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Multi-Action Knee Contact Force Prediction
by Domain Adaptation

Iliana Loi , Evangelia I. Zacharaki , and Konstantinos Moustakas , Senior Member, IEEE

Abstract— Most recent musculoskeletal dynamics esti-
mation methods are designed for predefined actions, such
as gait, and don’t generalize to various tasks. In this work,
we address the problem of estimating internal biomechan-
ical forces during more than one actions by introducing
unsupervised domain adaptation into a deep learning
model. More specifically, we developed a Bidirectional Long
Short-Term Memory network for knee contact force predic-
tion, enhanced with correlation alignment layers, in order
to minimize the domain shift between kinematic data from
different actions. Furthermore, we used the novel Neural
State Machine (NSM) as a simulation platform to test and
visualize our model predictions in a wide range of trajecto-
ries adapted to different 3D scene geometries in real-time.
We conducted multiple experiments, including compari-
son with previous models, model alignment across action
classes and real-to-synthetic data alignment. The results
showed that the proposed deep learning architecture with
domain adaptation performs better than the benchmark in
terms of NRMSE and t-test. Overall, our method is capable
of predicting knee contact forces for more than one action
classes using a single architecture and thereby opens the
path for estimating internal forces for intermediate actions,
while the knowledge of the hidden state of motion may be
used to support personalized rehabilitation. Moreover, our
model can be easily integrated into any human motion sim-
ulation environment, which shows its potential in enabling
biomechanical analysis in an automated and computation-
ally efficient way.

Index Terms— Deep learning, domain adaptation, force
prediction, BiLSTM, neural state machine, musculoskeletal
modeling.

I. INTRODUCTION

COMPUTATIONAL methods that simulate human loco-
motion along with the internal state of the musculoskele-

tal system can be essential for creating personalized reha-
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bilitation plans [1], developing clinical assessment tools [2],
monitoring the movement of a patient post-operationally [3],
etc. The performance of experiments simulating realistic
conditions requires solving for a variety of environmental con-
straints accounting for interactions of the digital human with
the 3D scene. Although, significant progress has been made in
computer graphics research to create, with the help of machine
learning (ML) or/and deep learning (DL), visually-realistic
animations of digital human-scene interactions in real-time [4],
such state-of-the-art simulation platforms have not been suffi-
ciently exploited in human biomechanics research to improve
performance and robustness of the simulators and to allow for
a plurality of experiments under realistic conditions.

Some efforts towards this direction have recently been
made to utilize simulation outcomes from musculoskeletal
modeling techniques [5], [6] in order to train ML/DL surrogate
models that can help improve the performance of physics-
based simulators, especially in human biomechanical function
estimation. In particular, many recent data-driven approaches
focus on ML-based force prediction including the estimation
of internal forces (i.e. knee contact forces) during a specific
action, and usually this action being gait [5], [7]. It should be
mentioned that there are works that produce force estimations
for various movements [8], [9], by re-training their models
with kinematics and/or dynamic data from different actions,
but are not offering any generalization potential to more than
one actions within a single framework. More importantly, the
utilized kinematic data are usually obtained through measure-
ments or computations in simplified environments with limited
human-scene interactions.

To address those limitations, we exploit a novel deep
auto-regressive framework, the NSM [4], as a generator
of multi-action synthetic motion. NSM allows to simulate
goal-driven human locomotion with periodic and non-periodic
motions and precise 3D scene interactions. Our aim was
to integrate into such an advanced digital human motion
simulation environment, a new methodology that estimates
internal biomechanical forces, i.e. knee contact forces (KCF),
during different tasks.

In particular, we developed a Bidirectional Long Short-Term
Memory (BiLSTM) network that minimizes the domain shift
between experimental data from different movements, aiming
to provide an insight into the internal body state while gen-
eralizing to more than one actions simultaneously. For that
purpose, our BiLSTM model is enriched with an unsuper-
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vised domain adaptation layer, called CORAL (COrellation
ALignment) [10], that can be used for online estimation of
forces also during action transitions. Moreover, the knowledge
of the hidden states of a personalized digital human model
may be potentially useful for rehabilitation purposes, such as
post-surgery locomotion simulation.

In order to evaluate the effectiveness of our method to pro-
duce real-time predictions, we trained the proposed BiLSTM
architecture on experimental data of two representative action
classes (multi-speed gait and sit-to-stand) and integrated the
trained models in the NSM environment for testing. Since
NSM provides a versatility of kinematic data with various
scene interaction tasks, our approach is easily extendable to
other action classes, beyond gait and sit-to-stand (STS), given
training data availability. Overall, our main contributions are
summarized as follows:

• We implemented a BiLSTM model for simulating inter-
nal biomechanical forces during two tasks by applying
unsupervised domain adaptation, i.e. the CORAL method.
We show that by minimizing the domain shift between
experimental data from different movements, the model
may generalize also in new similar actions for which it
wasn’t originally trained.

• By estimating knee contact forces for more than one
actions within a single modeling framework, we provide
a solution to the prediction of forces for intermediate
actions (movement transition) that usually require more
complex architectures.

• We integrate our model into the NSM environment and
assess its capability to produce real-time predictions. The
augmentation of NSM with joint forces’ prediction allows
to enhance the 3D virtual character with realistic physics-
based functionalities.

II. RELATED WORK

A. Force Estimation by Machine Learning
Recently, researchers have turned to data-driven (machine

learning) approaches for estimating human biomechanics,
since they are more automated, require less parameterization
and manual effort, and offer real-time solutions as well.
Most works develop surrogate models for force estimation
or prediction that focus on estimating medial and lateral
knee contact (KC) forces [5], [7], [8], [9] or muscle forces
in lower extremities [5], [9], [11] using a plethora of DL
techniques, such as ANNs [7], [8], RNNs, fully-connected
neural networks [9], and CNNs [5], [9], or ML algorithms,
such as principal component regression (i.e. a regression
analysis based on PCA) [9].

In respect to application field, ML-based solutions focus
mainly in estimating tibiofemoral load data during gait [5],
[7], [9], [11], sit-to-stand [9] or more rarely sport move-
ments [8]. Models were trained using raw data (marker motion
data, ground reaction forces (GRFs), muscle electromyography
(EMG), IMU signals) as well as derivative data from muscu-
loskeletal analyses (e.g. KCFs). The models were validated
by comparing the networks’ estimations with musculoskeletal
modeling calculations [5] and/or data from publicly available
databases (e.g. Grand Challenge Competition [12]). Some

works such as [7] examined whether GRFs affect the esti-
mation capability of the models, and concluded that in the
performed experiments, the knee loads estimated by omitting
GRFs were similar to the ones produced when trained with
GRFs.

All the aforementioned data-driven approaches focus on
estimating joint or muscle forces during a specific movement
(e.g. gait, squatting) or train different models to predict con-
tact forces during more than one actions. Thus, they lack a
mechanism that allows them to adapt the same model during
the transition from one action class to another. Addressing the
domain shift is the main differentiation of our current work,
which envisions in the long-term to adapt predictions while
performing different actions in real time.

B. Domain Adaptation
Domain adaptation is a subcategory of transfer learning

that addresses the problem of knowledge transfer between
two or more related domains with different distributions,
by learning domain-invariant models from data [13]. There
are several domain adaptation techniques. Domain masks [14],
[15] are utilized to enhance the performance of DL models by
distinguishing domain-specific features from features that can
be shared across domains. Another domain adaptation method
is to apply a linear transformation to each domain to project the
features to a common space [15], [16]. Such domain adaptation
methods were used in [17] and [18] in order to minimize the
domain shift between the distributions of the kinematic data
obtained from different subjects and consequently enhance
the inter-subject accuracy of the proposed neural network.
Specifically, in [17] a regression-supervised domain adaptation
framework was developed to estimate EMG-based wrist kine-
matics from different subjects. In [18] a supervised domain
adaptation technique was utilized as the input layer of a
recurrent neural network (RNN) in order to linearly transform
the input features and, thus, solve the domain shift during
inter-subject gesture recognition based on EMG signals.

However, domain adaptation techniques that are supervised
as the aforementioned ones, cannot be applied in cases where
one of the two related domains lacks labeled samples [10]. The
latter case is quite common and necessitates the development
of unsupervised domain adaptation methods. One approach is
to learn a domain invariant subspace using both labeled source
data and pseudo-labeled target data [19]. To reduce error accu-
mulation during learning due to inaccurate pseudo-labeling,
a selective pseudo-labeling strategy was proposed [19] based
on unsupervised clustering analysis by exploring the structural
information underlying the target domain. Other unsupervised
domain adaptation techniques include domain distribution
alignment [10] and matrix rank embedding to promote both
feature discriminability and transferability [20]. A lot of
state-of-the art works fall in this category such as [21],
[22], [23], [24], and [25]. In [21] an adversarial domain
adaptation network was created for Electroencephalogram
(EEG) classification, which both aligns the marginal distri-
butions of different domains and aims for decreasing the
sub-domain shift. Unsupervised domain alignment was also
used in [22] for deep sleep staging, while an adversarial
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Fig. 1. A general overview of our BiLSTM architecture. Initially, we train our model with the source dataset xS
t and without using the CORAL layers

(Model A). Subsequently, we re-train our model (Model B) using a pair of vectors xS
t , x

T
t measured at the current time frame t, using the same

source dataset (xS
t ) as during initial training. During re-training, we freeze the first two pre-trained BiLSTM layers in order to use them as feature

extractors and we re-train the last two as well as a fully connected layer that acts as our predictor. Each domain adaptation layer (CORAL layer)
produces a D∗

s vector that consists of the transformed source features.

domain-adaptive technique was developed in [23] to detect
fall events of elderly patients using sensors during different
device placement and configuration scenarios. Finally, in [24]
an unsupervised domain adaptation method combined with a
self-guided adaptive sampling scheme was used to account for
instantaneous domain shift during classifier updates. The latter
enhances the EMG feature learning across subjects during
gesture recognition.

In this work, we performed unsupervised domain adaptation
based on correlation alignment [10] in order to minimize
the domain shift between experimental data stemming from
different actions. Our model may be easily integrated into any
motion synthesis framework, since CORAL is unsupervised,
avoiding the need for labeled data in the target domain.
More details on our implementation of domain adaptation are
provided in section III-A.

III. METHODS

A. Unsupervised Domain Adaptation
Considering that our target domain data is unlabeled (no

KCFs provided), we introduce in our modeling framework
an unsupervised domain adaptation technique, in order to
enable the estimation of contact forces concurrently with
motion synthesis in any virtual environment, like the NSM.
Let’s assume that the dataset in the source domain contains
nS labeled samples and is denoted with DS = (xS

i , yS
i )

nS
i=1,

where x s
i ∈ Rd is the feature vector of sample i (d is the

number of input variables) with corresponding label yS
i . The

dataset in the target domain, DT = (xT
j )

nT

j=1
, consists of

nT unlabeled samples with same number of input variables,
xT

j ∈ Rd [13], [19].
We used CORAL, an unsupervised domain adaptation

method [10], to align the distributions of the source and target
domain. This is performed by computing the covariance of the
source and target features and linearly transforming the source
data [10], which can be mathematically formulated as:

CS = cov(DS) + HS

CT = cov(DT ) + HT

A = C
−1
2

S ∗ C
1
2
T

D∗

S = DS ∗ A (1)

where cov(DS) and cov(DT ) are the covariances of the
domain and target features, respectively. HS is a diagonal
matrix with a small regularization parameter λ on its diagonal
elements, which is set to 1. This is added to the covariance
matrix of the source, to make it explicitly full rank. Matrix
HT is the same matrix as Hs but with its second dimension
corresponding to the second dimension of the target matrix,
DT . By applying a linear transformation A to the original
source features, the distance between the covariances of the
source and target domain is minimized. We used the following
(Eq. 2) residual distance as an evaluation measure of the
effectiveness of the introduced CORAL layer:

E = ∥C Ŝ − CT ∥
2
F = ∥AT CS A − CT ∥

2
F (2)

where C Ŝ is the covariance of the transformed source features,
D∗

s [10].
We developed CORAL as a custom layer using functional

Keras API [26]. Similarly to other works [10], [15], our
BiLSTM network is used as a representation learner, while the
CORAL layers are introduced to align the extracted features,
as illustrated in Fig.1 (Model B). We initially train our model
using available motion capture data without the CORAL
(Model A in Fig.1). Then, we introduce domain adaptation
as the last two layers of our architecture and we re-train our
model using the same (as in Model A) source data and a
different dataset as the target. The domain shift can be due
differences in movement pattern (action) or differences in
the data generation process (real or synthetic). The different
evaluation scenarios are described in section V.

B. Deep Learning Models
1) BiLSTM for Knee Contact Force Prediction: BiLSTM was

introduced in [27] and it is an extension of the LSTM archi-
tecture that consists of an RNN with two parallel sequences of
forward and backward feedback connections, used to remem-
ber previously parsed data and to prevent them from gradually
vanishing during training. In this way, the model is exposed to
both past and future information with respect to a specific time
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frame, which results in producing more accurate predictions
than unidirectional LSTMs [27], [28].

In this work, we developed a deep BiLSTM network to
predict medial and lateral knee contact forces based on human
kinematics data. By the term “deep” we refer to a stacked
BiLSTM architecture where the output of each BiLSTM
hidden layer will be the input to the next BiLSTM hidden layer
(Figure 1). As suggested by recent publications [29], [30], the
stacked layered approach is considered to have better perfor-
mance compared to single-layer approaches, since a plethora
of hidden layers achieves higher levels of representations of
time sequence data [29] and, hence its more useful for time
series prediction as the problem discussed in this publication.

Our baseline BiLSTM network (Model A) consists of 4 BiL-
STM layers, each containing 128 units, and a fully connected
dense layer as the final layer producing 5 outputs - as many
as the KCFs components we wish to predict. This architec-
ture was designed based on experiments which showed that
2 or 3 BiLSTM layers are too few and produce high error
values, while 5 or more result in almost identical results
with our current 4-BiLSTM layer architecture. Fewer layers
account for the use of less computational resources, hence
less training time. As for the hyperparameters, each layer has a
Rectified Linear Unit (ReLU) activation function. The adaptive
moment estimation (Adam) [31] optimizer was utilized with a
learning rate of 0.001, to ameliorate the problem of gradient
descent getting stuck at local minima during training, and
to accelerate the convergence of the learning process [30].
The model was trained over 30 epochs with a batch size of
32 and converged after approximately 15 epochs. Moreover,
the early stopping method was used to prevent the model from
over-fitting. Table I provides a comparison between different
hyperparameter values for our baseline BiLSTM (Model A)
in terms of Normalised Root Mean Square Error during gait
action. Smaller batch size lets the model process the training
dataset in smaller portions at a time, while more epochs aid
in exposing the model to the same data for more iterations,
thus leading to better convergence and accuracy. As for the
learning rate, which determines how often the model’s weights
are updated, it is observed from Table I that the default value
of 0.001 offers a slight boost in performance. The BiLSTM
model was developed and trained in Python Keras.

The input to our final model (Model B) is a pair of vectors
xS

t , xT
t , where xS

t is the source input vector and xT
t is the

target input vector. Each instance of source xS
t ∈ R2 and target

xT
t ∈ R2 input data that our model parses is a two-dimensional

vector with dimensions [t, k], where k is the number of joint
angles measured at the current time frame t . As for the output,
each instance of our source output data is a 2D vector as
well, ŷS

t ∈ R2 with dimensions [t, l], that consists of the
knee joint forces that our model predicts. In our case, each
input vector will contain 8 joint angles, as much as the virtual
avatar used for visualizing NSM’s results has, and each output
vector will have 5 KCFs. However, every LSTM, as well as
a BiLSTM model has a 3D input of dimensions [N , n, f ]

where N is the number of samples (subjects) parsed by the
model at each iteration (i.e. during training N = batchsi ze,
whereas N = 1 during inference), n is the number of time

TABLE I
HYPERPARAMETERS COMPARISON FOR OUR BILSTM (MODEL A)

MODEL IN TERMS OF NRMSE DURING GAIT MOVEMENT

steps that the model predicts and f is the number of input
features, thus, our input is reshaped accordingly. Moreover, the
source features produced by the first two BiLSTM layers of
our model are introduced to the CORAL layers, which produce
the transformed features D∗

s , a vector of dimensions [t, k].
For the BiLSTM layers of Model B, the same hyperparam-

eters as Model A were used, i.e. 128-unit layers with ReLU
activation function and Adam with 0.001 learning rate as the
optimizer. Moreover, re-training was set to 20 epochs with
32 batch size. During training, the model was evaluated using
the 3-fold-cross-validation scheme across all N subjects (also
known as the leave-subject-out evaluation method), meaning
that all instances in our dataset are split into 3 folds where the
2
3 are used as training data and the remaining 1

3 as test data.
This process is repeated until each and every fold appears
in the test data. An average prediction accuracy was then
computed from the results of the three folds.

2) Artificial Neural Network Model (ANN_2): For compari-
son to the proposed BiLSTM architecture, we implemented
a feed-forward ANN model (as an extension of previous
work [7]) and trained it to predict KCFs beyond gait motion.
This new ANN, which we will be referring to as ANN_2 [32],
has 3 hidden layers instead of 2 and fewer neurons at each
hidden layer than the original ANN [7], namely 121 instead
of 400. Some network hyperparameters were also modified,
i.e. the batch size was set to 256 and the learning rate to
0.0001, and the use of biases was enabled. The network was
trained and tested in Python Keras [26]. During training only
joint angle measurements were used and GRFs. Similarly
to BiLSTM, the ANN_2 model was evaluated with 3-fold
cross-validation across all subjects (n = 54 for gait and n =

19 for the STS human motion capture dataset). More details
regarding the utilized datasets will be provided in Section IV.

C. A Deep Auto-Regressive Model - The Neural
State Machine

NSM [4] is a deep auto-regressive algorithm for goal-driven
prediction of a virtual character’s motion and interaction with
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Fig. 2. Schematic diagram of our KCF prediction framework within the
NSM [4]. From the output of NSM, the virtual character’s predicted pose,
xt+1 (i.e. joint angles) is given as input to our BiLSTM (Model B) model
to estimate KCFs ŷt+1 at the subsequent frame t + 1.

scene objects in real time. As illustrated in Fig. 2, NSM
consists of two machine learning networks; i) the motion
prediction network consisting of a prediction and an encoder
module, which synthesizes the virtual character’s pose in the
current and future time frames based on the user’s control
signals and the character’s state (input X t , at time frame t ,
i.e. the character’s pose, trajectory data, goal position and
orientation, action at the goal, the interaction scene geometry,
etc.) and ii) the gating network, a fully connected network
that is responsible for the transition between different action
classes based on a subset of parameters of the current input,
At ⊆ X t . Overall, NSM takes as input the character’s pose,
trajectory, and goal data from the current frame t , and predicts
those parameters for the next frame t + 1. Furthermore, this
model enables the generation of various action classes - walk,
run, sit, open, carry, climb, and idle - while supporting the
automatic transition between them like sit-to-idle [4].

In this work, we integrated our BiLSTM architecture (more
specifically Model B) to the NSM in order to perform real-time
knee contact force prediction simultaneously with motion
prediction, as illustrated in Fig. 2. More specifically, a subset
of parameters from the output of NSM, i.e. the character’s
pose (predicted joint angles) are introduced to our BiLSTM
(i.e. Model B) architecture in order to predict KCFs. We inte-
grated our enhanced model (Model B) into NSM, rather than
our baseline model (Model A), because the synthetic data
produced by NSM follow a different distribution than the
experimental data being available for model training. Another
issue was that NSM does not provide force predictions and
so we could not train a network solely on synthetic data
from NSM. Consequently, before incorporating our model
into NSM, we re-trained our network using real (human
experimental) data as source and synthetic (virtual data from
NSM) as target, minimizing the domain shift. The estimated
KCFs are displayed in real-time in the NSM environment for
visual assessment.

IV. DATASETS

A. Gait of Variable Speed
The experimental gait dataset was obtained from previous

work [7] and it contains gait data of 54 healthy subjects both
young (mean age 22 years) and older (mean age 69.6 years)
who were asked to perform gait trials of variable speed, i.e.
speed increasing from 3 to 7 km/h, with an increment of
1 km/h and monitored with a 10-camera VICON system.
The overall dataset consists of 4874 gait trials. The trajectory

of 42 markers was recorded, which were placed on specific
anatomical landmarks of the subjects’ body, in order to capture
the motion of the lumbar, hip, knee, ankle, and pelvis.

Since this experimental dataset contains physics-based sim-
ulations of body forces, it can be used as ground truth for
training our BiLSTM model. However, the trained model
cannot be directly applied in a virtual environment such as
the one of NSM due to potential differences in the input data
distributions. In order to mitigate the domain shift through
domain adaptation, the target data space had to be determined.
For this purpose, we created a synthetic gait dataset in the
virtual environment by monitoring the movement of the virtual
avatar in the NSM, while performing gait trials of various
speeds in real-time. More specifically, the joint angles of the
3D character were recorded using C++ scripts, and the data
were stored in Excel files. During this process, we provided
user signals (goals) that would lead the 3D character only to
the gait state avoiding transitions to other states.

As for the pre-processing, the KCFs were calculated through
musculoskeletal modeling. Specifically, the markers’ spatial
trajectories and GRFs were used to extract joint kinemat-
ics (angles) and KCFs through musculoskeletal modeling
processes carried out in OpenSim [33]. Through this pro-
cess, joint angles for lumbar extension/bending/rotation, hip
flexion/adduction/rotation, pelvis tilt/list/rotation, knee angle,
patella-knee-angle, ankle angle, and subtalar angle are com-
puted, as well as six components of medial and lateral KCFs.
Subsequently, these data are being transformed to dataframe
format using Python Data Analysis Library (Pandas) [34].

In other words, our input data are stored in a 2D vector of
dimensions [Mg ·Wg, kg], where Mg is the number of trials for
all subjects, Wg , is the duration of each input gait instance and
kg = 13 is the number of joint angles. Likewise, our output
is a 2D vector of dimensions [Mg · Wg, lg], where lg = 5 is
the number of KCFs. In particular, as we mentioned earlier,
we computed three medial (in the x , y and z axes) and three
lateral (in the x , y and z axes) knee contact force components,
but we consider only two lateral forces, since the lateral
force in the x-axis, is practically negligible, thus, resulting
in 5 KCFs in total. All time series are synchronized by resam-
pling in order to have the same duration which is essential
for temporal pattern comparison in time series forecasting
problems.

Before introducing the data to our network we omit vari-
ables whose standard deviation is less than 10−6, as well as the
patella-knee-angle, subtalar angle, lumbar extension, lumbar
bending and lumbar rotation, since there is no correspondence
for these two joints with the skeletal avatar of NSM. These
variables are not included in the contact force prediction
problem for the skeletal virtual character in the NSM appli-
cation, i.e. the size of input data is reduced to kg = 8.
All input and output data are normalized in the range [0, 1].
More specifically, for the normalization of output data, scaling
parameters were stored as part of the modeling framework and
used to scale the predicted values back to their original range.
Furthermore, we performed outlier detection and trimming by
rejecting values that were higher than the 99% quantile of the
data distribution or lower than the 1% quantile of the data
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distribution. The same procedure was followed to pre-process
the corresponding synthetic gait dataset.

B. Sit-To-Stand
To evaluate whether our method generalizes to actions other

than gait, we tested our model using a STS human motion
capture dataset, which is part of the publicly available KIT
Whole-Body Human Motion Database1 [35], [36]. The KIT
database, contains motion capture, auxiliary (e.g. external and
internal forces), and anthropometric data as well as video
recordings from 53 different subjects (16 female and 37 male)
aged from 15-55 years, while performing a wide range of
actions including environment and human-object interactions.
Moreover, this database was recently enriched by data obtained
from 2 subjects while performing 12 actions of bimanual daily
household activities (cooking chores like peeling fruits and
vegetables, mixing ingredients, pouring, etc., cleaning chores
such as sweeping and more) [37].

The STS dataset extracted from KIT contains 266 trials
of both left and right leg joint angle measurements from
19 subjects, which were recorded using an optical Vicon
MX motion capture system with 56 markers covering specific
anatomical landmarks of the whole body. Similarly to the gait
motion case, this STS dataset will be used as the source dataset
in our experiments, thus, knee joint forces were added through
OpenSim Analyses as described in Section IV-A. Furthermore,
a STS synthetic dataset was also created using the NSM
framework in order to record the virtual avatar’s joint angles
while sitting on chairs with various geometries. This dataset
was used as the target dataset in one of our experiments.

The experimental STS dataset was pre-processed following
the pipeline described in [38], hence the same param-
eters, i.e. joint angles during pelvis tilt/list/rotation, hip
flexion/adduction/rotation, lumbar extension/bending/rotation,
knee angle, patella-knee-angle, ankle angle and subtalar angle,
as well as internal knee forces, were extracted by motion
marker’s raw positions and GRFs via OpenSim’s IK and
JRA, respectively. During this movement, the joint angles
of lumbar extension, lumbar bending, lumbar rotation and
subtalar angle have very small (close to 0) values, thus, were
omitted. In addition to the subtalar angle, the patella-knee
angle was also omitted from the dataset, since the skeleton
of NSM’s 3D character does not have these two joints.

The input data x of the STS dataset are stored in a 2D
dataframe of dimensions [Ms · Ws, ks], where Ms is the total
number of trials for all 19 subjects, Ws , is the duration of
each trial and ks = 8 is the number of joint angles after
omitting the aforementioned parameters. The output, y, is also
a 2D vector of dimensions [Ms · Ws, ls], where ls = 6 are
the number of the KCFs. In contrast to the gait movement,
here, the medial force in the y-axis is negligible and thus
is omitted, reducing the number of the KCFs to ls = 5.
Synchronization by resampling was subsequently performed,
similarly to the gait dataset. Both input and output data
were normalized by subtracting the mean and dividing by

1https://motion-database.humanoids.kit.edu/list/motions/?page=1&
advanced_mdt_search_term=sit+AND+stand

the standard deviation. Outlier detection and trimming was
also performed in this case. Moreover, we followed the above
procedure to pre-process the synthetic STS dataset.

V. RESULTS

We conducted three sets of experiments that are summarized
in Table II). First, we evaluate our baseline model without
the CORAL layers (Model A), by training it with either the
gait or the STS experimental dataset (columns Exp1_Gait
and Exp1_STS. The results are compared with methods from
previous works [7], [32] utilizing the same datasets and cross-
validations setting.

In all experiments the loss function used to train both
BiLSTM and ANN models was the Mean Square Error
(MSE) between biomechanical simulations (serving as ground
truth) and model predictions. Moreover, to assess the obtained
results we used the Normalised Root Mean Squared Error
(NRMSE) [7] which, being scale-invariant, allows to compare
errors across action classes and components of forces (medial,
lateral).

Subsequently, we present the results of our baseline model
when enriched with the unsupervised domain adaptation tech-
nique, i.e. CORAL layers [10] (column Exp2 in Table II).
In this experiment, the first layers of the pre-trained (using the
experimental gait dataset) Model A provide a representation
learner mechanism, while CORAL is implemented within the
last two layers of our architecture (Model B) to align source
and target features. We then re-trained our model using the gait
experimental dataset as the source and the STS experimental
dataset as the target dataset. Finally, we tested our enhanced
model (Model B) on the STS (target) data in order to assess
whether a model originally trained on gait data can be used for
KCF estimation during a different motion type (action) using
a simple domain adaptation method, such as CORAL.

Finally, in order to assess whether our model can be
integrated into a virtual environment for real-time motion syn-
thesis, such as the NSM, we conducted a similar experiment as
before, but using the synthetic gait and STS datasets (described
in Section IV) as target domain (columns Exp3_Gait and
Exp3_STS in Table II). More specifically, we trained Model B
(i) using the gait experimental dataset as the source and the
gait synthetic dataset as the target and (ii) using the STS
experimental dataset as the source and the STS synthetic as
the target dataset, respectively. Similarly to [32], we visu-
alize the medial and lateral KCFs on the virtual character,
so as to provide real-time force estimation feedback. In this
experiment, we address a completely different problem than
in Experiment 2 since we try to calibrate two datasets that
have different distributions, yet they share the same action
class, whereas in Experiment 2 we try to align data of different
distributions and classes.

A. Experiment 1: Evaluation of Proposed BiLSTM
To assess our framework, we compared the performance

of our Model A (without using any domain adaptation) with
previous machine learning models in a knee contact force
estimation scenario In Table III the average across folds
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TABLE II
SUMMARY OF EXPERIMENTS PERFORMED IN THIS STUDY

TABLE III
COMPARISON OF OUR BILSTM (MODEL A) MODEL AGAINST

PREVIOUS MODELS IN TERMS OF NRMSE DURING

GAIT AND SIT-TO-STAND

NRMSE of ANN and SVR models [7] are reported. All
compared models were trained with the same dataset, i.e.
without taking into consideration motion-dependent variables
(e.g. GRFs), and were also evaluated using the same leave-
subject-out validation scheme.

Subsequently, we conducted the same experiment by train-
ing our BiLSTM model (Model A) with the experimental
STS dataset and compared our results against the ANN_2
model [7], [32], which was also trained and tested using the
same STS dataset. The results are also reported in Table III
(rows 6 and 7).

We observe that in both cases (gait and sit-to-stand) Model
A performs better than previous models presented in [7] and
[32]. This positive result most probably is attributed to the
ability of RNNs to generate predictions by exploiting temporal
dependencies, something that is lacking in fully connected
feed-forward networks like ANN. RNNs have a recurrent
architecture that acts like a memory mechanism. Thus, unlike
feed-forward networks, RNNs have the ability to process
time sequences and to provide both estimations (of the same
time frame t) or predictions (of the next time frame t + 1).
Especially a BiLSTM can manipulate both past and future
time dependencies due to its architecture (it contains both a
forward and a backward sequence) and is usually preferred
over conventional models and unidirectional LSTMs.

B. Experiment 2: Model Alignment Across Action
Classes

The average NRMSE for all folds are reported in Table IV
and illustrate how well our model performs with and without
the use of the CORAL layers in the STS dataset. Lower

TABLE IV
MODEL COMPARISON WITH AND WITHOUT DOMAIN ADAPTATION IN

STS DATASET

NRMSE values indicate that the model estimates better new
(unseen) data. As mentioned above, we apply the CORAL
layers to our pre-trained model and re-train the last layers
using the gait experimental dataset as the source and the STS
experimental dataset as the target. Then, we test our model
using the STS dataset. In order to evaluate the effectiveness
of our architecture’s domain adaptation (i.e. CORAL) layer,
we computed the residual distance of source and target features
(Eq.2) before and after domain adaptation. The domain shift
before applying linear transformation A (see Eq.1) to the
source features is Ebe f ore = 73739.36, while after linearly
transforming the data (using A), it reduces down to Ea f ter =

0.62, indicating that our implementation works as expected.
As illustrated in Table IV, our model produces more

accurate predictions when using the CORAL-based domain
adaptation technique, compared to not using it. Both Pearson’s
Correlation Coefficient and NRMSE values in Table IV show
that predictions with CORAL (Model B) tend to be more
correlated (higher R2) and closer (smaller NRMSE) to ground-
truth (experimental) measurements for all KCF components.

To explore whether the predictions obtained w/ or w/o
domain adaptation, i.e. ˆywD A produced by Model A and

ˆywoD A by Model B are significantly different, we calculated
a paired samples t-test at significance level α = 0.05. The
null hypothesis was that the mean difference between the
two sets of paired results is zero, hence we test if there is
a statistically significant difference between the means of our
models’ predictions. As “pair”, we refer to KCF predictions
during STS or gait movement at the same time frame t . More-
over, we conducted the same t-test between the predictions of
the proposed Model B ( ˆywD A) and the ground truth, i.e. the
experimentally measured KCFs during STS or gait (y). To sum
it up, we calculated 4 paired samples t-tests: i) Model A vs
Model B during STS movement to test if the improvement
in the KCF prediction through our approach is statistically
significant (the smaller p-values the better the new approach),
ii) Model B vs Ground-truth STS data to understand whether
the residual errors are significant (in this case the larger
p-values the better our method), and same statistical tests for
the gait data. The p-values were computed automatically,
using built-in Python functions. What is important is that if
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the p-value is less than the level of significance α, then the
null hypothesis is rejected indicating that the means of the
compared results are statistically different.

The obtained p-values of paired samples t-tests are illus-
trated in Table V. All p-values in the first row are less than α

(i.e. null hypothesis is rejected), indicating that the predicted
KCF components during STS w/ or w/o domain adaptation are
significantly different and thus highlighting the contribution
of the proposed architecture using CORAL (Model B). The
latter results were expected, since in this experiment both
Model A and B are trained based on the gait experimental
dataset (source). Therefore, a model solely trained on gait
(Model A) would produce predictions that differ from the
ones of a model with domain adaptation (Model B), which
has the advantage of incorporating knowledge of the target,
STS, dataset. Furthermore, the second row shows that the
KCF predictions of Model B do not significantly differ from
the STS ground-truth values (real human KCF data), thereby
further supporting the validity of our approach. As for the KCF
predictions in the gait dataset, we observe that the proposed
model reliably reproduces ground truth (Table V, fourth row),
and its predictions are not significantly different from the ones
w/o domain adaptation (Table V, third row). To further support
our findings the p-values between the predictions of Model
B and the ones of ANN_2 during STS movement are less
than alpha, meaning that there is a statistically significant
difference between the means of the predictions of the two
models, indicating our proposed model (Model B) performing
better. Finally, in the last 3 rows of Table V, we provide the
p-values for our 1st Experiment. Hence, we test whether the
predictions of Model A are significantly different from the
ones of i) ANN and ii) SVR architectures that were proposed
in [7] during gait movement, as well as the ones of iii) ANN_2
[7], [32] during STS action. As observed, in all cases the
p-values are greater than α = 0.05, meaning that, although
the predictions of Model A are better (smaller NRMSE) than
the ones from previous frameworks, the difference is not
statistically significant.

C. Experiment 3: Real-to-Synthetic Model Alignment
Our enhanced with domain adaptation model (Model B in

Fig.1) is integrated into the real-time auto-regressive motion
prediction/synthesis framework to test the capability of our
model to produce real-time predictions and to exploit the
synthesized motion trajectories in order to forecast the contact
forces required to achieve a desired goal. To do so, we re-
trained our model using either the experimental gait dataset
as source and the synthetic gait dataset as target, or the
experimental STS dataset as source and the synthetic STS
dataset as target as illustrated in the 3rd column of II. Since
NSM does not generate joint forces, we cannot train a network
based entirely on synthetic data from NSM, and, thus, unsu-
pervised domain adaptation (i.e. integration of CORAL layers)
is necessary in order to minimize the domain shift between the
distributions of real and virtual data that are of the same action
class. Although we are not able to quantitatively assess the
predictions in the virtual environment due to lack of “ground
truth”, we use the evidence obtained from the gait-to-STS

TABLE V
SIGNIFICANCE OF DIFFERENCES IN PREDICTION

(P-VALUE) DURING GAIT AND STS

experiments (Section V-B) and deduce that our implementation
using CORAL improves predictions in the case of domain
shift.

In order to qualitatively assess the performance of our
framework in a human motion simulation environment,
we incorporated a visualization mechanism in NSM. Partic-
ularly, we visualized the medial and lateral KCFs on the
digital human model while the character moves and interacts
with virtual scene objects in real time. As shown in Fig. 3,
we embedded a sphere on the left knee of the human model,
using a cyan-to-red color scale to indicate the magnitude of the
force (cyan/red corresponding to minimum/maximum values
of the predicted KCF force, respectively). By observing Fig. 3,
during the idle state the sphere is colorized cyan, since KCFs
have the least possible value, whereas the sphere becomes
red when the walking speed of the 3D character is increased.
All of the above confirm our expectations and indicate that
our framework is applicable in real-time scenarios. Moreover,
we added two lines (green and red lines as illustrated in
Fig. 3) on the knee contact points (force action points), which
represent both the direction and the magnitude of each one of
the forces, medial or lateral (i.e. the length of the lines change
according to the KCFs magnitude). It is worth mentioning that
in Fig. 3, the arrows depicted on the floor of the application,
indicate the trajectory of the movement of the character, and
they are part of the NSM virtual environment. Moreover,
our model runs at approximately 60 frames-per-second (fps),
pointing out the capability of our framework to produce real-
time predictions.

VI. DISCUSSION AND FUTURE WORK

In this work, we developed a joint contact force predic-
tion framework based on deep learning and unsupervised
domain adaptation techniques. DL approaches such as the
one proposed in this work, are surrogate models for conven-
tional musculoskeletal and computational techniques. These
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Fig. 3. Visualization of the magnitude of medial and lateral KCFs
during idle, walking, and walking with increased speed states (the term
“running” is misused here). Green and red lines (indicated with a yellow
box) represent the direction of the corresponding force, medial or lateral.

surrogate models have been trained based on widely used
musculoskeletal tools like OpenSim and, thus, follow their
limitations. Therefore, the benefit of machine learning models
is not higher accuracy but reproducibility, robustness, and
efficiency. As for domain adaptation, it has been widely used
for giving the ability to machine and deep neural networks to
learn shared features from multiple data sources. Our network
architecture is inspired by works like [10], [13], and [15],
which use the first layers of their models as representation
learner mechanisms and then feed the extracted features to
domain adaptation (CORAL) layers whose output feeds the
last layer or layers of their neural networks providing classi-
fication or regression predictions.

Specifically, we conducted three sets of experiments in
order to evaluate different aspects of our proposed model.
In the first experiment, we trained and tested our baseline
model (Model A in Fig. 1) using human capture data from
two different action classes, gait, and STS, and evaluated
our model’s predictions using the NRMSE measure. Our
results as reported in Table III indicated that our framework
performs well in both activity cases and it showed better results
compared to previous similar methods. In this experiment, our
goal was to assess our BiLSTM model (Model A) in order to
utilize it as a “base” in our enhanced with domain adaptation
Model B. Nevertheless, more validation is required, especially
for the STS activity pattern for which the training dataset was
relatively small (266 trials vs ∼4900 trials contained in the
gait dataset).

The main aim of this work is to provide a model that can
simulate the internal biomechanical forces during more than
one tasks. To do so, we enriched our model with an unsu-
pervised domain adaptation technique, the CORAL method,
[10] in order to minimize the domain shift between data from
different action classes. As a result, our model could eventually
be trained offline to recognize a specific class (e.g. gait as
source) and then could be applied to fit other classes (e.g.
STS, stair ascending/descending, etc. as target) by adapting
features during test time. Especially, the developed Model B
(depicted in Fig. 1) whose frozen layers are trained using
gait data, is able to produce valid predictions for any action
when retrained as described in subsection III-B.1. Overall,

we benchmark our method using the example of gait and sit-
to-stand due to the availability of such data, while this use is
indicative and non-restrictive.

Our results in Table IV indicate that our model (Model B
in Fig.1) produces more accurate predictions on the target
dataset when enriched with the domain adaptation layers, i.e.
the CORAL layers than without them (Model A in Fig. 1). It is
worth mentioning that both Models A and B were trained on
the source (gait) dataset and tested on the target (STS) dataset,
thus, the comparison was performed between a model that was
enhanced with a transfer learning technique (Model B) and a
model (Model A) that was trained with a completely different
dataset (gait) than the one that was applied to (STS). However,
if we compare Model B’s results (Table IV) to the predictions
of Model A when trained with the STS dataset (Table III rows
6 and 7), Model A performs better as expected, since Model A
is cleanly trained on STS dataset, whereas Model B is fit to the
same dataset via a transfer learning method. Overall, using this
simple, yet effective unsupervised domain adaptation approach
(CORAL), we create a network that can predict KCFs for more
than one action class simultaneously (e.g. gait and STS) and
since the predictions of two actions can be guaranteed, then
our framework offers the ability to produce predictions for
intermediate actions that usually require more complex and
computationally expensive architectures.

Our third experiment was to integrate our model into a
real-time motion synthesis framework, the NSM, in order
to enhance it with joint force prediction along with motion
prediction and synthesis, and test it in a real-time force
estimation scenario. Moreover, since this motion synthesis
framework can produce motion trajectory predictions, our
model is given the ability to perform long-term forecasting of
KCFs required to perform goal-driven actions. Our model runs
at approximately 60fps and the knee contact forces of a virtual
avatar were visualized at the same rate, while the character was
moving and interacting in the virtual scene. It is worth pointing
out that since NSM cannot generate joint forces we had no
way to quantitatively assess the performance of our model.
Furthermore, our model is capable of being easily integrated
into any motion synthesis framework, since the implemented
domain adaptation is unsupervised and thus applicable when
target output data are not available.

We acknowledge that while our framework presents advan-
tages over biomechanical modeling approaches in respect to
computational speed, robustness and potential for extrapo-
lation to out-of-sample distributions, it lacks precision in
cases with limited samples, such as for patients with disease
(e.g. osteoarthritis). Moreover, our modeling framework is
flexible to address different clinical scenarios if enough data
are available for proper estimation of the domain shift, but
we should also note that adaptation is limited to specific
impairments, e.g. in lower extremities due to total knee
replacement, etc. Overall, we mainly envision the usability of
our framework for the creation of models of a healthy state,
that can later be adapted to the motions of impaired indi-
viduals through healthy-to-impaired state adaptation. We plan
to investigate the latter application scenario in our future
work.
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Furthermore, as future work, we intend to further exploit
the benefits of deep domain adaptation, such as in deep
CORAL [39], where CORAL is embedded into a deep neural
network, not as a layer, but as a differentiable loss function that
acts as a nonlinear transformation that aligns the correlations
of the source and target domains. Our model could also be
applied to other joints of the lower or upper body without
altering its architecture. In the case of hip or ankle contact
forces estimation, we could re-train our models (both Model
A and B) using the same gait dataset [7], i.e. the same joint
angles as input, and compute the corresponding hip and ankle
contact forces as output by repeating only the JRA process
during musculoskeletal modeling in OpenSim for creation of
the training data (used as ground truth). Finally, we would
also like to try to incorporate physics-based constraints into
our framework to generate more accurate results.

VII. CONCLUSION

In this work, we developed and trained a BiLSTM
for predicting knee contact joint forces without using
motion-dependent variables (GRFs, EMGs, etc.) but relying
only on kinematic data. By integrating a simple, yet effective
unsupervised domain adaptation technique, i.e. CORAL, our
model is rendered able to predict KCFs for more than one
action classes simultaneously and even open the path to
estimating internal loads for intermediate actions, a task that
usually requires rather complex solutions. Our results indicated
that our enhanced model with CORAL (Model B) performs
better than without using it in terms of NRMSE and t-test
statistical analysis. Moreover, we integrated our framework
into a deep auto-regressive algorithm for goal-driven motion
synthesis, NSM, to i) test the real-time capability of our net-
work and the ease to be incorporated in any motion synthesis
system and ii) augment NSM with a model that simulates inter-
nal biomechanical forces. Since there is no robust method to
evaluate the real-time predictions of our network in NSM exe-
cution, we provide a visualization mechanism to qualitatively
assess the validity of our model predictions. Our work offers a
simple solution that opens the path for ergonomically-adjusted
motion estimation and physiology-aware simulation, which
can be used as a tool for rehabilitation planning, as well as the
prediction of human motion in rich environments with realistic
scenes and character-scene interactions.
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