
works (GNN) in the field of EEG data analysis, we embed
relevant findings in the neuroscience of autism into the model
design and propose a novel end-to-end regional-asymmetric
adaptive graph convolutional neural network (RAGNN) with
resting-state EEG for diagnosis of autism in children. In sum-
mary, the main contributions of this paper can be divided into
three parts:

1) We designed a temporal feature extraction module
that utilizes the differences in various brain regions
of children with autism compared to typical chil-
dren, and combines it with the parameter-sharing
characteristics of convolutional neural networks, result-
ing in a local-to-global temporal feature extraction
module.

2) In terms of spatial feature extraction, we applied adap-
tive graph convolution for the first time in the diagnosis
of autism using EEG. Given the non-Euclidean dis-
tribution of the electrodes, we adaptively learn the
non-Euclidean spatial features of the left and right hemi-
spheres. It outperformed several common fixed graph
structures, it was found that adaptive graph structure had
an absolute advantage.

3) In terms of the overall model structure, we are the
first to design an end-to-end model for the diagnosis
of autism using EEG data, starting from local features
and moving to whole-brain analysis. We also leverage
the characteristics of autism-related brain regions and
the asymmetry between the left and right hemispheres.
Through various comparison experiments, this approach
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TABLE I
BEHAVIOR SCORES OF ALL SUBJECTS

has been shown to significantly improve the performance
of the model.

It is worth mentioning that in the spatial feature extraction
part, we used adaptive graph convolution to establish non-
Euclidean spatial representation of the temporal features of
the left and right hemispheres. Experimental results show that
our proposed method is more effective than commonly used
approaches for constructing brain wave structures.

The remainder of this paper is organized as follows: In
Section II, we detail the methodology, including data collec-
tion, preprocessing, and our proposed model. In Section III,
we conduct experiments to evaluate the proposed method
and explore its compatibility with prior knowledge in neu-
roscience. Finally, we summarized this paper in Section IV.

II. METHODOLOGY

A. Subjects
The dataset in this work was provided by the State Key

Experimental Team of Cognitive Neuroscience and Learning at
Beijing Normal University. A total of 90 children are enrolled
and their parents volunteered for their children to participate
in the experiment, including 45 autistic (ASD) children and
45 typically developing (TD) children, aged 3-6 years (ASD:
mean=4.13±0.98, TD: mean=4.13±0.98). We assessed chil-
dren using the Autism Behavior Scale (ABC), Social Response
Scale (SRS), and Social Communication Questionnaire (SCQ)
based on the Diagnostic and Statistical Manual of Mental
Disorders Fifth Edition (DSM-V) report to ensure the validity
of the classification results. All TD children were chosen from
a neighborhood kindergarten and tested using the ABC, SCQ,
and SRS scales to look for signs of autism. Table I summarizes
details of behavior scores of all TD and ASD children. None
of all 45 TD children reached the cut-off score of the ABC,
SCQ, and SRS scales. This study was approved by the Beijing
Normal University’s Research Ethics Committee (References
number: IRB_A_009_2021001, approved date: 02/03/2021),
and all children’s parents gave their agreement before their
inclusion as subjects. Due to the nature of this research, the
data contained information that could compromise the privacy
of research participants; participants of this study disagreed
with their data being shared publicly.

B. EEG Data Collection and Preprocessing
The children’s resting-state EEG data were collected by

the 128-channel EGI HydroCel geodesic system (Eugen,
Oregon, USA). The duration of data collection is guaran-
teed to be between 5-10 minutes, during which the child
is usually accompanied by a caregiver in a quiet room,
sitting in a comfortable chair with his eyes open. The

sampling frequency is 1000 Hz, all electrodes are refer-
enced by the Cz electrode, and the electrode impedance
is kept below 50 k�. By selecting the artifact detection
algorithm, electrodes exceeding 50 k� during recording and
electrodes with thresholds exceeding 200V are marked as
poorly interpolated channels, and the screened data segments
are re-referenced to the average reference of the left and right
mastoids.

C. Proposed RAGNN Model
Our proposed RAGNN model aims to extract discriminative

features and realize accurate autism diagnosis. We take advan-
tage of the parameter-sharing mechanism of CNN to learn
the temporal characteristics of each brain region, and then
learn asymmetric spatial features based on brain functional
connections using adaptive graph convolution. Finally, the two
features that use the attention mechanism to maximize the
difference are integrated and sent to the classifier. Fig. 2 shows
the overall framework of our proposed RAGNN model, which
contains a regional temporal feature extractor, adaptive graph
structure learning, an asymmetric spatial feature extractor,
attention fusion, and a classifier. We will introduce these parts
in detail as follows.

1) Model Input: Based on the 10-10 criteria for autism in this
study and to avoid excessive distractions, we selected 46 chan-
nels that maximize coverage of four functional brain regions
(frontal, parietal, temporal, and occipital lobes). At the same
time, in order to ensure that the left and right hemispheres
are comparable, we have symmetrically sorted the left and
right hemispheres of the cerebral channels. And normalize all
participant data to reduce participant differences to a certain
extent. The data of different lengths after cutting the bad guide
and poor-quality fragments will be randomly selected for ten
seconds as the slice in units of sampling frequency. Each
participant randomly selects 10s of data and processes it into
10 samples (Our defined samples refer to the segments shown
in Fig. 1) and inputs them into the network, where there is
no overlap. For the data format of the input model, in order
to enable feature learning in the temporal dimension and the
spatial dimension respectively, we add a dimension to the data
to generate multiple convolution kernel channels. Define the
model input matrix as

X =
{

X le f t , Xright
}

(1)

The matrices X le f t , Xright
∈ R

c
2×point represent the matrix

composed of EEG data from the left and right hemi-
spheres, c is the number of all channels, point is the
length of the segment, point = 1000. where X le f t

=[
X le f t

1 , . . . , X le f t
i

]
, Xright

=

[
Xright

1 , . . . , Xright
i

]
, i =

{1, 2, 3, 4} which represents four brain regions within the
hemibrain. The specific channel distribution selected is shown
in Fig. 1.

2) Regional-Temporal Feature Extractor: In this part,
we mainly used two-dimensional convolution to extract the
temporal features of each electrode. In particular, we utilize
the parameter-sharing mechanism of convolution to design a
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Fig. 1. Illustration of data segmentation, where each segment corresponds to data points within one second.

Fig. 2. The proposed RAGNN model.

regional temporal feature extractor for the functional charac-
teristics of brain regions in autism. The time series generated
by each electrode undergoes two two-dimensional convolution
operations, and the difference between the two convolution
operations is the range of shared parameters. We demon-
strate regional-temporal feature extractor details in Fig. 3,
only the right brain is shown, and the left brain is sim-
ilar. The first part uses convolutional blocks on each of
the four brain regions of the selected left and right brains
to extract the temporal features of the subregions. Convo-
lution kernel parameters are shared in the respective brain
regions, where each convolutional block consists of a two-
dimensional convolutional layer, an average pooling layer, and
a ReLU activation function. The whole process of this part is

defined as:

Br
i = σ

(
Avg2

(
Conv2D

(
Xr

i , s1
)))

(2)

where r ∈ {le f t, right} and i ∈ {1, 2, 3, 4}, Xr
i is the raw

data input for the i-th brain region of the r hemisphere,
and Br

i represents the regional temporal feature of the i-th
brain region of the r hemibrain. Conv2D (·) is a two-
dimensional convolution, where s1 is its convolution kernel
scale, s1 =

f s
2 . σ (·) is ReLU activation function, and Avg2 (·)

is the average pooling layer, which reduces the dimension
to one-half of the original dimension in the time dimension,
which prevents overfitting to a certain extent and increases
robustness.
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The commonly used EEG frequency for autism diagnosis
is between 2Hz-70Hz, which is why the convolution kernel
scale we chose is (1,

f s
2 ). Because it can learn the temporal

feature of the frequency above 2Hz.
After the regional-temporal features of the brain region are

extracted, the same convolution blocks are used to learn the
temporal features of the hemibrain. Before that, it is necessary
to concatenate the brain region feature maps of the same
hemibrain in the spatial dimension. This process is defined
as:

Br
=
[
Br

1, . . . , Br
i
]

(3)

The final feature map obtained by the regional-temporal fea-
ture extractor is defined as:

T emr
= σ

(
Avg2

(
Conv2D

(
Br , s2

)))
(4)

where s2 is half of the last stage feature map temporal feature.
3) Adaptive Graph Structure Learning: Unlike the fixed

graph structure, we obtain the adjacency matrix for estab-
lishing the graph structure by learning the adjacent feature
relationship of the electrode by the model. In this part,
we establish the graph structure of the left and right hemi-
brains, respectively, and obtain the adjacency matrices Ale f t

and Aright of the left and right brains.
Let the adjacency matrix Ale f t

i j , Aright
i j = g

(
xi , x j

)
(i, j ∈ {1, 2, . . . , n}) is used to represent the node xi and x j
connections. n is the number of nodes in the hemibrain. xi , x j
from the feature map T r is the vector corresponding to node
i, j . g(X i , x j ) is calculated from the learnable weight vector
ω =

(
ω1, ω2, . . . , ω f

)
∈ R f×1 and the features of node i and

j. The learnable weighted vector ω shares parameters during
the learning process of each node connection. The convolution
kernel feature layers obtained by all the previous convolutional
layers are averaged. and then the adjacency matrix graph
structure is represented as

Ar
mn = g (xm, xn) =

exp
(
σ
(
ωT |xn − xm |

))∑N
m=1exp

(
σ
(
ωT |xm − xn|

)) (5)

and the activation function ReLU corrects each linear unit
to a non-negative number. The basis of the adjacency matrix
is a dynamic time feature map, we directly use the total
cross-entropy loss for iterative optimization. The detailed
optimization cross-entropy loss function is

lossC E = −
1
B

B∑
batch=1

1∑
class=0

ybatch,class log1 ŷbatch,class (6)

Finally, the adjacency matrix of the left and right hemi-
spheres is obtained, which is input as a graph structure into
graph convolution learning.

4) Asymmetric-Spatial Feature Extractor: Graph convolu-
tion, which generalizes convolution from Euclidean space
to non-Euclidean space adapted to EEG. In graph convolu-
tion learning in this part, we use graph convolution kernels
approximated using Chebyshev polynomials. Compared to the
ordinary spectrogram convolution, the computational complex-
ity is reduced to K , and K is the number of Chebyshev

polynomials. This part combines the hemibrain adjacency
matrix and the temporal characteristics of each node to learn
the non-Euclidean spatial features of the left and right hemi-
spheres. Chebyshev graph convolution using the polynomial
of order K − 1 is defined as

Fr
g = gθ ∗G T emr

= gθ (L) T emr

=

K−1∑
k=0

θk Tk

(
L̃
)

T emr (7)

where gθ represents the convolution kernel, ∗G represents
the graph convolution operation. L̃ is a normalized Laplace
matrix, L̃ = 2

λmax
− I . λmax is the maximum eigenvalue of the

Laplace matrix, According to the conditions of the Chebyshev
polynomial of the first class, the eigenvalue diagonal matrix
of the normalized Laplace matrix is transformed between
[−1,1]. The recursive formula of the first class of Chebyshev
polynomials is

T0(x) = 1, T1(x) = x, Tn+1(x) = 2xTn(x)− Tn−1(x) (8)

This is obtained from the above recursive formula Tk

(
L̃
)

represents Chebyshev polynomial. θk represents the vector of
Chebyshev’s coefficients.

5) Attention-Based Feature Fusion: In this part, we use
attention mechanisms to weigh the spatiotemporal features
of the left and right brains, and then enter the classifier.
Depending on the influence of each part (i.e., the left and
right hemisphere) on the classification results, the attention
mechanism is used to dynamically make the network focus
more on a particular hemisphere. The illustration is shown in 5.
First, the global pooling layer is used to compress the global
features and the nonlinear relationship between the left and
right hemibrains is learned through the fully connected layer
combined with the activation function. The spatio-temporal
characteristics of EEG asymmetry in autism after fusion were
obtained after the weighted average. The features after fusion
are defined as

Fusion = G AP
(

Att
([

F le f t , Fright
]
, Q
))

=
1
k

K∑
k=1

[β1 F le f t , β2 Fright
] (9)

where K is the number of graph convolution kernels in
the graph convolution. Q is the dimension reduction ratio
during the attention mechanism’s compression. β1, β2 is the
result of left and right brain weights derived from attention
mechanisms.

6) Classifier: Finally, the training process is completed by
the classification loss optimization model, and the diagnosis
results of autism probability are obtained. The spatiotempo-
ral fusion feature matrix is input to the classification layer
containing two fully connected layers, a ReLU activation
function and a Sof tmax activation function, and the training
is optimized using the cross-entropy loss function to obtain
the final diagnosis result. Define the output as:

ŷ = Sof tmax (W2 p ◦ (W1 Fusion + b1)+ b2) (10)
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Fig. 3. Regional-temporal feature extractor(only right brain).

Fig. 4. Adjacency matrix Ar of adaptive right brain graph structure.

Fig. 5. Attention-based hemibrain features fuse details.

III. RESULTS

In this section, we compare our proposed RAGNN model
with several existing deep learning-based models and inves-
tigate the effects of several related factors, including graph

structure, left and right hemispheres, and different local brain
regions, on the diagnosis performance of autism. The exper-
imental settings and results are described in detail below.
In all experiments, we maintained the consistency of irrelevant



Algorithm 1 RAGNN Model Training

Input: EEG data X =
[
X le f t , Xright ]; True label y;

Maximum number of iterations T
Output: ŷ, the prediction of RAGNN

1 Initialization: ω0 ← 0
2 for t ← 1 to T do
3 for r in [L , R] do
4 for i ← 1 to 4 do
5 # get the output of the regional temporal

learning
6 get i-th region output Br

i by Eq. 2
7 get Bi by Eq. 3 get temporal fusion

learning output T r by Eq. 4
8 end
9 # get the output of the Asymmetric spatial

learning
10 get the adjacency matrix of the left and right

hemispheres Ar by Eq. 5
11 get graph convolution learning output Fr

g by
Eq. 7

12 end
13 get the Fusion weighted sum by the attention

mechanism by Eq. 9
14 end
15 get ŷ by Eq. 10

variables (e.g. per-fold data, random parameters, iterative
strategies) and strictly controlled the variables to ensure that
the experiments were comparable.

A. Implementation
The proposed method was implemented using the Pytorch

framework (Pytorch v1.8.1 as backend). Refer to Section II
for the specific segmentation and model input format of the
original data related to the subject. To ensure the reliability and
accuracy of our experimental results, we use a robust valida-
tion process. Considering the severity of autism is age-related,
to avoid the influence of age on the experimental results,
we adopted a random stratified method by age, as shown
in Fig. 6. This strategy can ensure that each experiment has
the same age distribution in the training and testing sets.
Specifically, we divide the data of children in each age group
into five equal splits, forming five splits. Each split is used
as the testing set once in turn, which accounts for 20%
of all data. The remaining four parts are used for model
training, accounting for 80% of all data. Additionally, our
data splitting is based on individual participants, therefore
samples from the same participant would be in the same
split. This achieves the independence of participants, ensuring
that samples from the same participant were not used for
both parameter training and testing, thus avoiding the error
of artificially inflated results. This will ensure that all the data
is examined and that the model’s performance is evaluated
comprehensively to be used to evaluate the effectiveness of
our proposed method. Finally, the average result of the five
cross-validations is taken as the overall performance of the

Fig. 6. Stratified random sampling by age and five-fold cross-validation.

model. The following experimental results are based on a
unified experimental setup.

B. Performance Comparison
Our proposed RAGNN model is an end-to-end model

based on deep learning, which can adaptively learn temporal
and spatial features from local to global in both left and
right hemispheres from the preprocessed EEG signal seg-
ments. It requires no manual feature extraction procedures
and can provide an automatic feature learning way. Therefore,
in this study, to better evaluate the performance of our pro-
posed RAGNN model in feature learning and classification,
we mainly focus on performance comparison with existing
deep learning models. However, there are rare studies using
deep learning with EEG data in autism diagnosis. In recent
years, deep learning has been widely used in the field of EEG
analysis for different tasks, such as motor imagery classifica-
tion and emotion recognition, and various advanced models
have been developed and achieved excellent performance.
Therefore, we select five representative deep learning models
for EEG data from related domains as compared methods,
which are as follows:
• ShallowConvNet [44](2017) is a fairly versatile archi-

tecture tailored specifically to decode band power
characteristics based on convolutional neural networks.

• EEGNet [45](2018) is a typical convolutional neural net-
work model that can be used in different brain-computer
interface paradigms, including P300, ERN, MRCP, and
SMR. It is a universal and compact convolutional neural
network specially designed for general EEG recognition
tasks.

• TSception [46](2021) is a newly developed convolutional
network model designed for EEG-based emotion recog-
nition. It takes into account the characteristics of the left
and right brain differences in emotional expression, which
also motivates us to design our RAGNN model.

• ST-GCN [47](2022) is a dynamically spatio-temporal
graph convolutional neural network designed to fully
explore its potential in utilizing electroencephalo-
gram recordings for early diagnosis of Alzheimer’s
disease.

• CGRU-MDGN [36](2024) is a convolutional gated recur-
rent unit-driven multidimensional dynamic graph neural
information and captures no-Euclidean spatial features
between EEG channels to classify emotions.
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Fig. 7. Confusion matrices results of different methods.

Fig. 7 shows the confusion matrix results of different mod-
els. We can observe that the most common error in all methods
is misdiagnosing typically developing children as autistic.
To evaluate the overall performance of different models,
we calculate the average accuracy, sensitivity, specificity, NPV,
and PPV based on the confusion matrix results. Additionally,
we compute the variance of the corresponding results from the
five-fold cross-validation. The specific calculation formula of
each indicator is:

Accuracy =
T P + T N

T P + T N + F P + F N
(11)

Speci f ici t y =
T N

T N + F P
(12)

Sensi tivi t y =
T P

T P + F N
(13)

N PV =
T N

T N + F N
(14)

P PV =
T P

T P + F P
(15)

where TP, TN, FP, and FN denote true positive, true negative,
false positive, and false negative, respectively.

In this experiment, the autism sample was defined as pos-
itive, while the typically developmental sample was defined
as negative. Specificity (Spec) represents the proportion of
negative samples that are correctly predicted out of all actual
negative samples, while sensitivity (Sens) represents the pro-
portion of positive samples that are correctly predicted out of
all actual positive samples. PPV indicates the proportion of
true positive results out of all positive results reported by a
new test. On the other hand, NPV indicates the proportion of
true negative results out of all negative results reported by a
new test.

Firstly, from Table II, the proposed method is the most
accurate and has the lowest variance of all the methods. In the

actual application scenario of disease diagnosis, there is a
large gap between the population base of autistic patients
and ordinary children. In this case, both PPV and NPV are
extremely important, and the NPV we have obtained is the
only one that exceeds 95%, reaching up to 97%. Another
explanation is that when the diagnosis is negative, the results
are 97% confident that it is not a disease. According to
the specificity and sensitivity results, RAGNN had a low
missed rate (1-sens) of only 2.77%. In the comparison model,
TSception is a model that utilizes emotional EEG asymmetry
similar to the model we proposed. Clearly, both TSception
and our model are significantly more effective than other
models. ST-GCN and CGRU-MDGN are two models used in
EEG analysis. ST-GCN is utilized for diagnosing Alzheimer’s
disease, while CGRU-MDGN is used for analyzing emotion in
EEG data. Both models employ graph convolutional networks
(GCNs) to extract spatial features. Our model, however, not
only achieves higher performance (where the accuracy is
5.34% higher than ST-GCN and 10.56% higher than CGRU-
MDGN), but also outperforms CGRU-MDGN by 30% in terms
of NPV. In the current auxiliary diagnosis application, we need
to screen a large number of individuals who visit hospitals for
examinations. The goal is to achieve the lowest possible rate of
missed diagnoses and to minimize misdiagnosis, thus ensuring
that patients are not overlooked and improving diagnosis
efficiency.

To visualize the separability of the model more intuitively,
we plotted the receiver operating characteristic (ROC) curve
and calculated the AUC indicator, as shown in Fig. 8. The
AUC in the figure is an index of separability, which is
numerically equal to the area under the ROC curve. The
closer the AUC is to 1, the better the separability. Conversely,
the closer it is to 0, the worse the separability. Clearly, our
proposed method is closest to 1, exhibits the best separability,
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TABLE II
COMPARISON RESULTS OF DIFFERENT METHODS(MEAN±STD)

Fig. 8. ROC curves of different methods.

and is more effective at distinguishing between patients with
and without the disease.

C. Ablation Study
This work consists of three functional components: regional-

temporal feature extractor, asymmetric-spatial feature extrac-
tor, and attention-based feature fusion. The combination of
these three parts led to the success of the classification task.
In this subsection, we evaluate the contribution of a specific
functional module to task performance by gradually reducing
its functionality. The classification results after removing each
regional-temporal feature extractor (noRegion), asymmetric-
spatial feature extractor (noGraph), and attention-based feature
fusion (noAtt) from RAGNN are summarized in Table IV.
From Table IV, we can observe that the attention mechanism
improves the performance of the model, although its contribu-
tion is relatively smaller compared to the contribution of the
adaptive graph convolutional module, which is less than 1%.
The asymmetric-spatial feature extractor can improve perfor-
mance by 2% to 3%. Overall, all three functional extractors
contribute to improving the performance of RAGNN.

D. Discussion and Analysis
Our model is built on the theoretical foundation of autism

brain characteristics. In this subsection, we carry out three
experiments to explore the design of adaptive graph structure,
left-right hemisphere asymmetry, and different brain regions
to the performance of the model. The functional abnormalities
of the left and right hemispheres of autism and different brain
regions were analyzed.

1) Experiment I: Graph Structure: The first experiment
involves an experimental comparison of different graph struc-
tures, including adaptive graphs and various types of fixed
graphs (with only variable control for the graph functional
construction part). The difference lies in the construction of the
adjacency matrix, which measures the functional connectivity
between electrodes. Additionally, several fixed graph structures
are constructed for comparison purposes. The calculation of
the adjacency matrix for the fixed graph is based on the spatial
Cartesian coordinates of the electrode.
• Dense graph based on Gaussian kernel function (Gauss):

The connection between each pair of nodes is calculated
based on the spatial distance between electrodes that
conform to the 3D scalp model. The Gaussian kernel
function is then applied to this distance. The specific
implementation formula is

Ai j = exp

(
−

∥∥locv j − locvi

∥∥2
2

2σ 2

)
(16)

where locvi and locv j are Cartesian coordinates of node
i and node j , and σ is the scale parameter to adjust the
connectivity level.

• Distance-based dense graphs (Distance): Use only the
spatial distance between electrodes to represent the con-
nections between nodes. Specifically, it is expressed as

Ai j =
∥∥locv j − locvi

∥∥2
2 (17)

• K-nearest neighbor rule (K-nearest): Every node retains
the five nearest edges, so k is set to 5. The final adja-
cency matrix is an unweighted sparse matrix, the edge
corresponds to 1, and the other is 0.

• Dist-based: Sort all connected edges from short to long,
and retain some edges to construct an unweighted sparse
matrix. To divide the regions as accurately as possi-
ble while maintaining effective connectivity, through the
experiment we chose to keep the first 15% of the edges.

• noGraph: Use 2D convolution layers instead of graph
convolution layers in the spatio-temporal feature fusion
part.

The results are shown in Table III. Compared to the adap-
tive graph, the structure of the fixed graph is based on the
electrode’s spatial structure. This structure is obtained from
the x, y, and z-axis coordinates converted from the elec-
trode cap parameters. Three-dimensional distance is utilized
in Gaussian kernel functions to map finite-dimensional data
to high-dimensional spaces. As the distance between the two
vectors increases, the value of the Gaussian kernel function
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TABLE III
RESULT (MEAN± STD) OF COMPARATIVE METHODS AND EXPERIMENT I-III

decreases monotonically. When comparing the sparsity matrix
of the two mainstream rules, the k-nearest neighbor algorithm,
and the distance-based algorithm, the performance will be
slightly worse than that of the Gaussian model. However, the
amount of computation required will be smaller. In the pursuit
of accuracy, a part of the calculation speed will be sacrificed.
Therefore, the appropriate graph structure should be selected
based on the situation.

2) Experiment II: Hemishphere: The second experiment is
conducted to investigate the effect of local spatial feature
extraction on the network of the left and right hemishpheres,
and the specific experimental settings are as follows:

• Whole: Global spatial feature extraction with the whole
brain as a whole using only whole brain data.

• Left: Only EEG data from the left brain are used.
• Right: Only EEG data from the right brain are used.
• Hemi-whole: Simultaneous EEG data from the whole

brain and the left and right hemispheres were used.
• noAtt: Fuse the characteristics of the left and right brain

directly, without weighting attention to them.

Table III shows that our proposed model, combining with
the left and right hemisphere parts, demonstrate that dif-
ferential training of the left and right hemispheres can
enhance model performance, with or without global data.
Compared to the Hemi-whole model, doubling the features
does not improve our model performance and instead intro-
duces some interference effects. Meanwhile, comparing the
left hemisphere and the right hemisphere, the left hemi-
sphere’s discrimination ability is about 2.5% higher than
that of the right hemisphere, as reflected in the model’s
performance. This experimental result is consistent with the
significant language impairments observed in children with
autism. The language center is divided into Broca’s area and
Wernicke’s area, both located in the left hemisphere of the
brain [5]. According to the results of noAtt, it is evident that
using attention to weigh the fusion of left and right brain
spatiotemporal features can significantly enhance the model
performance.

Fig. 9. Electrodes and brain region division.

3) Experiment III: Brain Region: The third experiment is the
exploration of data on various brain regions of autism.

• Frontal lobe [48]: Only data from the frontal lobe is
used. This area of the brain is responsible for “higher
cognition,” which includes managing attention, thinking,
voluntary movement, and judgment. Additionally, the left
frontal lobe contains an important region called Broca’s,
primarily responsible for functional language production.

• Temporal lobe [49], [50]: is located next to the ear,
and contains the main auditory cortex. Additionally,
it includes the Wernicke area, which is responsible for
language understanding.

• Parietal lobe [51]: Only data from the parietal lobe is
used. The parietal lobe is located between the central
sulcus and the occipital ridge.

• Occipital lobe [52]: Only data from the occipital lobe is
used. The main visual cortex is responsible for all visual
perception. Symptoms such as memory deficits and motor
intuition disorders may occur when damaged.

• noRegion: Global temporal feature extraction is per-
formed without local convolution of the brain region
twice.
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TABLE IV
ABLATION EXPERIMENTAL RESULTS (MEAN± STD)

The brain regions and specific channels are shown in the
Fig. 9. A total of 10 electrodes were selected in the parietal
lobe region, while 4-5 electrodes were selected in other brain
regions. After comparing the results of experiments conducted
on a single brain region, it can be seen that the data from
the temporal lobe performs the best in terms of classification
accuracy, while also having the smallest variance. We specu-
late that the relationship between Wernicke’s area and autism
is highly relevant to the temporal lobe [53]. The accuracy of
the parietal lobe, where Broca’s area [54] is located, is higher
than that of the occipital lobe, which is responsible for visual
perception. In particular, experiments that use only temporal
lobe data have significantly higher accuracy compared to
those that use only left-brain or right-brain data. Therefore,
it can be observed that the EEG signals generated by brain
abnormalities caused by autism can be utilized in the feature
extraction process of convolutional neural networks. While
convolutional neural networks could be difficult to explain
due to their black-box nature, they can certainly be optimized
through careful design. We further conducted an experiment
(noRegion) where no regional time features were extracted.
The results of this experiment indicate that this is indeed a
good strategy for optimizing the diagnosis of autism.

IV. CONCLUSION

We propose a diagnostic model named RAGNN, based on
resting-state EEG, to assist in the rapid diagnosis of autism
spectrum disorder, which is experiencing a significant increase
in demand. Our model adopts an end-to-end design, using self-
learning convolutional networks to extract features from EEG
data of children with autism and TD children. This model uses
temporal feature extraction from different brain regions and
adaptive graph convolution learning from each hemisphere to
extract temporal and spatial features from resting-state signals.
This design utilizes the pathological mechanism of functional
connectivity abnormalities and hemispheric asymmetry in
autism. We investigate the effectiveness of different compo-
nents, including graph structure characteristics, hemispheres,
and various brain regions through extensive experiments. Com-
pared with several deep learning-based models, our model has
demonstrated significantly better performance, which indicates
that our model has great potential in practical applications to
improve diagnosis accuracy.

In terms of the limitations of this work, there are three
folds. Firstly, in our study, our developed diagnosis model is
a binary classification model, which cannot predict disease
severity. Second, our model does not consider the effects of
different factors, such as age, gender, and symptoms. Thirdly,
our model is developed only with EEG data that ignores other

modality data, such as eye-tracking data and fMRI data, thus
resulting in limited diagnosis performance and low reliability.
To deal with these limitations, in our future work, we will
recruit more subjects and closely collaborate with hospitals to
collect multimodal data, including EEG, eye-tracking, fMRI,
and other data with more detailed information about dis-
ease severity, geographic location, and symptoms. We also
attempt to develop advanced interpretable diagnosis models
with multimodal data to perform more accurate, trustworthy,
and reliable diagnosis of autism in children.

REFERENCES

[1] L. Kanner, “Autistic disturbances of affective contact,” Nervous Child,
vol. 2, pp. 217–250, Apr. 1943.

[2] American Psychiatric Association, AP Association, Diagnostic and
Statistical Manual of Mental Disorders: DSM-5, American Psychiatric
Association, Washington, DC, USA, 2013.

[3] D. L. Christensen et al., “Prevalence and characteristics of autism spec-
trum disorder among children aged 8 years—Autism and developmental
disabilities monitoring network, 11 sites, United States, 2012,” MMWR
Surveill. Summaries, vol. 65, no. 13, pp. 1–23, 2018.

[4] G. Xu, L. Strathearn, B. Liu, and W. Bao, “Prevalence of autism
spectrum disorder among US children and adolescents, 2014–2016,”
JAMA, vol. 319, no. 1, pp. 81–82, Jan. 2018.

[5] P. Broca, “Remarques sur le siège de la faculté du langage articulé,
suivies d’une observation d’aphémie (perte de la parole),” Bull. et
Memoires de la Societe Anatomique de Paris, vol. 6, pp. 330–357,
Jan. 1861.

[6] M. P. Bryden, H. Hécaen, and M. DeAgostini, “Patterns of cerebral
organization,” Brain Lang., vol. 20, no. 2, pp. 249–262, Nov. 1983.

[7] A. J. O. Whitehouse and D. V. M. Bishop, “Hemispheric division of
function is the result of independent probabilistic biases,” Neuropsy-
chologia, vol. 47, nos. 8–9, pp. 1938–1943, Jul. 2009.

[8] A. A. Beaton, “The relation of planum temporale asymmetry and
morphology of the corpus callosum to handedness, gender, and dyslexia:
A review of the evidence,” Brain Lang., vol. 60, no. 2, pp. 255–322,
Nov. 1997.

[9] S. Ocklenburg, P. Friedrich, O. Güntürkün, and E. Genç, “Intrahemi-
spheric white matter asymmetries: The missing link between brain
structure and functional lateralization?” Rev. Neurosci., vol. 27, no. 5,
pp. 465–480, Jul. 2016.

[10] P.-Y. Hervé, L. Zago, L. Petit, B. Mazoyer, and N. Tzourio-Mazoyer,
“Revisiting human hemispheric specialization with neuroimaging,”
Trends Cognit. Sci., vol. 17, no. 2, pp. 69–80, Feb. 2013.

[11] S. Maingault, N. Tzourio-Mazoyer, B. Mazoyer, and F. Crivello,
“Regional correlations between cortical thickness and surface area
asymmetries: A surface-based morphometry study of 250 adults,” Neu-
ropsychologia, vol. 93, pp. 350–364, Dec. 2016.

[12] C. D. Good, I. Johnsrude, J. Ashburner, R. N. A. Henson, K. J. Friston,
and R. S. J. Frackowiak, “Cerebral asymmetry and the effects of
sex and handedness on brain structure: A voxel-based morphometric
analysis of 465 normal adult human brains,” NeuroImage, vol. 14, no. 3,
pp. 685–700, Sep. 2001.

[13] A. W. Toga and P. M. Thompson, “Mapping brain asymmetry,” Nature
Rev. Neurosci., vol. 4, no. 1, pp. 37–48, Jan. 2003.

[14] L. Wei, S. Zhong, S. Nie, and G. Gong, “Aberrant development of
the asymmetry between hemispheric brain white matter networks in
autism spectrum disorder,” Eur. Neuropsychopharmacol., vol. 28, no. 1,
pp. 48–62, Jan. 2018.



HU et al.: RAGNN FOR DIAGNOSIS OF AUTISM IN CHILDREN WITH RESTING-STATE EEG 211

[15] S. Zhong, Y. He, H. Shu, and G. Gong, “Developmental changes in topo-
logical asymmetry between hemispheric brain white matter networks
from adolescence to young adulthood,” Cerebral Cortex, vol. 27, no. 4,
pp. 2560–2570, 2016.

[16] N. M. Kleinhans, R.-A. Müller, D. N. Cohen, and E. Courchesne, “Atyp-
ical functional lateralization of language in autism spectrum disorders,”
Brain Res., vol. 1221, pp. 115–125, Jul. 2008.

[17] M. B. D. Prigge et al., “A 16-year study of longitudinal volumetric brain
development in males with autism,” NeuroImage, vol. 236, Aug. 2021,
Art. no. 118067.

[18] J. S. Anderson et al., “Decreased interhemispheric functional con-
nectivity in autism,” Cerebral Cortex, vol. 21, no. 5, pp. 1134–1146,
May 2011.

[19] J. K. Lee et al., “Longitudinal evaluation of cerebral growth across
childhood in boys and girls with autism spectrum disorder,” Biol.
Psychiatry, vol. 90, no. 5, pp. 286–294, Sep. 2021.

[20] G. J. Cardon, S. Hepburn, and D. C. Rojas, “Structural covariance of
sensory networks, the cerebellum, and amygdala in autism spectrum
disorder,” Frontiers Neurol., vol. 8, p. 615, Nov. 2017.

[21] D. S. Cantor, R. W. Thatcher, M. Hrybyk, and H. Kaye, “Computerized
EEG analyses of autistic children,” J. Autism Develop. Disorders,
vol. 16, no. 2, pp. 169–187, Jun. 1986.

[22] A. S. Chan, S. L. Sze, and M.-C. Cheung, “Quantitative electroen-
cephalographic profiles for children with autistic spectrum disorder,”
Neuropsychology, vol. 21, no. 1, pp. 74–81, Jan. 2007.

[23] T. A. Stroganova et al., “Abnormal EEG lateralization in boys with
autism,” Clin. Neurophysiol., vol. 118, no. 8, pp. 1842–1854, Aug. 2007.

[24] N. Pop-Jordanova, T. Zorcec, A. Demerdzieva, and Z. Gucev, “QEEG
characteristics and spectrum weighted frequency for children diagnosed
as autistic spectrum disorder,” Nonlinear Biomed. Phys., vol. 4, no. 1,
pp. 1–7, Dec. 2010.

[25] J. S. Anderson et al., “Functional connectivity magnetic resonance imag-
ing classification of autism,” Brain, vol. 134, no. 12, pp. 3742–3754,
Dec. 2011.

[26] J. A. Nielsen et al., “Multisite functional connectivity MRI classifi-
cation of autism: ABIDE results,” Frontiers Hum. Neurosci., vol. 7,
p. 599, Sep. 2013.

[27] Y. Yoshimura et al., “Atypical brain lateralisation in the auditory
cortex and language performance in 3-to 7-year-old children with
high-functioning autism spectrum disorder: A child-customised mag-
netoencephalography (MEG) study,” Mol. Autism, vol. 4, pp. 1–14,
Dec. 2013.

[28] M. Kikuchi, Y. Yoshimura, K. Mutou, and Y. Minabe, “Magnetoen-
cephalography in the study of children with autism spectrum disorder,”
Psychiatry Clin. Neurosci., vol. 70, no. 2, pp. 74–88, Feb. 2016.

[29] G. Wan et al., “Applying eye tracking to identify autism spectrum
disorder in children,” J. Autism Develop. Disorders, vol. 49, no. 1,
pp. 209–215, Jan. 2019.

[30] J. Han, G. Jiang, G. Ouyang, and X. Li, “A multimodal approach for
identifying autism spectrum disorders in children,” IEEE Trans. Neural
Syst. Rehabil. Eng., vol. 30, pp. 2003–2011, 2022.

[31] J. Kang, T. Zhou, J. Han, and X. Li, “EEG-based multi-feature
fusion assessment for autism,” J. Clin. Neurosci., vol. 56, pp. 101–107,
Oct. 2018.

[32] S. Zhang, D. Chen, Y. Tang, and L. Zhang, “Children ASD evaluation
through joint analysis of EEG and eye-tracking recordings with graph
convolution network,” Frontiers Hum. Neurosci., vol. 15, May 2021,
Art. no. 651349.

[33] R. Djemal, K. AlSharabi, S. Ibrahim, and A. Alsuwailem, “EEG-
based computer aided diagnosis of autism spectrum disorder using
wavelet, entropy, and ANN,” BioMed Res. Int., vol. 2017, pp. 1–9,
Apr. 2017.

[34] M. N. A. Tawhid, S. Siuly, and H. Wang, “Diagnosis of autism spectrum
disorder from EEG using a time–frequency spectrogram image-based
approach,” Electron. Lett., vol. 56, no. 25, pp. 1372–1375, Dec. 2020.

[35] H. Hadoush, M. Alafeef, and E. Abdulhay, “Automated identification for
autism severity level: EEG analysis using empirical mode decomposition
and second order difference plot,” Behavioural Brain Res., vol. 362,
pp. 240–248, Apr. 2019.

[36] W. Guo and Y. Wang, “Convolutional gated recurrent unit-driven mul-
tidimensional dynamic graph neural network for subject-independent
emotion recognition,” Exp. Syst. Appl., vol. 238, Mar. 2024,
Art. no. 121889.

[37] P. Zhong, D. Wang, and C. Miao, “EEG-based emotion recognition
using regularized graph neural networks,” IEEE Trans. Affect. Comput.,
vol. 13, no. 3, pp. 1290–1301, Jul. 2022.

[38] T. Song, W. Zheng, P. Song, and Z. Cui, “EEG emotion recognition using
dynamical graph convolutional neural networks,” IEEE Trans. Affect.
Comput., vol. 11, no. 3, pp. 532–541, Jul. 2020.

[39] Y. Yin, X. Zheng, B. Hu, Y. Zhang, and X. Cui, “EEG emo-
tion recognition using fusion model of graph convolutional neural
networks and LSTM,” Appl. Soft Comput., vol. 100, Mar. 2021,
Art. no. 106954.

[40] D. Ghosal, N. Majumder, S. Poria, N. Chhaya, and A. Gelbukh,
“DialogueGCN: A graph convolutional neural network for emotion
recognition in conversation,” in Proc. Conf. Empirical Methods Natural
Lang. Process., 9th Int. Joint Conf. Natural Lang. Process. (EMNLP-
IJCNLP), 2019, pp. 154–164.

[41] W. de Haan et al., “Functional neural network analysis in
frontotemporal dementia and Alzheimer’s disease using EEG
and graph theory,” BMC Neurosci., vol. 10, no. 1, pp. 1–12,
Dec. 2009.

[42] Y. Varatharajah et al., “EEG-GRAPH: A factor-graph-based model for
capturing spatial, temporal, and observational relationships in electroen-
cephalograms,” in Proc. Adv. Neural Inf. Process. Syst., vol. 30, 2017,
pp. 1–10.

[43] S. Asadzadeh, T. Y. Rezaii, S. Beheshti, and S. Meshgini, “Accurate
emotion recognition utilizing extracted EEG sources as graph neu-
ral network nodes,” Cognit. Comput., vol. 15, no. 1, pp. 176–189,
Jan. 2023.

[44] R. Schirrmeister, L. Gemein, K. Eggensperger, F. Hutter, and T. Ball,
“Deep learning with convolutional neural networks for decoding and
visualization of EEG pathology,” in Proc. IEEE Signal Process. Med.
Biol. Symp. (SPMB), Dec. 2017, pp. 1–7.

[45] V. J. Lawhern, A. J. Solon, N. R. Waytowich, S. M. Gordon, C. P. Hung,
and B. J. Lance, “EEGNet: A compact convolutional neural network for
EEG-based brain–computer interfaces,” J. Neural Eng., vol. 15, no. 5,
Oct. 2018, Art. no. 056013.

[46] Y. Ding, N. Robinson, S. Zhang, Q. Zeng, and C. Guan, “TSception:
Capturing temporal dynamics and spatial asymmetry from EEG for
emotion recognition,” IEEE Trans. Affect. Comput., vol. 14, no. 3,
pp. 2238–2250, 2023.

[47] X. Shan, J. Cao, S. Huo, L. Chen, P. G. Sarrigiannis, and Y. Zhao,
“Spatial–temporal graph convolutional network for Alzheimer classi-
fication based on brain functional connectivity imaging of electroen-
cephalogram,” Hum. Brain Mapping, vol. 43, no. 17, pp. 5194–5209,
Dec. 2022.

[48] D. T. Stuss and R. T. Knight, Principles of Frontal Lobe Function.
Oxford, U.K.: Oxford Univ. Press, 2013.

[49] H. Eichenbaum, A. P. Yonelinas, and C. Ranganath, “The medial
temporal lobe and recognition memory,” Annu. Rev. Neurosci., vol. 30,
no. 1, pp. 123–152, Jul. 2007.

[50] L. R. Squire, C. E. Stark, and R. E. Clark, “The medial temporal lobe,”
Annu. Rev. Neurosci., vol. 27, pp. 279–306, Jul. 2004.

[51] S. L. E. Brownsett and R. J. S. Wise, “The contribution of the
parietal lobes to speaking and writing,” Cerebral Cortex, vol. 20, no. 3,
pp. 517–523, Mar. 2010.

[52] A. Rehman and Y. Al Khalili, “Neuroanatomy, occipital lobe,” Stat-
Pearls Publishing, Treasure Island, FL, USA, 2019. [Online]. Available:
http://europepmc.org/books/NBK544320

[53] Y. Zhang, B. Qin, L. Wang, J. Chen, J. Cai, and T. Li, “Sex differences
of language abilities of preschool children with autism spectrum dis-
order and their anatomical correlation with Broca and wernicke areas,”
Frontiers Pediatrics, vol. 10, Jul. 2022, Art. no. 762621.

[54] Y. Lee, B.-Y. Park, O. James, S.-G. Kim, and H. Park, “Autism spectrum
disorder related functional connectivity changes in the language network
in children, adolescents and adults,” Frontiers Hum. Neurosci., vol. 11,
p. 418, Aug. 2017.


