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Lower Limb Activity Recognition Based on
sEMG Using Stacked Weighted Random Forest

Cheng Shen , Zhongcai Pei , Weihai Chen , Member, IEEE, Jianhua Wang ,
Xingming Wu , and Jianer Chen

Abstract— The existing surface electromyography-based
pattern recognition system (sEMG-PRS) exhibits limited
generalizability in practical applications. In this paper,
we propose a stacked weighted random forest (SWRF)
algorithm to enhance the long-term usability and user
adaptability of sEMG-PRS. First, the weighted random for-
est (WRF) is proposed to address the issue of imbalanced
performance in standard random forests (RF) caused by
randomness in sampling and feature selection. Then, the
stacking is employed to further enhance the generalizability
of WRF. Specifically, RF is utilized as the base learner,
while WRF serves as the meta-leaning layer algorithm. The
SWRF is evaluated against classical classification algo-
rithms in both online experiments and offline datasets. The
offline experiments indicate that the SWRF achieves an
average classification accuracy of 89.06%, outperforming
RF, WRF, long short-term memory (LSTM), and support
vector machine (SVM). The online experiments indicate that
SWRF outperforms the aforementioned algorithms regard-
ing long-term usability and user adaptability. We believe
that our method has significant potential for practical appli-
cation in sEMG-PRS.

Index Terms— Biomedical signal, pattern recognition,
lower limb activity, electromyography, random forest.

I. INTRODUCTION

W ITH the exacerbation of the global aging trend, there
has been a rise in the proportion of individuals expe-
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riencing mobility impairments. The lack of mobility not only
imposes burden on society and families, but also weakens the
confidence in their daily life. Lower limb activity (LLA) is an
essential daily behavior in human life, as the lower limb bears
the majority of body and serves as a foundation for robust wak-
ing ability [1]. To improve the walking ability of elderly and
mobility-impaired individuals, a vast array of intelligent lower
limb intelligent rehabilitation devices is employed. However,
due to the lack of active participation intention of the wearer,
traditional human computer interaction (HCI) based on fixed
rehabilitation modalities has limited rehabilitation effect [2].
Research indicates that active rehabilitation yields superior
outcomes compared to passive rehabilitation. For exoskeleton
robots, accurate and efficient LLA intention recognition is a
prerequisite for effective rehabilitation training, and it directly
affects the overall outcome.

Unlike the inefficient traditional HCI, the bioelectric
signal-based control approach is capable of recognizing the
wearer’s rehabilitation intention. The wearer’s intention is
appropriately integrated into passive rehabilitation, thereby
enhancing the wearer’s subjective initiative, and improve the
rehabilitation effect. The surface electromyography (sEMG)-
based pattern recognition system (sEMG-PRS) shows potential
in providing stable and effective intention recognition for
rehabilitation devices [3], [4]. The sEMG signal is formed by
the superposition of action potentials generated by all muscle
fibers on the skin surface [5]. Moreover, the sEMG signal
exhibits a low amplitude range of 0-5 mV, a frequency spec-
trum spanning from 6 to 500 Hz, and a predominant energy
distribution within the range of 10-250 Hz [6]. The sEMG-PRS
mainly includes four interrelated stages: sEMG data acqui-
sition, pre-processing, feature extraction, and classification.
Despite numerous experimental studies with good intention
recognition [7], [8], the abandonment rate of lower limb
rehabilitation devices remains high. The primary impediment
to this phenomenon lies in the gradual decline of recognition
performance exhibited by sEMG-PRS during extended periods
of clinical application. Over extended periods of use, the
performance of sEMG-PRS decreases dramatically due to
various factors such as electrode shift, limb position, muscle
fatigue, and skin sweating [9]. Furthermore, the generalization
across subjects is more complex issue due to factors such
as inter-individual differences, variations in muscle strength,
and disparities in skin organization [10]. The issue of limited
generalization leads to insufficient long-term availability and
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user adaptability of sEMG-PRS [11]. Therefore, there is an
urgent need to enhance the generalization of sEMG-PRS and
bridge the translational gap between laboratory research and
clinical applications.

Several approaches have been proposed to enhance the
generalizability of sEMG-PRS. The most intuitive approach
is to identify the optimal features with strong robustness.
Jiang et al. [12] identified the optimal feature combination of
sEMG features by searching and selecting among 50 different
options, resulting in an impressive cross-day accuracy of 91.9
% for their 11-gesture classifications. Shen et al. [13] proposed
a novel feature extraction method to diminish the influence of
limb position on sEMG-based pattern recognition. As is often
the case, reducting the dimensionality of features (including
principal components analysis and linear discriminant analy-
sis) and subsequent processing can generally lead to improved
performance [14], [15]. A potential approach for enhancing
model generalization is to ensure sufficient training time and
diverse training data from a large number of individuals, as this
can significantly improve the recognition performance of the
sEMG-PRS [16]. By incorporating a substantial amount of
disparity data, this approach enhances the comprehensiveness
of system recognition. Waris et al. [17] demonstrated that
increasing the time span of training data could improve
the robustness of the sEMG-PRS over time. However, fea-
ture selection is subjective and prone to overestimation the
results. Obtaining a substantial amount of training data is
time-consuming and unrealistic. In fact, experimental data
collection can be tedious and exhausting for individuals, and
recruiting a large number of subjects can prove extremely
challenging.

With the progress of deep learning, some studies have been
introduced to the sEMG-PRS. Transfer learning (TL) is a
widely accepted approach for addressing data scarcity while
maintaining classification accuracy. In [18], the utilization
of TL method was significantly outperformed the non-TL
method in addressing the performance degradation caused by
the instability of sEMG signals. Depth domain adaptation
(DDA) is another widely investigated approach. DDA aligns
the data distribution between source and target domains,
utilizing limited labeled target data to provide a stable and
reliable classification capacity for diverse target domains [19].
Zhang et al. [20] proposed a multi-source synchronize domain
adaptation framework that possesses both domain adaptation
and domain generalization capability. Zhai et al. [21] pro-
posed a CNN-based self-recalibrating unsupervised classifier
to achieve 78.71 % classification ability under intersession sce-
narios. Shi et al. [22] proposed a new multi-task dual-stream
supervised domain adaptation network based on convolu-
tional neural network to realize the long-term reliability and
user adaptability simultaneously. Experiments conducted on
12 non-disabled individuals have demonstrate that the pro-
posed method surpasses both convolutional neural network and
fine-tuning. Campbell et al. [23] expanded the adaptive domain
adversarial neural network (ADANN) method to cross-subject
networks. The accuracy of ADANN for intact limbs was
shown to reach 86.8 – 96.2% by three dissimilar evaluation.
These methods have the potential to enhance the cross-subject

Fig. 1. Entire frame of lower limb activity recognition sEMG-based.
First, sEMG signals are acquired and preprocessed from five muscles
in the lower limb. Second, the SWRF classifier is trained using the
extracted features. Third, the trained SWRF model is employed for
action label recognition.

and inter-session performance of the sEMG-PRS. However,
TL and DDA are implemented from the perspective of global
distribution alignment and lack semantic information on sEMG
features. Although TL reduces the need for retraining and
recalibration, a convolutional neural network still requires
a large amount of data to achieve high performance and
generalizability. Furthermore, these methods necessitate the
utilization of source data and recalibration the trained model,
which can cause inconvenience for sEMG-PRS.

In summary, despite the extensive research conducted to
enhance the generalizability of sEMG-PRS for clinical appli-
cations. Unfortunately, few studies have investigated a simple
model that exhibits both durability in long-term usage and
widespread adoption by multiple users [24], [25]. Here, this
paper proposes novel classification method, namely stacked
weighted random forest (SWRF), which is illustrated in Fig. 1.
To validate the efficacy of SWRF, we selected four commonly
lower limb activities and recruited four non-disabled subjects
to carry out the experiment for five consecutive days. An LLA
dataset was utilized to evaluate the robustness and adaptability
of SWRF. Afterward, we evaluated the SWRF’s generalization
performance in three aspects, inter-subject offline dataset,
inter-subject single-day, and subject multi-day.

The main contribution of the work is twofold. First, com-
plements the existing sEMG-PRS approach and proposes
a classification model with both long-term robustness and
multi-subject adaptability, termed SWRF. Second, a multi-
subject sEMG signal acquisition experiment is designed to
evaluate the performance of SWRF in three aspects, including
inter-subject offline dataset, inter-subject single-day, subject
multi-day. We noted that a shorter conference version of this
paper appeared in [26]. The initial conference paper online
experiments were not sufficient, and no offline dataset experi-
ments were performed. This manuscript addresses these issues
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TABLE I
DEMOGRAPHIC DATA OF THE SUBJECTS

and propose an improved approach based on the weighted
random forest presented in the conference paper.

The remainder of the paper is organized as follows. Dataset
and sEMG acquisition are presented in Section II. The pro-
posed SWRF is elaborated in Section III. The experiment
results and analysis are provided in Section IV. Finally,
conclusions are drawn in the last section.

II. DATASET AND SEMG ACQUISITION

A. Dataset Descriptions
The dataset utilized in this work was

curated by Oscar Sanchez and Jose Sotelo [27]
(http://archive.ics.uci.edu/dataset/278/emg+dataset+in+

lower+limb). The dataset contained 11 samples of subjects
with some abnormality in the knee previously diagnostic
and 11 exhibiting normality. Subjects experienced three
movements to analyze behaviors associated with knee
muscles, gait, leg extension from a seated position, and
flexion of the leg bending while performing sitting, standing
and walking tasks. The acquisition process was conducted
utilizing four electrodes (vastus medialis, biceps femoris,
semitendinosus, and rectus femoris) and knee goniometers.
This paper utilized sEMG data from 11 healthy individuals
for analysis.

B. Subjects and Lower Limb Movements
Four subjects volunteered to participate in the experiment

and the specific details are presented in Table I. None of the
subjects claimed to have any motor impairment or disability,
and each received comprehensive information regarding the
experimental procedures and associated risks. All subjects
signed an informed consent.

Rehabilitation exercises such as leg extension and bending
are commonly employed for stroke patients. Based on this
commonly used movement, we have formulated four leg
movements: sitting position (ST), raise thigh (RT), raise calf
(RC), straighten leg (SL), as illustrated in Fig. 2. Mean-
while, the sEMG are recorded form a total of five muscles
involved in movement, namely: rectus femoris (RF), vastus
medialis (VM), biceps femoris (BF), semitendinosus (SE),
and gastrocnemius (GA) [28], as illustrated in Fig. 2. Both
RF and VM muscles play a crucial role in knee extension
movement [29]. SE and BF play an important role in knee
flexion movement [30]. GA is related to the stability of
standing and walking movement of lower limbs. The position
of the sticker sensor corresponds to the muscle position. Due to
their location on the opposite side of the lower limb, VM and
BF are not depicted in Fig. 2.

Fig. 2. Four movements of the lower limb and sEMG sensors pastes
position and corresponding muscle. (a) Sitting position; (b) Raise thigh;
(c) Raise calf; (d) Straighten leg.

C. Acquisition Hardware and Acquisition Protocol
We utilized a Delsys Trigno wireless sEMG System (Delsys

Inc, USA) to record sEMG signals. The device has a 16-bit
resolution with a bandwidth of 20-4450 HZ and the baseline
noise is <1.25 µV (rms). The sampling frequency of this
equipment is 2000 Hz. The device utilizes a Bluetooth com-
munication protocol up to a 40 m communication distance.
Prior to collection, all skin is wiped with medical alcohol and
the sensor is affixed to the skin using double-sided adhesive
tape.

The primary objective of this study is to investigate the
generalization performance of classifier across subjects and
time periods. Hence, we collect sEMG data of lower limb
motions from diverse participants and distinct time points. The
participants are instructed to perform the experiment thrice
daily for five consecutive days. Each experiment consists of
five sets of movements. Each set of movement contains four
actions: ST, RT, RC, and SL. Each action is performed for a
duration of 2 seconds followed by a rest interval of 1 minute
to prevent muscle fatigue. Within 2 second of each action
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TABLE II
THE CALCULATION OF FIVE FEATURES

duration, a total of 10 consecutive samples are collected. Each
sample contains 200 sEMG data. Procedures are conducted
after the Declaration of Helsinki.

D. sEMG Processing and Features
In the data preprocessing, sEMG are band-pass filtered by

butter-worth band pass filter with forth order between 12 Hz
and 500 Hz respectively low and high cutoff. Furthermore,
a notch filter is used to remove the 50 Hz line interference [13].

sEMG cannot be directly used for training or testing
because the data fluctuates seriously and contains abundant
noise. After the pre-processing, we extract the sEMG features
which are then inputted into the classifier for training or
testing. Commonly utilized sEMG features encompass time
domain, frequency domain and time-frequency domain fea-
tures. Time domain features are widely employed due to their
superior classification performance and low computational
complexity [31]. The widely utilized features are root mean
square (RMS), mean absolute value (MAV), zero crossing
(ZC), waveform length (WL), slope scope change (SSC),
variance (VAR), mean frequency (MF). In previous work [13],
we extracted time domain descriptor (TDD) features robust to
sensor position changes to overcome the shortage of general-
izing the existing sEMG-based pattern recognition. Different
combinations of features and classifiers exhibit varying levels
of generalization performance. In this paper, we select six
features to participate in the experiment and explore the
optimal feature combination using the proposed classifier. The
five selected features are xikt Pi, j j shown in Table II, and the
other TDD feature is referred to [13].

III. METHODOLOGY

A. Random Forest and Weighted Random Forest
1) Random Forest: The decision tree, as the base learner

of RF, plays a pivotal role in RF. The decision tree can be
considered as a tree-like model consisting of root nodes, leaf

nodes, and intermediate nodes. The process of constructing the
decision tree involves the splitting of the root node, traversing
through multiple intermediate nodes, and ultimately reaching
the leaf node. Among them, nodes are regarded as various
features of the sample. The RF consists of multiple unpruned
decision trees [32]. The advantages of RF, in comparison to
other classifiers, are primarily attributed to the stochasticity
of sample selection and feature selection. The RF initially
constructs a predetermined number of decision tree classifiers.
These classifiers are then utilized to vote on the test samples.
Ultimately, the final decision is determined based on majority
dominance. The RF has two crucial parameters: the number
of trees (n_estimators) and the maximum number of selected
features (max_features). The n_estimators parameter should be
set sufficiently high and RF exhibits no overfitting tendencies
even with an increasing number of trees [31]. Furthermore, the
insensitivity of RF to the value of max_features allows us to
set the max_features as the square root of the total number of
features. The utilization of out-of-bag (OOB) samples, which
are excluded from the construction of individual decision trees,
plays a pivotal role in enhancing the performance of RF. The
individual decision tree predicts the OOB samples using the
following formula [33]:

pk(xi ) =

∑
j∈O O Bi

I [y(xi , tree j ) = k]

|O O Bi |
, (1)

where xi is the i-th observed sample in the OOB; k is the
class (binary k = 0, 1); I is an indicator, taking a value
of 1 when its parameters are true and 0 otherwise; y is the
predicted class of the i-th decision tree to xi , and O O Bi is
the sets of decision trees. For a binary classification, the OOB
prediction class is determined as 1 when p(xi ) > 0.5, and
as 0 otherwise. The establishment of RF and the estimating
of OOB probabilities can be simultaneously conducted. The
main construction process of RF is outlined as follows:

Step 1 Preparing the datasets. The original training sets
are randomly sampled with replacement to generate the new
training sets.

Step 2 Building decision tree. The building of each decision
tree involves the utilization of the new training sets, thereby
ensuring randomness. During the process of building the
decision tree, each node randomly selects features for split-
ting without pruning techniques until the specified stopping
condition is satisfied.

Step 3 Building random forest. After generating a significant
number of decision trees, a majority voting strategy is utilized
to predict new samples by aggregating the outcomes of all
trees.

2) Weighted Random Forest: The number of decision trees
utilized in RF has a significant impact, as the decision trees
cannot be modified once created. The decision trees exhibit
uneven classification performances. The weight assigned to
each decision tree in traditional RF is uniform, disregarding
the distinct performance of individual trees. When the perfor-
mance of individual decision tree classifier in RF is unequal,
it is reasonable to assign more weights to the decision tree that
ultimately yields accurate predictions. The weighting schemes
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employed in the RF are not new [34]. In previous work [26],
we employed a weighted voting approach to ascertain the
weight of each decision tree. Each decision tree is assumed to
be independent with an accuracy of p1, p2, · · · , pL , respec-
tively, in predicting OOB. The formula for obtaining pi is as
follows:

pi = 1 −
1
m

m∑
j=1

(ypre, j − yrea, j )
2, (2)

where ypre, j denotes the predicted value of the i-th decision
tree for the j-th OOB sample; yrea, j is the true value of the
j-th OOB sample; m is the number of OOB samples.

Kuncheva and Rodriguez [35] compared the weighted vot-
ing method with alternative approaches, including majority
vote, recall combiner, naive Bayes combiner. The results
indicated that the weighted voting method exhibited superior
performance. Inspired by Rodgyruez, we utilized a weighted
voting method to determine the weights of each decision tree.
The weight ωi for each decision tree is obtained using the
following formula:

ωi =
pi

n∑
i=1

pi

. (3)

The final prediction result Outi, j for each decision tree can be
obtained by a weighted voting method utilizing the following
formula,

Out j = arg max
j∈C

L∑
i=1

ωi Oi, j , (4)

where C is the number of classifications; Out j represents the
predicted value of the j-th sample; Oi, j is the predicted value
of the j-th sample of the i-th decision tree.

B. Stacked Weighted Random Forest
Stacking is an efficient framework that employs a

meta-learning algorithm to effectively integrate the predictions
of multiple base learners. Stacking generally consists of two
layers, namely the base model layer and the meta-learning
layer [36]. Specifically, stacking leverages the out-of-bag pre-
dictions of the base learner and actual labels from the training
data to construct independent and dependent variables for
the second level learning task, respectively [37]. The general
procedure for stacking is as follows. First, the initial dataset
is divided into training and testing datasets. Then, the base
learner in the base model layer generates predictions for a
subset of the training dataset. The predicted values are utilized
as additional training data to construct a new training dataset.
Finally, the new training dataset is utilized for training the
algorithmic model within the meta-learning layer. Stacking is
an ensemble method that aims to enhance accuracy by lever-
aging the optimal combination of base learners. The stacking
method has been widely employed by numerous researchers to
effectively integrate multiple models and successfully applied
in various scenarios, yielding favorable outcomes [36], [38],
[39].

Inspired by the stacking method, we further combine WRF
with stacking to propose the SWRF model. The standard
RF is utilized as the base learner, while WRF serves as the
meta-leaning layer algorithm. The RF has a robust perfor-
mance on its own. When employing the stacking, WRF assigns
more weight to the more powerful RF model, thereby enhanc-
ing the overall performance of the model. The implementation
of SWRF is as follows:

Step 1. A portion of the raw training data was employed for
training and constructing initial RF models.

Step 2. K-fold cross-validation was utilized to obtain out-
of-bag predictions for each decision tree.

Step 3. A new dataset was generated by utilizing out-of-bag
predictions as input variables and actual labels as dependent
variables.

Step 4. The WRF method was utilized to train the new
dataset obtained in Step 3, resulting in SWRF.

C. Comparing Classifier and Performance Evaluation
The four classifiers were utilized for comparison with

our proposed method, including support vector machine
(SVM) [40], standard RF, WRF [26], long short-term mem-
ory (LSTM) [41]. The basic parameters of RF, WRF and
SWRF are kept consistent to ensure a fair comparison. The
basic parameters of RF, WRF and SWRF are n_trees=100,
max_depth=5. The GridSearchCV was utilized to determine
the optimal SVM parameters in order to ensure equitable com-
parisons. The parameters of SVM are C = 1.0, kernel=‘rbf’.
Default values are selected for other unspecified parameters.
The used contrastive LSTM was sourced from [41]. The
LSTM approach contains a 2-layer CNN and 2-layer LSTM.
The initial CNN contains 32 units and the subsequent layer
contains 16 units. The initial LSTM layer contains 64 units and
the subsequent layer contains 32 units. Following each CNN
layer, subsequent layers of fully connection layer and batch
normalization layer are sequentially interconnected. Refer
to [41] for other parameters.

The machine learning-based classification system generates
four possible outcomes, true negative (TN), true positive (TP),
false negative (FN) and false positive (FP). TN and TP are the
correct predictions for positive and negative classes. FN and
FP are mispredictions for positive and negative classes. In this
paper, accuracy (Acc), precision (Pre), recall (Re) and F1-score
(F1) are utilized to evaluate the classification model [42]:

Accuracy =
T P + T N

T P + F P + T N + F N
, (5)

Precision =
T P

T P + F P
, (6)

Recall =
T P

T P + F N
, (7)

F1 − score =
2 × Precision × Recall

Precision + Recall
. (8)

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experiments Design
This section details the design of evaluation experiments

aimed at comprehensively assessing SWRF performance from
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TABLE III
ACCURACY AND PRECISION RESULTS (%) OF DIFFERENT FEATURES COMBINED WITH DIFFERENT CLASSIFIER.

SCORES IN BOLD INDICATES THE BEST

TABLE IV
RECALL AND F1-SCORE RESULTS (%) OF DIFFERENT FEATURES COMBINED WITH DIFFERENT CLASSIFIER.

SCORES IN BOLD INDICATES THE BEST

multiple perspectives. The long-term usability and user adapt-
ability of the SWRF are assessed through these experiments.
A total of four experiments are designed. The experiment is

repeated three times and the mean of the three trials is taken as
the final result. Each result is calculated using five-fold cross
validation.
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1) Feature Generalizability Estimation: In this experiment,
the generalizability of different features combinations with
various classifier was investigated. We determined the optimal
combination by investigating the classification performance
of various classifiers combined with different features using
multi-day data from a specific subject. The sEMG data of
Subject 1 (S1) were randomly selected for this experiment.
The model was trained using data obtained from S1 on the
first day. The model was validated using data obtained from
S1 on other time periods.

2) Offline Estimation on Inter-Subject: In this experiment,
the generalizability of the classifier was investigated on the
dataset. Data from the first subject were randomly selected to
train the model. Data from other subjects was utilized to test
the model. Results were shown as the mean of the five test
results.

3) Multi-Day Estimation on a Subject: This experiment
aimed to evaluate the long-term robustness of the classifier
within the same subject. In this case, the training and testing
data belonged to the same person at different times. The model
was trained using data collected from a subject on the first day.
Data from subsequent time points of the same subjects were
utilized to validate the model.

4) Single-Day Estimation on Inter-Subject: This experiment
aimed to assess the robustness of the classifier across subjects
with in the same day. In this case, the training and testing
data belonged to different individuals within the same day.
The model was trained using data from a subject on a specific
day. Data from other subjects in the same day were utilized
to test the model.

B. Results of Feature Generalizability Estimation
In this scenario, the sEMG data was obtained from the same

individual at different time. Thus, variations in sEMG signals
mainly arisen from muscle fatigue, electrode displacement,
and peripheral muscle crosstalk within the same subject.
Tables III and IV shows the quantitative results for different
feature combinations with classifiers. The SVM classification
accuracy exhibited a ranged of 48.6 % to 98.87 % over
5 days. The combination of SVM and MAV yielded the lowest
accuracy on the third day. The combination of SVM and
MF yielded the highest accuracy on the fourth day. The RF
classification accuracy exhibited a ranged of 74.48 % to 98.62
% over 5 days. The combination of RF and MF yielded the
lowest accuracy on the third day. The combination of RF and
TDD yielded the highest accuracy on the first day. The WRF
classification accuracy exhibited a ranged of 75.64 % to 98.74
% over 5 days. The combination of WRF and MF yielded the
lowest accuracy on the third day. The combination of WRF and
TDD yielded the highest accuracy on the first day. The SWRF
classification accuracy exhibited a ranged of 76.27 % to 98.99
% over 5 days. The combination of SWRF and MF yielded the
lowest accuracy on the third day. The combination of SWRF
and TDD yielded the highest accuracy on the fourth day. It was
evident that all four classifiers achieved the lowest accuracy
on the third day, conversely, the remaining accuracies were
significantly higher than those of the third day. The subject’s

Fig. 3. The quantification calculation results of different classifiers on
the dataset.

poor adaptation and adjustment to the collection of sEMG data
on the third day is a matter of speculation.

Furthermore, the highest mean result achieved over 5 days
of SVM was for the combination of SVM and MF (Acc:
80.63 %; Pre: 82.21 %; Re: 80.63 %; F1: 79.82 %). The
highest mean result achieved over 5 days of RF was for the
combination of RF and TDD (Acc: 97.35 %; Pre: 97.71 %;
Re: 97.35 %; F1: 97.33 %). The highest mean result achieved
over 5 days of WRF was for the combination of WRF and
TDD (Acc: 97.28 %; Pre: 97.56 %; Re: 97.28 %; F1: 97.27
%). The highest mean result achieved over 5 days of SWRF
was for the combination of SWRF and TDD (Acc: 97.78
%; Pre: 98.02 %; Re: 97.78 %; F1: 97.78 %). As observed,
TDD achieved the highest average classification results in RF,
WRF, and SWRF, while ranking second in terms of average
classification results in SVM. These results validated that the
TDD had significant robustness to time variation. Thereby,
the TDD feature was utilized for calculation in subsequent
experiments.

Although differences of sEMG signals observed in this
experiment cannot include all the influencing factors, the
same individual exhibits a high level of representation across
different time. Similar results were also obtained through
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combined feature and classifier experiments conducted on
different individuals within the same day.

C. Results of Offline Estimation on Inter-Subject
In this scenario, the sEMG data was obtained from various

individuals within the dataset. Thus, variations in sEMG
signals mainly arisen from individual variability. The training
data was selected from S1, while the testing data was chosen
from other subjects. All calculations utilize the TDD feature.
Fig. 3 shows the quantification calculation results of different
classifiers on the dataset. It can be observed that the robustness
of LSTM is poor and the classification accuracy fluctuates
more obviously. The LSTM exhibited the lowest classification
accuracy of 34.78 % in S4. The classification accuracy of
SVM exhibited substantial fluctuations. The SVM exhibited
the highest classification accuracy of 98.46 % among all
algorithms at S10 and the lowest classification accuracy of
76.39 % at S4. The RF, WRF and SWRF have relatively stable
classification accuracy. The RF achieved the lowest classifica-
tion accuracy of 77.64 % in S6. The WRF achieved the lowest
classification accuracy of 79.22 % in S6. The SWRF achieved
the lowest classification accuracy of 79.51 % in S6. Due
to inter-individual variability, the application of sEMG-PRS
to a large population is challenging, as evidenced by this
offline experiment. S4 and S6 had poor classification accuracy,
illustrating that S4 and S6 were significantly different from S1.

Furthermore, the average result achieved by LSTM in all
subjects were Acc: 56.40 %, Pre: 54.43 %, Re:59.39 %, F1:
50.09 %. The average result achieved by SVM in all subjects
were Acc: 86.89 %, Pre: 88.34 %, Re:86.89 %, F1: 85.84
%. The average result achieved by RF in all subjects were
Acc: 86.75 %, Pre: 87.82 %, Re:86.75 %, F1: 86.32 %. The
average result achieved by WRF in all subjects were Acc:
87.35 %, Pre: 88.84 %, Re:87.35 %, F1: 87.06 %. The average
result achieved by SWRF in all subjects were Acc: 89.06
%, Pre: 90.05 %, Re:89.06 %, F1: 88.65 %. As observed,
SWRF attains the highest mean classification accuracy among
all algorithms, reaching 89.06 %.

D. Results of Multi-Day Estimation on a Subject
Table V shows the quantification calculation results over

5 days for different subjects, respectively. All five subjects
utilized the data from the first day to train the model, while
data from the subsequent four days were employed for testing.
For Subject 1). SWRF achieved the highest average result
among all algorithms (Acc: 97.58 %; Pre: 97.85 %; Re: 97.58
%; F1: 97.57 %.). Compared to WRF, RF, SVM and LSTM,
the average accuracy rate was increased by 0.78 %, 1.32 %,
17.61% and 24.49 %, respectively. For Subject 2). SWRF
achieved the highest average result among all algorithms
(Acc: 96.94 %; Pre: 97.10 %; Re: 96.94 %; F1: 96.95 %.).
Compared to WRF, RF, SVM and LSTM, the average accuracy
rate was increased by 0.53 %, 0.63 %, 13.65 % and 28.64
%, respectively. For Subject 3). SWRF achieved the highest
average result among all algorithms (Acc: 98.74 %; Pre: 98.88
%; Re: 98.74 %; F1: 98.74 %.). Compared to WRF, RF,
SVM and LSTM, the average accuracy rate was increased

by 0.30%, 0.81 %, 15.77 % and 33.53 %, respectively. For
Subject 4). SWRF achieved the highest average result among
all algorithms (Acc: 96.49 %; Pre: 96.89 %; Re: 96.49 %;
F1: 96.52 %.). Compared to WRF, RF, SVM and LSTM, the
average accuracy rate was increased by 0.79 %, 0.68 %, 7.82
% and 30.44 %, respectively.

From the results, SWRF achieved the highest mean classi-
fication accuracy across all subjects over 5 days and exhibited
significant long-term usability. Compared with WRF, RF, SVM
and LSTM, SWRF improved classification accuracy by an
average of 0.60 %, 0.86 %, 13.71 %, 29.28 % across all
subjects, respectively.

E. Results of Single-Day Estimation on Inter-Subject
Table VI shows the quantification calculation results on

inter-subject for a single day. The S1 data were utilized to
train the model and other subject data were utilized for testing.
For Day 1). SWRF achieved the highest average result among
all algorithms (Acc: 99.21 %; Pre: 99.31 %; Re: 99.21 %;
F1: 99.21 %.). Compared to WRF, RF, SVM and LSTM, the
average accuracy rate was increased by 0.19 %, 0.51 %, 6.22
% and 42.33 %, respectively. For Day 2). SWRF achieved the
highest average result among all algorithms (Acc: 98.17 %;
Pre: 98.34 %; Re:98.17 %; F1: 98.17 %.). Compared to WRF,
RF, SVM and LSTM, the average accuracy rate was increased
by 0.16%, 0.38 %, 15.89 % and 29.02 %, respectively. For
Day 3). SWRF achieved the highest average result among
all algorithms (Acc: 93.88 %; Pre: 94.47 %; Re:93.88 %;
F1: 93.91 %.). Compared to WRF, RF, SVM and LSTM,
the average accuracy rate was increased by 0.54 %, 1.69
%, 12.48% and 48.17 %, respectively. For Day 4). SWRF
achieved the highest average result among all algorithms (Acc:
97.79 %; Pre: 97.99 %; Re:97.79 %; F1: 97.80 %.). Compared
to WRF, RF, SVM and LSTM, the average accuracy rate
was increased by 0.35 %, 1.02 %, 19.24% and 29.23 %,
respectively. For Day 5). SWRF achieved the highest average
result among all algorithms (Acc: 97.73 %; Pre: 97.89 %;
Re:97.73 %; F1: 97.72 %.). Compared to WRF, RF, SVM and
LSTM, the average accuracy rate was increased by 0.54 %,
0.91 %, 13.23% and 28.95 %, respectively.

From the results, SWRF achieved the highest average recog-
nition accuracy across all days among subjects and exhibited
significant user adaptability. Compared to WRF, RF, SVM
and LSTM, SWRF improved classification accuracy by an
average of 0.36 %, 0.90 %, 13.41 %, 35.54 % across all days,
respectively.

F. Further Analysis on SWRF Algorithm
The analysis of model allows us to gain valuable insights

into its areas of expertise and challenges, thereby facilitating
future enhancements in its performance. Fig. 10 shows the
confusion matrix plots of the five algorithms. The model was
trained using the data from the first day of subject 1, and
all algorithm were tested with the data from the fifth day
of subject1. The average accuracy of all models, as indi-
cated by the confusion matrix result plot, closely aligned
with the data presented in Table V. The SWRF achieved
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TABLE VI
QUANTITATIVE RESULTS (%) OF INTER-SUBJECT FOR A SINGLE DAY. SCORES IN BOLD INDICATES THE BEST.S M-DAY N DENOTES THE

EXPERIMENT FOR THE M-TH SUBJECT ON DAY N

outstanding classification performance on various actions, yet
exhibits subpar performance specifically on RC actions. Other
algorithms had achieved similar results. It indicated that RC
actions were easily confused and difficult to distinguish. The
RC was the calf raising action, which was similar to the
SL. The action became SL when the angle of calf lift was
sufficiently large. We observed that the calf lift angle exhibited
considerable variability during the execution of the RC action.
The angle may occasionally exceed the optimal range, while
at other times it may fall short. Subsequently, the accuracy
of the model in recognizing RC action can be enhanced by

incorporating additional means to differentiate this action, such
as integrating more sensors or detecting muscles that are more
representative.

The performance of the SWRF model is also influenced
by the training set. Theoretically, the model’s generalization
can be improved by incorporating a diverse range of training
sets and increasing the volume of data. Table VII shows the
test comparison results of SVM and SWRF in the case of
increasing the training set of days. The training and testing
data were both sourced from subject 1. The data obtained
from the fifth day was utilized for testing. The training data
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Fig. 4. Confusion matrices for the five algorithms.

TABLE VII
CLASSIFICATION PERFORMANCE WITH VARIED TRAINING SETS (TS)

ON THE SAME TEST SET

TABLE VIII
CLASSIFICATION PERFORMANCE WITH VARIED TRAINING SETS (TS)

ON THE SAME TEST SET

consisted of day 1 (D1), day 1 and day 2 (D1+D2), day
3 and day 4 (D3+D4), as well as the combination of day 1,
day 2, and day 3 (D1+D2+D3). The model’s performance
was observed to improve with an increase in the richness
of the training set, as shown in Table VII. Table VIII shows
the test comparison results of SVM and SWRF in the case
of increasing the training set of subjects. The training and
testing data were both sourced from day 3. The data obtained
from the subject 4 was utilized for testing. The training data
consisted of subject 1 (S1), subject 1 and subject 2 (S1+S2),
subject 2 and subject 3 (S2+S3), as well as the combination of
subject 1, subject 2, and subject 3 (S1+S2+S3). The model’s
performance was observed to improve as the training set
became more enriched, as shown in Table VIII. Subsequently,
the model performance can be improved by enhancing the
diversity and quality of the training sets.

V. CONCLUSION

The SWRF algorithm is proposed in this paper to enhance
the long-term usability and user adaptability of sEMG-PRS.
The standard RF is utilized as the base learner, while WRF
serves as the meta-leaning layer algorithm. The offline datasets
are utilized to evaluate the SWRF. The offline experimen-
tal results demonstrate that the SWRF outperforms classical
classification algorithms, exhibiting an average classification
accuracy of 89.06 % (LSTM: 56.40%; SVM: 86.89%; RF:
86.75%; WRF: 87.35%). Moreover, two online experiments
are conducted to evaluate the performance of SWRF: single-
day on inter-subject and multi-day on a subject. The results
of single-day on inter-subject online experiment indicate that
the SWRF achieves the highest mean classification accuracy
across all subjects over 5 days and exhibits significant long-
term usability. Compared with WRF, RF, SVM and LSTM,
SWRF improves classification accuracy by an average of 0.60
%, 0.86 %, 13.71 %, 29.28 % across all subjects, respectively.
The results of multi-day on a subject online experiment
indicate that the SWRF achieves the highest average recog-
nition accuracy across all days among subjects and exhibits
significant user adaptability. Compared to WRF, RF, SVM
and LSTM, SWRF improves classification accuracy by an
average of 0.36 %, 0.90 %, 13.41 %, 35.54 % across all days,
respectively.

The RF demonstrates strong performance on its own. When
employing the stacking, WRF assigns more weight to the
more powerful RF model, thereby enhancing the overall per-
formance of the algorithm. By conducting an analysis of the
SWRF model, we can implement optimization measures to
enhance its weak feature recognition capability, thereby further
optimize the SWRF algorithm. Additionally, the performance
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of the SWRF can be further improved by enhancing the
diversity and quality of the training sets.
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