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Abstract— Motor control is a complex process of
coordination and information interaction among neural,
motor, and sensory functions. Investigating the corre-
lation between motor-physiological information helps to
understand the human motor control mechanisms and is
important for the assessment of motor function status.
In this manuscript, we investigated the differences in the
neuromotor coupling analysis between healthy controls
and stroke patients in different movements. We applied the
corticokinematic coherence (CKC) function between the
electroencephalogram (EEG) and acceleration (ACC) data.
First, we collected the EEG and ACC data from 10 healthy
controls and 10 stroke patients under the task of move-
ment execution (ear touch and knee touch) and movement
maintenance (ear touch and knee touch). After the prepro-
cessing of raw data, we used frequency domain coherence
method to analyze the full-frequency EEG and ACC data,
which could be concluded that the CKC intensity in the
movement execution was higher than that in the movement
maintenance. However, there was no significant difference
between healthy subjects and stroke patients. Secondly,
the coherence results in local frequency bands showed
that low-frequency bands could better reflect the differ-
ence between movement execution and maintenance. The
intensity of coherence in healthy subjects was significantly
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higher than that in other bands, but not in stroke patients.
Further comparison of coherence results in local frequency
bands showed that the intensity of theta band in healthy
controls was significantly higher than other rhythms, espe-
cially in the knee touch phase. Therefore, we infer that
neurodynamic coupling analysis based on EEG and ACC
data can show the differences between healthy subjects
and stroke patients. Such researches could add to the
understanding of neuro-motor control mechanisms and
provide new quantitative indicators on the motor function
assessment.

Index Terms— Motor function evaluation, corticokine-
matic coherence, EEG, ACC signal, stroke.

I. INTRODUCTION

MOTOR dysfunction is a common consequence of stroke,
which can manifest as muscle weakness, abnormal

muscle tone and abnormal postural reflexes. These symptoms
can trigger joint response, co-movement, and tonic spasm,
reducing limb movement stability, motor precision, and coor-
dination ability [1]. Therefore, it is significant to research on
effective methods of motor function assessment, which can
provide a basis for later rehabilitation treatment after stroke.

At present, the clinical assessment of stroke motor function
is based on the motor assessment scale (MAS), Fugl-
Meyer scale (FMA) or Brunnstrom scale. These scales are
based on the performance of stroke and used to assess the
level of impairment and daily motor function after stroke.
Gil-Agudo et al. constructed a system using nine-axis inertial-
based sensors to assess upper limb function rehabilitation
after central nervous system injury [2]. Rodrigo and his team
created a monitoring system that utilizes inertial sensors to
collect data on joint angles and establish a kinematic model.
This model helps clinical rehabilitation practitioners accurately
assess the current status of their patients’ upper limb motion in
3D, improving motor assessment [3]. Anne et al. investigated
how the arm length, weight of the object, target height,
and other factors affect the movements of the trunk, elbow,
wrist, and fingers during motion. They also studied how
these movements relate to clinically measured impairments
in motor function status by analyzing inertial signals [4].
Most studies on stroke focus on analyzing limb movement
using either EEG or inertial signals, extracting physiological
indexes, and exploring changes in motor function. However,
motor dysfunction in stroke can manifest in different ways
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such as nerve and limb movement. To comprehensively and
effectively assess motor function status, it is important to
construct neuromotor-based assessment indexes that consider
various aspects of neuromotor function.

Corticokinematic coherence (CKC) is the coupling intensity
of the EEG and ACC data, which presents the information flow
between the brain and the limbs. It can reflect the international
connection between the nerves and the motion. CKC is used
to investigate cortical processing and the effects of training,
rehabilitation, and plasticity at the cortical level. CKC reflects
coupling between primary sensorimotor cortex EEG and kine-
matic signals, e.g. acceleration and velocity; kinetic signals,
e.g. [5] and [6]. The analysis of CKC contributes to the under-
standing of neuro-motor control mechanisms and provides new
quantitative indicators for motor function assessment. It has
been shown that CKC has the potential to be used as a tool
to detect and follow proprioceptive impairments throughout
the lifespan (from newborns to ageing effects), effectivity
of rehabilitation and recovery of sensorimotor impairments
(stroke, early detection of CP, neuropathy) [7], [8], [9]. CKC
provides a non-invasive way to map the functional connectivity
between the brain and limb kinematics during movement.
This can help researchers understand how the brain processes
information related to movement and how it can be affected
by training or rehabilitation. Additionally, CKC can be used to
plan brain surgery by identifying the areas of the brain that are
responsible for specific movements. Research has shown that
EEG and ACC signals can represent the connection between
brain and limb movements [10], [11], [12], [13], and EEG
signals can be used to decode limb movements. However, there
has been limited research on the correlation between EEG and
inertial signals for assessing motor function. We can better
understand how the motor system controls limb movement by
exploring this correlation.

Coordinated limb movements result from the multifaceted
process of neural, motor, and sensory functions in motor
control. There is a strong link between the brain and limbs.
The brain controls limb movements and affects brain signals
during movement. Analyzing the correlation between EEG
and ACC signals through corticokinematic coherence is use-
ful in comprehending the mechanism and pathology behind
motor control in stroke. Moreover, local frequency bands in
EEG signals can exhibit distinct changes based on the motor
state. In order to investigate the correlation between EEG
and ACC signals in local frequency bands, we examined
healthy individuals and stroke patients performing bilateral
upper limb movements. We analyzed the correlated coupling
characteristics of these signals during both movement execu-
tion and maintenance, providing valuable insights into motor
function. It is helpful to understand the neurodynamic coupling
mechanism of the motor control system and establish effective
motor physiological indexes for quantitative assessment of
motor function status.

II. MATERIAL AND METHODS

A. Subjects
The experimental group consisted of 10 stroke patients,

as shown in Table I. Each participant was accompanied by

TABLE I
PHYSICAL STATUS STATISTICS OF STROKE

a physician and voluntarily took part in the study while
remaining awake. The control group, on the other hand,
consisted of 10 elderly individuals who were both physically
and mentally healthy. This group was made up of 6 men and
4 women aged between 40 to 75 years. All participants had no
prior history of brain-related diseases, were right-handed, had
normal or corrected normal vision, and willingly participated
in the experiment.

Before the whole experiment, the subjects were asked the
corresponding basic information and explained the purpose
of the experiment and the content of the experiment. The
experiment was in accordance with the declaration of Helsinki
and gained consent and approval of the ethical review board of
the ethical committee of the rehabilitation hospital affiliated to
the National Rehabilitation Assistive Devices Research Center.

B. Data Recording and Experimental Paradigm
1) Experimental Paradigm: In this study, participants were

comfortably seated 60 cm from a computer screen, as depicted
in Figure 1(a). The experiment was divided into two parts:
resting and task states. Each task state involved using either
the right or left upper limb for a task, followed by 60s of relax-
ation, as shown in Figure 1(c). The resting state experiment
was conducted first, consisting of a 3s preparation time and a
10-minute rest time, during which participants kept both arms
naturally relaxed. Following the 10-minute rest, the right upper
limb task experiment began. This involved a 3s preparation
time, 20s of rest, and 34s of task execution. The task execution
process involved touching the ipsilateral ear with the back
of the hand for 3s (dynamic force), maintaining the action
for 4 seconds (static force), touching the contralateral knee
with the heart of the hand for 3s (dynamic force), maintaining
the action for 4s (static force), and resting for 20s. This task
was performed sequentially in five sets of experiments, with
participants instructed to keep other body parts as still as
possible while performing the dorsal hand touching the ear
action. After 60s of relaxation, the left upper limb task was
performed, with the same requirements and procedures as the
right upper limb task.

2) Data Recording and Preprocessing: The experimental
equipment for EEG signal acquisition was the NeuSen W
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Fig. 1. Experimental procedure and data acquisition.

series wireless EEG acquisition system from Borealis. The
positions of the EEG cap electrodes followed the international
10-20 system. We collected EEG data using 34 motion-
related signal channels with a sampling frequency of 1000 Hz.
The electrode positions for the EEG signals are displayed
in Figure 1(b). Studies have demonstrated that the brain is
symmetrical between hemispheres and that brain-limb con-
trol follows a contralateral principle [14]. In this study,
we analyzed EEG signals from six channels located in the
motor area of the brain: FC3, FC4, C3, C4, CP3, and CP4.
These channels were further divided into two regions. Left
sensorimotor (LSM) contains FC3, C3, and CP3; right sen-
sorimotor (RSM) contains FC4, C4, and CP4. As shown
in Figure 1, we used the Trigno Avanti EMG system with
14 modules, each with seven sites, for an inertial acquisi-
tion experiment. The ACC system has a sampling frequency
of 150 Hz and we selected the tri-axial acceleration signal
from the finger flexor position for concurrent analysis with the
EEG signal.

To enhance the precision and relevance of EEG signal
analysis, a series of steps were taken in preprocessing. These
included implementing least squares, applying a low-pass filter
set to 100Hz, utilizing an adaptive 50 Hz filter to eliminate
baseline drift, high frequency noise, and industrial frequency
interference from the data [15], [16], employing an inde-
pendent component analysis algorithm to eliminate external
interference from sources like EOG and ECG, and lastly,
performing Laplace re-referencing of the selected channels
to accentuate the local features of the data [17]. In the
preprocessing process of ACC data, we used the smoothing
filtering to remove outliers from the data. To ensure accurate
data collection, a 20Hz low-pass filter was used to eliminate
redundant information within the frequency range of 0-20 Hz,
as human activity falls within this range [18]. Additionally,
the effects of gravitational acceleration were eliminated by
subtracting the data after applying a 0.3Hz low-pass filter
[19]. Finally, the three-axis ACC signals were combined using
Euclidean parametric calculations to generate a single axis

of data and remove any orientation-related effects on the
data [20].

C. Analysis Method
To investigate the cross-kingdom correlation (CKC) prop-

erties between electroencephalogram (EEG) and acceleration
(ACC) signals, a coherence analysis was conducted in the
frequency domain, utilizing the amplitude squared coherence
function [15]. This analytical technique enabled a quantitative
description of the correlation strength between the EEG and
acceleration signals, as observed in the frequency domain.
To analyze two signals simultaneously, the self-spectrum and
mutual spectrum were calculated separately. The coupling
strength of the two signals in the frequency domain was
determined by dividing the value of the mutual spectrum by
the upper self-spectrum, which provides a measure of the
coherence strength. Let the EEG signal be denoted as x and the
ACC signal be denoted as y. The expressions are as follows:

C2
xy( f ) =

|Pxy( f )|2

(Pxx ( f ) ∗ Pyy( f ))
(1)

where Cxy ( f ) is the value of the frequency domain coherence
function of the two signals. Pxy( f ) is the mutual spectral
density function of the two signals. Pxx ( f ) and Pyy( f ) are the
self-spectral density functions of the two signals, respectively.
These expressions are as follows:

Pxy( f ) = X ( f )(Y ( f ))∗ (2)
Pxx ( f ) = X ( f )(X ( f ))∗ (3)
Pyy( f ) = Y ( f )(Y ( f ))∗ (4)

where ∗ denotes the conjugate. X ( f ) and Y ( f ) denote the
information contained in the frequency domain of the EEG
signal and the ACC signal.

The correlation strength Cxy ( f ) can be evaluated on a
scale ranging from 0 to 1. A coherence value of 1 signifies
the strongest correlation, whereas a value of 0 indicates no
correlation. The assorted values indicate different degrees of
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Fig. 2. Comparison plots of CKC results of EEG and ACC signals under different motion states. (a) Right palpable ear motion coupling characteristic
graph. (b) Right palpable knee motion coupling characteristic graph, (c) left palpable ear motion coupling characteristics, (d) left palpable knee
motion coupling characteristic analysis.

synchronous coupling strength. To accurately evaluate the
coupling strength of synchronous analysis, the coherence
strength of the signals is determined by the threshold value
of significant coherence. Its expression is as follows:

C L(α) = 1 − α
1

N−1 (5)

where N denotes the total number of the sliding window,
and α generally takes the value of 0.05, indicating that the
confidence level is 0.95. When the coherence value exceeds the
threshold indicator, the coherence intensity of the two signals
is considered to be significantly coherent. By utilizing the
threshold indicator provided above, we were able to accurately
calculate the notable area that was enclosed by both the
coherence curve and the threshold indicator.

D. Statistical Method
To quantitatively analyze the significant coherence between

the EEG and EMG signals in a local band ( f1 ∼ f2) and avoid
the differences from the bandwidth, the normalized significant
area, defined as AC( f1∼ f2), was calculated as

AC( f1∼ f2) =
1

f2 − f1

∑
f1∼ f2

1 f ·
(
Cxy ( f ) − C L

)
(6)

where 1 f denotes frequency resolution; We defined AC( f1∼ f2)

as the normalized significant area over whole frequency bands.
To ensure the validity of our findings, we proceeded to test

the obtained results for significance. Considered the distri-
bution and characteristics of the data, we used the different
statistical method to test the significance of CKC results.
The statistical method was chosen by the principle of data
character. Two-sample t-test could better analyze the data
with normal distribution, while Wilcoxon rank sum is more
suitable for the data with nonnormal distribution. Therefore,
we used two-sample t-test in the analysis of full-frequency
EEG. In the local band analysis, we used Wilcoxon rank sum
for its nonnormal distribution. In the later study, p < 0.05 was
considered significant. SPSS 19.0 for windows (SPSS Inc.,
Chicago, IL, USA) was used for all statistical computations.

III. RESULTS

A. CKC Analysis of Full-Frequency EEG and ACC Signal
To analyze the relationship between full-frequency EEG

and ACC signals during four phases of touching the ear and
knee actions, we averaged the signals for six channel EEG
signals within the motor sensory brain area. We then used
equation (1) to compare the squared ratio of the mutual power
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Fig. 3. Comparison of CKC analysis results between healthy subjects
and stroke patients is shown. (a) indicates the comparison of CKC
analysis results in the right movement execution and maintenance
phases. (b) indicates the comparison of CKC analysis results in the left
movement execution and maintenance phases. “l” means left side, and
“r” means right side. “T” represents touch movement. “m” represents
maintenance phases.

spectrum of the EEG and ACC signals on the self-power
spectrum to determine the coherent coupling characteristics.
Additionally, we calculated the significant coherence area of
the full-frequency EEG and ACC signals using equation (5)
to quantify the strength of the frequency domain association
between the two signals.

The coherence analysis of EEG and ACC signals for healthy
subjects and stroke patients with different lateral upper limb
movements is presented in Figure 2. The right-sided motor-
encephalic tapping and left-sided motor-encephalic tapping
were executed and maintained during the experiments. The
mean values of the results of the five experimental groups were
calculated for each subject to represent the frequency domain
characteristics of their current motor state. In the Figure 2, it is
evident that both healthy subjects and stroke patients showed
higher significant coherence during movement execution com-
pared to movement maintenance, for both ear and knee touch
movements. Two-sample t-tests for both movement execution
and maintenance showed significant differences (p < 0.05).
A comparative analysis of the associative coupling properties
between the left-right and right-right motor brain areas in
all subjects demonstrated no significant differences in either
the movement execution or maintenance phase, regardless of
whether they were healthy or stroke. The results were not
significant (p > 0.05).

To compare healthy individuals with stroke patients, two
phases of movement were analyzed: execution and mainte-
nance. The comparison of stroke patients and healthy subjects
in different movements and sided was shown in Figure 3.
It can be concluded that during the movement execution,
stroke patients had a higher significant coherence area than
healthy subjects for most movements. However, there was no
significant difference during the movement maintenance phase
(p > 0.05). The correlation between neurodynamic knee touch

Fig. 4. Comparison analysis for movement execution and maintenance
in different EEG bands. “∗” denotes p<0.05. (a) CKC value of healthy
subjects under touching ear. (b) the CKC value of healthy subjects under
touching knee. (c) CKC value of stroke under touching ear. (d) the CKC
value of stroke under touching knee.

movements and coupling properties based on full-frequency
EEG and ACC signals could not reflect the differences
between healthy subjects and stroke patients. Therefore, it is
crucial to investigate the correlated coupling properties of local
EEG band and ACC in the later section.

B. CKC Analysis of Local EEG Band and ACC Signal
To analyze the correlation between EEG and ACC data,

the sampling rate of the data was changed to 256 Hz after
lifting and sampling. This facilitated the analysis of frequency
band specific EEG data and ACC data coupling characteristics.
The wavelet packet decomposition algorithm [21] was used to
extract five frequency bands of δ (1)-3 Hz), θ (3)-8 Hz), α

(8-13 Hz), β (13-30 Hz), and γ (30-80 Hz) signals from the
EEG signal. The five bands were then analyzed with the ACC
signal for correlated coupling characteristics.

We analyzed the CKC values of healthy subjects for left
and right sides using ACC data. The results were tested
with the Wilcoxon rank sum test, which revealed no sig-
nificant difference between both sides of healthy subjects.
Since all subjects were right-handed, the study used the
right side of healthy subjects as a base in the subsequent
analysis for efficiency and accuracy. Equation (1) was used
to compare the EEG and ACC data during four phases of
touching the ear, touching the knee, and maintaining each
action. Coupling analysis was performed on each frequency
band of EEG and ACC data during movement execution and
action maintenance phases. Using the significant coherence
area threshold in Equation (5), we calculated the significant
coherence area of the full-frequency EEG and ACC signals,
which are shown in Figure 4. The main differences were in
the low-frequency segment, which was consistent with the
coherence results of the full-frequency EEG and ACC signals.
The coherence intensity was significantly higher during the
motor execution phase than during the movement maintenance
phase. In healthy subjects, the CKC value of δ band during
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touching ear and touching knee were both with significant
difference (p < 0.05). However, the CKC value of θ band
had a more significant difference in touching knee movement.
While in stroke, the significant difference mainly focused on
the δ band in touching ear movement and θ band in touching
knee movement (p < 0.05).

From the comparison of the results of movement execution
and maintenance, it can be concluded that the CKC value
varied in different frequency bands during different motor
states. It is particularly evident in the δ band. Therefore,
we further compared the changes in CKC results of EEG and
ACC signals between healthy individuals and stroke patients.
Figure 5 illustrated the CKC analysis results in different
frequency bands. It can be concluded that healthy individuals
showed higher CKC value in δ band, and the difference was
significant (p < 0.05). Conversely, during the knee-touch
movement execution phase of stroke, the CKC results of
δ band was not significantly different with all other bands
(p > 0.05). The results remained consistent during the phase
of maintaining movement.

Through the results of the comparison for CKC values in
local EEG bands and ACC signals, it was concluded that the
motor dysfunction produced by stroke has an effect on the
EEG and ACC signals. To gain a deeper understanding of how
motor dysfunction impacts CKC results in EEG bands and
ACC signals, we further compared the CKC values in δ band
from healthy individuals performing right-sided movements
and stroke performing the same movements on their affected
side. The statistical analysis of the comparison was shown in
Figure 6. It was clear that the CKC intensity of the δ band in
the healthy subject was significantly higher than that those of
the patient when performing the knee touch movement (p =

0.037, p = 0.022). It was evident in the data from both the
left and right side of the brain area. which was reflected in the
signals of the left and right side of the brain area. However,
there were no significant differences in the CKC results for
other EEG bands and movements.

IV. DISCUSSION

This manuscript explored the changes of EEG and ACC
data during different motor performance to find the effec-
tive indicators for motor function evaluation. Additionally,
the relationship and coupling characteristics of EEG and
ACC signals during movement execution and maintenance
were analyzed. The results showed no significant differences
between the movement execution and maintenance at full-
frequency band. The CKC results in local bands were further
analyzed to investigate the mechanism of stroke disease.
Therefore, we compared the CKC values in local frequency
bands between healthy subjects and stroke patients. It was
concluded that the CKC results in δ band during the knee touch
execution phase can provide a new physiological indicator for
assessing motor function in stroke.

A. Mechanism of Motor Performance Effect on CKC
This study explored the differences between difference

motor performances in stroke and healthy. The results showed

that the difference was more significant in movement mainte-
nance, especially in the knee touch maintenance stage. It is due
to the fact that the ACC is a type of inertial signal, which relies
on inertial to convert to ACC signals [22]. The signal shows
significant fluctuations in the movement execution stage. In the
experiment stage, the EEG signal also changes accordingly,
as reflected in the change of the local frequency band signal,
which also presented a significant difference in the CKC
results. Moreover, researches have proved that the movement
rate does not affect coherence levels and CKC source location
during movements. The similar result also occurred in our
study. Example for the comparison of healthy and stroke in
Figure 3, stroke had higher CKC in movement execution. This
is quite the opposite in our cognitive. One possible reason may
be due to the degree of force using in the movement execution.
It is easy for health controls to complete the experiment and
hard for stroke patients. They must use more efforts in the
process, and their sensorimotor could be more activated [23].

B. Absent Corticokinematic Coherence at δ-Band in
Stroke

Results showed that δ-band band presented significant dif-
ference from other band, which is consistent with previous
study. The ACC and coherence spectra showed peaks around
3-5 Hz and 6-10 Hz, corresponding to the movement fre-
quencies [5]. Apart from the delta oscillations that occur
during sleep, literature suggested that the δ band is also
associated with cognitive function in the awake state [22],
[24]. Increase of δ power has been documented in a wide
array of developmental disorders and pathological conditions.
Motor dysfunction in stroke is primarily caused by cerebral
hemorrhage or brain injury, which leads to damage to neural
pathways. Severe patients may also experience cognitive func-
tion problems. Therefore, the significant difference in the δ

band observed in this study could be attributed to the cognitive
and motor function problems in stroke participants.

In the comparative analysis of healthy subjects and stroke
patients, the CKC results of full-frequency EEG had presented
differences, but the results were not significant. This may due
to the effect of disease in brain, causing changes in EEG
signals in local frequency bands [25], [26]. The CKC analysis
of EEG and ACC signals in δ band showed that the CKC
results were higher in healthy subjects than stroke patients
during the knee touch phase. The results were not significant
in other movement states. Most of the motor dysfunctions
in stroke were basically or partially completed by inward
bending movements, but it was more difficult to complete the
extension movements. The results were more variable in the
knee movement.

C. Limitations and Future Work
In this manuscript, we focused on the corticokinematic

coherence analysis to investigate the changes in the neu-
rokinetic coupling analysis caused by stroke disease and
to construct physiological indicators that can be used for
motor function assessment. Therefore, in the subsequent study,
we will increase the sample size of the data and refine
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Fig. 5. Comparison analysis of CKC results for each EEG band in both healthy subjects and stroke patients. (a) represents the comparison under
right side in healthy subjects. (b) represents the comparison under affected side in stroke. “∗” denotes p < 0.05. “l” means left side, and “r” means
right side. “T” represents touch movement. “m” represents maintenance phases.

Fig. 6. Comparison analysis for healthy subjects and stroke in move-
ment execution and maintenance. “∗” denotes p<0.05. The results were
based on the δ band of EEG. “l” means left side, and “r” means right
side. “T” represents touch movement. “main” represents maintenance
state.

the analysis for the different conditions of left and right
hemiplegia. We also plan to analyze patients in different reha-
bilitation stages simultaneously to investigate the neuromotor
coupling between different rehabilitation sites and different
rehabilitation stages. In the subsequent study, we will increase
the sample size of subjects, further refine the analysis for the
different conditions of left and right hemiplegia, and analyze
the patients in different rehabilitation stages simultaneously

to investigate the differences in neuromotor coupling analysis
in different rehabilitation sites and stages. Our objective is to
construct physiological indicators and motor function assess-
ment for CKC analysis to analyze the accuracy and validity
of physiological indicators. After this supplementary research
finished, we will validate the effectiveness of CKC as an evalu-
ation index. At that time, CKC may provide a new quantitative
index for the subsequent assessment of motor function status
in stroke. It can provide a theoretical basis for motor function
evaluation of patients with stroke. Rehabilitation after stroke
is a long-term and variable process, the CKC value might be
changed during this time. Therefore, the regularity of CKC
should be explored in the later study. These researches could
add to the understanding of neuro-motor control mechanisms
and provide new quantitative indicators on the motor function
assessment.

V. CONCLUSION

This study investigated the differences in the correlated
coupling properties of EEG and ACC data between healthy
subjects and stroke patients. The experiment was performed
during the movement execution and maintenance phases.
We analyzed the neuromotor coupling analysis of EEG and
ACC signals. In the full-frequency EEG-ACC coupling anal-
ysis, it was found that the intensity of the motor execution
phase was significantly higher than that of the movement
maintenance phase. This difference was more pronounced in
low-frequency EEG signals than in full-frequency, particularly
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in δ band. The coherence results of the δ band in the
knee touch movement, which reflected the higher intensity in
healthy subjects than in stroke patients. The corticokinematic
coherence analysis can reflect the difference between healthy
subjects and stroke patients, which could provide a new
quantitative index for the subsequent assessment of motor
function status in stroke.
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