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Abstract— Convolutional neural networks (CNNs) have
been successfully applied to motor imagery (MI)-based
brain–computer interface (BCI). Nevertheless, single-scale
CNN fail to extract abundant information over a wide spec-
trum from EEG signals, while typical multi-scale CNNs
cannot effectively fuse information from different scales
with concatenation-based methods. To overcome these
challenges, we propose a new scheme equipped with
attention-based dual-scale fusion convolutional neural net-
work (ADFCNN), which jointly extracts and fuses EEG
spectral and spatial information at different scales. This
scheme also provides novel insight through self-attention
for effective information fusion from different scales.
Specifically, temporal convolutions with two different kernel
sizes identify EEG µ and β rhythms, while spatial convolu-
tions at two different scales generate global and detailed
spatial information, respectively, and the self-attention
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mechanism performs feature fusion based on the internal
similarity of the concatenated features extracted by the
dual-scale CNN. The proposed scheme achieves the supe-
rior performance compared with state-of-the-art methods
in subject-specific motor imagery recognition on BCI Com-
petition IV dataset 2a, 2b and OpenBMI dataset, with the
cross-session average classification accuracies of 79.39%
and significant improvements of 9.14% on BCI-IV2a, 87.81%
and 7.66% on BCI-IV2b, 65.26% and 7.2% on OpenBMI
dataset, and the within-session average classification accu-
racies of 86.87% and significant improvements of 10.89%
on BCI-IV2a, 87.26% and 8.07% on BCI-IV2b, 84.29%
and 5.17% on OpenBMI dataset, respectively. What is
more, ablation experiments are conducted to investigate
the mechanism and demonstrate the effectiveness of the
dual-scale joint temporal-spatial CNN and self-attention
modules. Visualization is also used to reveal the learning
process and feature distribution of the model.

Index Terms— Convolutional neural networks (CNNs),
motor imagery (MI), brain–computer interface (BCI), self-
attention mechanism.

I. INTRODUCTION

BRAIN–COMPUTER interface (BCI) have emerged as
a promising augmentative communication and control

technology [1], [2], [3], [4], [5]. Over the years, several
paradigms of electroencephalogram (EEG)-based BCI have
been developed, including steady-state visual evoked potentials
(SSVEP) [6], event related potentials (ERP) [7], emotion [8],
and motor imagery (MI) [9], [10], [11], [12], [13]. Among
these paradigms, MI-based BCI has garnered significant atten-
tion, as it enables decoding of users’ motor intentions from
EEG signals. It has been successfully applied in various fields,
such as stroke rehabilitation [14], wheelchair control [15],
cursor control [16], among others.

Despite the advancements in the field of BCI, accurately
decoding motor intentions from EEG signals remains a chal-
lenge due to the complex characteristics of EEG, such as
low signal-to-noise ratio (SNR), non-stationarity, low spatial
resolution, high temporal resolution, and inter-individual vari-
ability [10]. Currently, two main methods are widely employed
for MI-based BCI decoding: traditional machine learning and
deep learning. Traditional machine learning methods generally
involve two distinct steps of feature extraction and feature
classification [17]. These techniques include signal processing
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techniques such as fast Fourier transform (FFT) [18], common
spatial pattern (CSP) [19], wavelet transform (WT) [20],
and short-time Fourier transform (STFT) [21], which can
extract frequency, spatial-frequency or time-frequency fea-
tures from EEG signals. Supervised classification algorithms
such as random forest (RF) [22], support vector machine
(SVM) [23], and linear discriminant analysis (LDA) [24], and
unsupervised learning techniques such as K-nearest neighbor
analysis (KNN) [25], are applied to classify these features.
However, traditional machine learning methods are labor-
intensive, requiring significant expert knowledge, thus limiting
classification performances. Conversely, deep learning (DL)
methods have recently achieved immense successes in the field
of BCI owing to their powerful representation learning capabil-
ities [26]. Moreover, DL-based methods can be implemented
with an end-to-end framework, combining feature extraction
and classification into a single, integrated, and convenient
scheme.

Currently, convolutional neural networks (CNNs) have
emerged as important deep learning structures in MI-based
BCI, owing to their powerful representation learning capabili-
ties. Several studies have investigated the impacts of different
CNN parameters, such as the convolution manner, kernel size,
number of kernels, and layers. For instance, Schirrmeister et al.
proposed two different CNN-based architectures, namely Shal-
low ConvNet and Deep ConvNet, to classify MI end-to-end
and found that the depth of the CNN significantly influenced
its performance [27]. Lawhern et al. applied the separable
convolution operation in CNN, to develop EEGNet, a general
BCI classification framework that successfully classified vari-
ous tasks [28]. Hermosilla et al. experimented with a shallow
CNN that implemented varied numbers and sizes of kernels
to improve MI classification performance [29]. In addition,
some studies have also leveraged the unique characteristics of
EEG signals when designing CNN for the MI classification
task. For example, Mane et al. proposed the FBCNet based
on filter-bank CSP, wherein the CNN extracted information
from multi-frequency-band signals to classify MI tasks [30].
Wang et al. proposed a novel, lightweight interactive frequency
convolutional neural network named IFNet, which can further
explore the cross-frequency interactions for enhancing the rep-
resentation of MI characteristics [31]. Lee and Choi proposed a
novel pipeline, first extracting time-frequency representations
by continuous wavelet transform (CWT) and then applying
a CNN on the CWT representations for MI classification
task [32].

Recent advances in single-scale CNNs have shown promis-
ing results in MI-based BCI. However, these models have
limited ability in effectively capturing the abundant infor-
mation present in EEG data. As a result, recent studies are
exploring the use of multi-scale CNNs, which employ multiple
convolutional scales to better extract information from EEG
signals. For instance, Dai et al. proposed a hybrid-scale CNN
architecture to consider the differences of convolution scales
on individuals [33]. Ko et al. proposed a novel deep multi-scale
neural network to extract feature representations from multiple
frequency/time ranges and to discover relationships among
electrodes [34]. Zhao et al. proposed a multi-branch 3D CNN,

mainly consisting of three scale convolutions to extract the
temporal-spatio information from raw signals [35]. Neverthe-
less, single-scale CNNs fail to extract abundant information
across a wide spectrum from EEG signals, while conven-
tional multi-scale CNNs overlook the fusion of different scale
information.

To address these limitations, this paper proposes a new
scheme equipped with attention-based dual-scale fusion con-
volutional neural network, which can jointly extract and fuse
EEG spectral and spatial information at different scales, lead-
ing to superior performance compared with state-of-the-art
methods. The main contributions are as follows:

• To obtain different-scale spectral and spatial information
by different types of temporal and spatial convolutions,
we propose a novel dual-scale temporal-spatial CNN to
jointly identify EEG µ and β rhythms, as well capture
global and detailed spatial information.

• To explore the implicit information of fused features in
multi-scale CNNs, we consider the internal similarity of
dual-scale features extracted from the dual-scale joint
temporal-spatial CNN, and apply a self-attention mech-
anism to adaptively enhance the flexibility of the fusion
feature.

• To verify the effectiveness of our proposed method,
we conduct comprehensive experiments with the pro-
posed scheme on three public datasets for subject-specific
MI-based BCI and achieve promising results. Specifically,
the cross-session average classification accuracies are
79.39% on BCI-IV2a, 87.81% on BCI-IV2b, 65.26%
on OpenBMI dataset, while the within-session aver-
age classification accuracies are 86.87% on BCI-IV2a,
87.26% on BCI-IV2b, and 84.29% on OpenBMI dataset,
respectively.

The code is publicly available at https://github.com/UM-
Tao/ADFCNN-MI.

II. RELATED WORK

In the past decade, CNNs have demonstrated remarkable
successes in the field of computer vision, owing to their ability
to capture both global and local features from image signals
through convolution operations [36]. When processing EEG
signals, convolution in the time or spatial domain of EEG
signals involves weighting the EEG signals by the sliding
kernel. Therefore, CNNs have also been utilized in the field of
BCI to extract relevant spectral and spatial information from
EEG signals via convolution operations. Generally, temporal
convolutions operate one-dimension (1)-D) convolution along
the temporal dimension to extract EEG spectral informa-
tion. A large kernel size allows for capturing low-frequency
information, while a small kernel size allows for capturing
high-frequency information [37]. Spatial convolutions operate
the 1-D convolution along the channel dimension to extract
spatial information from EEG signals, wherein kernels can
be considered as spatial filters, and the learned weights are
indicative of the information from different electrodes. In addi-
tion, there are two types of convolution operations that are
commonly used: standard convolution operates on all feature



156 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 32, 2024

maps, and enables the sharing of weights among feature maps,
while separable convolution operates on each feature map one
by one, which provides sparse information with fewer param-
eters. Moreover, CNNs can be categorized as single-scale and
multi-scale depending on the application of different-scale
convolutions. Single-scale CNNs extract spectral and spatial
information from EEG signals using single-scale temporal and
spatial convolution, but the efficacy of single-scale convolution
may vary from subject to subject, session to session and even
time point to time point in EEG classification tasks. Compared
to single-scale CNNs, multi-scale CNNs leverage convolutions
on multiple scales to gain more comprehensive insights from
EEG signals. For instance, Dai et al. explored three types of
temporal convolutions and developed a multi-scale CNN archi-
tecture to enhance MI classification accuracy [33]. Zhao et al.
converted EEG signals into 3D representation and employed
a 3-branch 3D CNN to address MI classification tasks [35].
Jia et al. proposed a multi-branch multi-scale CNN to extract
different-scale spectral information from EEG signals, thereby
improving MI classification performance [38].

Although multi-scale CNNs extract more information com-
pared with single-scale CNNs, it is challenging to effectively
fuse different-scale information in the feature fusion module
for multi-scale CNNs. Conventional multi-scale CNNs often
utilize a straightforward concatenation of all the features,
disregarding the internal connections between and among
different-scale features. However, recent advances in atten-
tion mechanism have allowed for the successful extraction
of implicit information from features [39], [40], [41]. For
instance, channel-wise attention extracts the importance infor-
mation among channels through allocating weights to different
channels [40]. Temporal attention is used to capture long-range
temporal dependency of time series data [41]. Moreover, self-
attention mechanism, which considers the similarity among
the feature vectors (i.e., query (Q), key (K ), and value (V )),
can be used to obtain the self-attention weights by softmax
function calculation. What is more, self-attention mechanism
has been widely used in the field of BCI due to its ability
to explore the time dependency of EEG slices. For instance,
Zhang et al. proposed a convolutional recurrent attention
model, which combines self-attention mechanism with CNN
and Long Short-term Memory (LSTM) to extract the intrinsic
time-spatial dependency among different time slices [42].
Xie et al. proposed a transformer-based deep model with the
self-attention mechanism to extract implicit spatial informa-
tion from raw EEG signals [43]. Considering the ability of
self-attention mechanisms to explore the internal correlations
among features, it can be incorporated to improve the flex-
ibility of fusion features with multi-scale CNNs, leading to
an enhanced classification performance of the deep learning
model.

III. MATERIALS AND METHODS

A. Dataset Description
In this study, we evaluated the effectiveness of the proposed

model using three widely-recognized public datasets. Each
dataset differs in the number of subjects, electrodes, signal

qualities and experimental setup. The details of each dataset
are presented as follows:

1) BCI Competition IV 2a Dataset (BCI-IV2a) [44]: It was
collected from nine healthy subjects with a sampling rate
of 250 Hz. For each subject, 576 trials from two EEG
sessions, recorded from 22 Ag/AgCl electrodes according to
the international 10-20 system, were obtained. The dataset
contained four types of MI tasks, including those for left-hand,
right-hand, both feet, and tough. Each trial lasted four seconds
during the MI period.

2) BCI Competition IV 2b Dataset (BCI-IV2b) [45]: It com-
prised EEG recordings obtained from nine subjects at a
sampling rate of 250 Hz, using three electrodes located
in positions C3, Cz, and C4 according to the international
10-20 system. Two MI tasks (left-hand vs. right-hand) were
performed and each trial had an imagery duration of 4s. The
first two sessions comprised 400 trials, and the remaining
three sessions had 320 trials each. The first two sessions
were processed without feedback, whereas the remaining three
sessions were processed with feedback.

3) OpenBMI Dataset [46]: It was collected from fifty-four
subjects using 62 Ag/AgCl electrodes at a sampling rate
of 1000 Hz. The dataset consisted of a hybrid of three
paradigms (MI, ERP, and SSVEP). It contained two MI tasks
(left-hand vs. right-hand), and contained two sessions per
subject with 200 trials per session, with each trial lasting 4s
for the MI paradigm.

B. EEG Data Preprocessing
In preprocessing, each EEG trial can be first described

X ∈ RC×T where C is the number of EEG electrode nodes,
T is the number of sampling points. For electrode, we consider
all electrodes for two BCI competition datasets where C is
set to 22 and 3, and we consider these electrodes related
to motor region for OpenBMI dataset where C is set to
20 according to the [46]. For sampling rate, we down-sample
raw data from 1000 Hz to 250 Hz for openBMI dataset to
keep the same sampling rate of three datasets. For the period,
we consider the 0s-3s after the cue in the imagery period for
processing as suggested by [27]. Later, we apply a bandpass
filter to obtain filtered EEG signals between 0-40 Hz following
the recommendation in [27]. Moreover, the influences due
to different choices of periods and frequency bands have
been further discussed as shown in Tables S1-S4 of the
supplementary file. In addition, we employ the electrode-wise
exponential moving standardization [12], [47], [48] to obtain
standardized EEG data X′

∈ RC×T as shown in the following
formulas:

mt = α · mean(xt ) + (1 − α) · mt−1, (1)

where xt ∈ RC×1 denotes the value at time t of X, mt denotes
the moving mean value at time t , the α denotes the decay
factor and is set to 0.001.

vt = α · (mt − xt )
2
+ (1 − α) · vt−1, (2)

where vt denotes the moving variance value at time t ,

x ′
t = (xt − mt )/

√
vt , (3)
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Fig. 1. Framework of the proposed attention-based dual-scale fusion convolutional neural network for MI-EEG classification.

TABLE I
THE PARAMETERS OF ADFCNN ARCHITECTURE

where x ′
t denotes the value at time t of standardized EEG

data X′.

C. Model Architecture
Temporal convolutions with large kernel sizes are able

to extract broader frequency information from EEG sig-
nals, while those with small kernel sizes can extract higher
frequency information. Similarly, spatial convolutions with
separable manner can extract global and detailed spatial
information, while standard manner can extract abundant
and detailed spatial information. To take advantage of the
different-scale temporal and spatial convolutions, we intro-
duce a dual-scale joint temporal-spatial CNN module capable
of capturing multi-scale spectral and spatial information of
EEG signals. Additionally, we design an attention-based fea-
ture fusion module to effectively fuse the features extracted
by the dual-scale CNN, thereby exploring the similarity of

concatenated features and improving the flexibility of the
fusion feature. The proposed scheme is illustrated in Fig. 1,
where the input is 2D EEG signals. A dual-branch temporal-
spatial CNN is used to extract both spectral and spatial features
from the EEG signal. Subsequently, a self-attention mecha-
nism is employed to fuse the concatenated features. Finally,
a dense layer is used as the classifier to calculate the classifi-
cation result. The detailed structure of this model is presented
in Table I, which includes information such as modules, layers,
kernel size, number of trainable parameters and output shape.

In the first temporal-spatial CNN branch (Branch-I), which
focuses on capturing larger-scale spectral and spatial informa-
tion, we incorporated both large-scale temporal convolution
and separated spatial convolutions. Temporal convolution layer
employs F large-scale kernels with size [1 × 125] to extract
filtered feature maps from raw EEG signals as suggested
by [28]. These temporal kernels with large size mainly capture
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low-frequency information. Subsequently, separable spatial
convolution layer employs F spatial kernels with size [C ×1 ]
to extract global spatial information of the feature map one
by one. This operation not only helps to reduce the number
of trainable parameters in convolution operations, but also
adds a layer of sparsity to the feature map. To combine these
separated spectral-spatial features, a point-wise convolution
layer with kernel size [1 × 1] is then used to integrate the
separated spatial features and synthesize them into a com-
prehensive representation. Finally, an average pooling layer
with size [1×32] reduces dimension of features following the
recommendation in [28]. The learning process of Branch-I can
be summarized as follows:

Xr
T1

= TConvr
(
X′

)
, r ∈ [1, 2, . . . , F], (4)

Xr
S1

= Separable_SConvr
(
Xr

T1

)
, r ∈ [1, 2, . . . , F], (5)

XP = Pointwise_Conv
(
XS1

)
, (6)

X1
F = AveragePool (XP ) , (7)

where X′ is the input, TConvr is the temporal convolution
with r -th temporal kernel, Xr

T1
is the output of large-scale tem-

poral convolution, Separable_SConvr is the separable spatial
convolution with r -th spatial kernel, Xr

S1
is the output of sep-

arable spatial convolution, Ponitwise_Conv is the point-wise
convolution to mix the feature maps by separable manner and
X P is the output of point-wise convolution. AveragePool is
average pooling operation. X1

F denotes the learned feature map
in Branch-I with size [F × 1 × T1].

In the second temporal-spatial CNN branch (Branch-II),
which aims to capture smaller-scale spectral and standard spa-
tial information. F small-scale temporal convolution kernels
with size [1×30] are employed to mainly extract feature maps
at high-frequency information as suggested by [27]. A standard
spatial convolution layer learns global spatial information
from all feature maps, utilizing F × F standard convolution
kernels with size [C × 1]. An average pooling layer with size
[1×75] is applied to reduce the feature dimension and preserve
large-scale temporal information of learned features according
to [27]. The learning process of Branch-II can be formalized
as follows:

Xr
T2

= TConvr
(
X′

)
, r ∈ [1, 2, . . . , F], (8)

XS2 = Standard_SConv
(
XT2

)
, (9)

X2
F = AveragePool

(
XS2

)
, (10)

where X′ denotes the same input as in Branch-I, Xr
T2

is the
output of small-scale temporal convolution with r -th temporal
kernel, standard_SConv is the standard spatial convolution and
XS2 is the output of standard spatial convolution, X2

F denotes
the learned feature map in Branch-II with size [F × 1 × T2].

In the feature fusion module, we first concatenate features
extracted by dual-scale joint temporal-spatial CNN module as
follows:

XF = Concat
(

X1
F , X2

F

)
, (11)

where Concat denotes the concatenation operation and XF
is concatenated features with size [F × 1 × (T1 + T2)].
To further explore the implicit information of concatenated

Fig. 2. The detailed architecture of self-attention mechanism.

feature map XF , we apply the self-attention to calculate the
similarity within XF and reallocate attention weights to F
channels of XF [39]. The self-attention mechanism is shown
in Fig. 2, where H = 1 and W = (T1 + T2) in concatenated
feature map X F . To obtain the internal similarity of features,
the XF is multiplied into three different weight matrices by
linear transformation to obtain the queries (Q), keys (K ), and
values (V ) as follows:

Q, K , V = Linear
(

XF , W Q, W K , W V
)

, (12)

where Linear denotes the linear transformation with weights,
W Q , W K , and W V are trainable parameters in linear transfor-
mation. To obtain the attention score of concatenated features,
the similarity of different features is first computed with dot
products of the queries (Q) with keys (K ). Then, the results of
dot product are divided each by

√
dk and a softmax function

is applied to obtain the attention matrix. Lastly, the attention
matrix is considered as weights to allocate on values (V ), the
calculation can be described as follows:

Attention(Q, K , V ) = softmax(
Q · K T
√

dk
) · V, (13)

where dk is the dimension of Keys (K ), it is set to 64 in our
work. In addition, we also apply the skip-connection to keep
the intrinsic information of concatenated features in feature
fusion module.

Finally, we apply a dense layer with a softmax function
to the output, yielding an M-dimensional feature vector.
We employ cross-entropy as the loss function for model
training, which is expressed as:

L = −
1

Nb

Nb∑
i=1

M∑
c=1

y log(ŷ), (14)

here M denotes the number of MI tasks, y and ŷ denote
the actual and predicted label, respectively. Nb represents the
number of samples in one batch.

D. Simulation Setup
The proposed method is first compared with five repre-

sentative deep learning baselines by experiments, including
EEGNet [28], Deep ConvNet [27], Shallow ConvNet [27],
FBCNet [30], and IFNet [31]. Then, we compare the pro-
posed method with several state-of-the-art (SOTA) deep
learning methods by literature including MCNN [47],
MI-EEGNET [49], MSHCNN [50], MMCNN [38], Tensor-
CSPNet [51], SHNN [52], and Conformer [53]. In the
experiments for comparison, the hyperparameters include the
training epoch, the batch size, the learning rate, and the weight
decay. Due to that the learning rate and weight decay are
significant for different deep models in network optimization,
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we also conducted experiments to determine the optimal
values of these two hyperparameters for each model using the
BCI-IV2a dataset as shown in Figures S1 and S2 of the sup-
plementary file. Consequently, we selected the optimal value
of learning rate, e.g., 0.001 for each deep model, and selected
different respective optimal value of weight decay for different
methods, e.g., 0.075 for EEGNet, Shallow ConvNet, Deep
ConvNet, and ADFCNN, 0.001 for FBCNet and IFNet. The
rest hyperparameters keep consistent with different methods,
such as training epoch, and the batch size are set to 1000,
16, respectively. In addition, all methods adopt Adam as an
optimizer and cross-entropy loss as loss function. For platform,
these methods are implemented in Python with Pytorch, and
are trained on NVIDIA Tesla v100 GPU.

As an active BCI paradigm, motor imagery task requires
subjects to actively engage in self-practice [54], the pro-
posed method and compared methods are mainly evaluated
in subject-specific MI-based BCI which refers to training
the decoding model using the target subject’s data. Subject-
specific MI has the potential to have better decoding accuracy
as the deep model can capture the individual’s unique neural
patterns [50], [51], [53]. Two common cases of subject-specific
MI-based BCI are considered including within-session and
cross-session scenarios. In the former, training and testing sets
are taken from the same session, while in the latter, they are
taken from distinct, independent sessions. For within-session
case, we performed the five-fold cross-validation specifically
on the data from the first session, and then reported the average
accuracy across these five folds as our within-session result.
For cross-session evaluation, we applied the same five-fold
cross-validation procedure using the data from the first session,
the reported results reflect the average performance of five
models tested on the second session’s data.

To statistically compare the classification results of the
proposed method with those of five deep learning baselines
in experiments, we employ Wilcoxon signed rank test [55]
on all subjects between the proposed method and baselines.
We then estimate the p−value to be less than 0.05, which
indicates a statistically significant difference between them.

IV. EXPERIMENTAL RESULTS

In this section, we first present detailed comparative exper-
iments to demonstrate the influence of the critical parameter.
Subsequently, we conduct experiments to validate the proposed
model on three public datasets. In addition to compare our
method to several popular deep learning techniques based on
the classification performance, we also demonstrate the effec-
tiveness of the critical modules of the proposed model through
ablation experiments. Finally, we explore various visualization
methods to gain insights into model interpretability.

A. Effect of Kernel Number
Conventional multi-scale CNNs typically construct the net-

work with multiple branches and layers to extract more
information from EEG signals [38], [47], [49]. However, too
many trainable parameters can lead to overfitting of limited
training data and therefore, the number of trainable parame-
ters is an important factor to consider when designing deep

Fig. 3. Effect of kernel number on the total parameter number and
classification performance in the proposed method.

Fig. 4. Within-session classification performance comparison of the
proposed method and other methods on three datasets, * : p < 0.05,
** : p < 0.01.

models for BCIs. To this end, Table I presents the critical
network parameters, namely the number of used electrodes
and temporal convolution kernels, which influence the number
of trainable parameters. Therefore, to search for the optimal
number of temporal convolution kernels, we conducted an
experiment on the BCI-IV2a dataset, which has the most
used electrodes compared to the other two datasets. The
results of the effect of the kernel number, total parameters,
and classification performance are illustrated in Fig. 3. Based
on the experimental results, we set the number of temporal
convolution kernels F to eight in the following simulations.

B. Classification Performance
Fig. 4 illustrates the average classification results of the

proposed method and compared methods in the within-session
case of subject-specific MI-based BCI. It is observed
from Fig. 4 that ADFCNN achieves the highest classifica-
tion accuracy on three datasets. The proposed method has
significant improvements compared with four methods on
two BCI competition datasets (p < 0.05) and performs
significantly better than two baselines on OpenBMI dataset
(p < 0.05). Fig. 5 presents the average classification results
of the proposed method as well as compared methods in the
cross-session case of subject-specific MI-based BCI. It can
be found that the classification results of most methods have
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TABLE II
THE VARIANT MODELS OF ABLATION EXPERIMENT

TABLE III
COMPARISON OF THE PROPOSED METHOD WITH FOUR SOTA METHODS IN CROSS-SESSION CASE ON BCI COMPETITION DATASETS

Fig. 5. Cross-session classification performance comparison of the
proposed method and other methods on three datasets, * : p < 0.05,
** : p < 0.01.

decreased compared with those in the within-session case, due
to differences caused by equipment and subject in the cross-
session case. Nevertheless, the proposed method still has better
classification results on three datasets and improves the results
significantly compared with baselines (p < 0.05). These
experiment results demonstrate that the proposed method
has a superior classification performance for subject-specific
MI-based BCI in both within-session and cross-session
cases.

After careful comparison with five representative deep
learning baselines by experiments, we also compare our
proposed method with the reported results of four deep learn-
ing methods employing multi-scale CNNs with concatenation
fusion, as shown in Table III. These multi-scale CNN methods
include MCNN [47], MI-EEGNET [49], MSHCNN [50] and
MMCNN [38]. MCNN is a multi-layer CNN method that

fuses CNNs with different characteristics and architectures
through feature concatenation, while MI-EEGNET is a Con-
vnet based on the concatenation of Inception and Xception
architectures. MSHCNN is a multi-scale hybrid CNN that
concatenates one-dimensional and two-dimensional convolu-
tions, and MMCNN is a multi-branch multi-scale network
with concatenation. From Table III, it is evident that our
proposed method achieves superior classification performance
compared to these existing multi-scale CNN methods with
concatenation fusion. In addition, we compared our proposed
method with three latest deep learning methods including
Tensor-CSPNet [51], SHNN [52], and Conformer [53]. Tensor-
CSPNet is a novel geometric deep learning framework that
exploits the temporo-spatio-frequency features of EEG signals.
SHNN is a SincNet-based hybrid neural network that automat-
ically filters data and extracts spatial, spectral, and temporal
features from EEG. Conformer is a compact convolutional
transformer network that combines local features and global
features of EEG signals. Finally, We summarize the reported
results of the five baselines, four multi-scale CNN methods,
three latest methods, and our proposed method on two BCI
competition datasets, as presented in Table IV. Overall, our
proposed ADFCNN method outperforms existing multi-scale
CNN methods with concatenation fusion and shows promising
results compared to recent deep learning approaches for EEG
classification.

C. Ablation Experiments
To study the effect of different components in the pro-

posed model, we perform ablation experiments on three
datasets and design the following variant models as shown
in Table II:
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TABLE IV
PERFORMANCE COMPARISON WITH RELATED WORKS

Fig. 6. The ablation experimental results, * : p < 0.05, ** : p < 0.01..

• ADFCNN-Branch I: This variant model mainly consists
of a large-scale temporal convolution layer, separable
convolution layers, an average pooling layer for feature
extraction, and a dense layer for feature classification, all
of which were used to demonstrate the effectiveness of
the first temporal-spatial CNN branch.

• ADFCNN-Branch II: To demonstrate the effectiveness
of the second temporal-spatial CNN branch, this variant
model consists of a small-scale temporal convolution
layer, a standard spatial convolution layer, an average
pooling layer for feature extraction, and a dense layer
for feature classification.

• DFCNN: This model was designed to demonstrate the
effectiveness of the self-attention mechanism in the fea-
ture fusion module.

Fig. 6 demonstrates that the critical modules of the proposed
method are successful in MI classification, specifically tempo-
ral convolution, separable spatial convolution, standard spatial
convolution and self-attention layers. It can be observed that
the dual-scale joint temporal-spatial CNN yields an improved
classification performance compared to the single-branch
temporal-spatial CNN across three datasets. Furthermore, the
self-attention mechanism can be found to be beneficial, leading
to a further increase in performance.

D. Convolution Kernel Visualization
To further understand the effect of convolution kernels in

the proposed method, we visualize the weights of dual-scale
spatial and temporal convolution kernels in ADFCNN by topo-
logical mapping and Fourier transform, respectively. Fig. 7(a)
depicts the topological mapping of weights from separable
spatial kernels, revealing that these eight kernels mainly extract
global spatial information from all electrodes. Fig. 7(b) shows
the topological mapping of weights from sixteen standard
spatial convolution kernels. We observe that the weights of
MI-related electrodes such as C3, C4 and Cz are higher
than that of other electrodes in most kernels, revealing that
they have learned more detailed spatial information related
to MI. Additionally, the Fourier transform visualization of
weights from dual-scale temporal convolution kernels further
shows evidence of the efficacy of the proposed method. Fig. 8
reveals that temporal convolution kernels maintain specific
spectral information, with each kernel curve exhibiting a
single peak in the power spectral density (PSD). In Fig. 8(a),
five kernels are observed to learn spectral information at
approximately 10 Hz, and three kernels are present to retain the
frequency information in the 20-40 Hz range. These findings
demonstrate that large-scale temporal convolution kernels with
size [1 × 125] can broadly capture low-frequency informa-
tion from EEG µ rhythm. Furthermore, Fig. 8(b) indicates
that most temporal kernels maintain frequency information
between 20 Hz and 30 Hz, with only a few kernels retaining
frequency information in the 10-20 Hz range. These results
suggest that small-scale temporal convolution kernels of size
[1×30] can primarily capture high-frequency information from
EEG β rhythm.

E. Attention Visualization
For a detailed interpretation of the self-attention mechanism

applied in feature fusion, we visualize the self-attention matrix
to analyze the internal similarity of concatenated features.
Fig. 9 shows the self-attention matrix of concatenated features
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Fig. 7. The spatial visualization of spatial convolution kernels after learning: (a) eight separable spatial convolution kernels in Branch I; (b) sixteen
standard spatial convolution kernels in Branch II (Subject 7 from BCI-IV2a dataset).

Fig. 8. The spectral visualization of temporal convolution kernels
after learning: (a) kernel with size 1 × 125 in Branch I; (b) kernel with
size 1 × 30 in Branch II (Subject 7 from BCI-IV2a dataset).

Fig. 9. The self-attention score visualization (Subject 7 from BCI-IV2a
dataset).

from the subject 7 in BCI-IV2a. According to Equation 13,
the self-attention score is calculated between Queries and
Keys from concatenated features through a dot-product and
a softmax operation, which reflects the similarity within con-
catenated features. As can be observed in Fig. 9, channels 1,
3, 7, and 8 of the Queries feature map are more similar to
channels 5, 6, 7 and 8 of the Keys feature map for this
subject, which are allocated more self-attention scores. The
self-attention scores can then be used to reweigh the Values
feature map, thereby adaptively improving the flexibility of
fusion feature.

Fig. 10. The t-SNE visualization for high-dimensional features from
two branches of ADFCNN: (a) the two-class distribution of features
by Branch I for subject 7 from OpenBMI dataset, (b) the two-class
distribution of features by Branch II for subject 7 from OpenBMI dataset,
(c) the four-class distribution of features by Branch I for subject 7 from
BCI-IV2a dataset, (d) the four-class distribution of features by Branch II
for subject 7 from BCI-IV2a dataset.

F. Feature Visualization and Confusion Matrices
In order to further illustrate the efficacy of the two

temporal-spatial CNN branches and feature fusion based
on the self-attention mechanism, the t-distributed Stochastic
Neighbor Embedding (t-SNE) method is applied to visualize
the high dimensional features extracted by each of the four
models, Branch I, Branch II, DFCNN, and ADFCNN. As seen
in Fig. 10, two temporal-spatial CNN branches are found to
have various learning abilities of features. Specifically, the
distribution of features learned by Branch I (Fig. 10(a)) is
more separable than that by Branch II (Fig. 10(b)). In contrast,
the distribution of features learned by Branch II (Fig. 10(d))
is more separable than that by Branch I (Fig. 10(c)). Further-
more, Fig. 11 demonstrates that the features with self-attention
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Fig. 11. The t-SNE visualization for high-dimensional features from
concatenation fusion and attention-based fusion: (a) the four-class dis-
tribution of fusion features by concatenation for subject 1 from BCI-IV2a
dataset, (b) the four-class distribution of fusion features by attention for
subject 1 from BCI-IV2a dataset, (c) the four-class distribution of fusion
features by concatenation for subject 7 from BCI-IV2a dataset, (d) the
four-class distribution of fusion features by attention for subject 7 from
BCI-IV2a dataset.

fusion are more separable than those without the self-
attention mechanism. For instance, the clusters of left-hand
and right-hand are separated but there is still overlap of
feet and tough clusters as seen in Figs. 11(a) and 11(c).
However, with the aid of self-attention processing, the over-
lap between feet and tough clusters has been alleviated,
as seen in Figs. 11(b) and 11(d). These results show that the
self-attention mechanism can effectively improve the flexibil-
ity of concatenated features and contribute to the attainment
of discriminative and robust fusion features.

Moreover, Fig. 12 shows the confusion matrix for each
class with the proposed model and three variants as intro-
duced in ablation experiments. We find that the classification
accuracy of ADFCNN is 0.93, significantly higher than 0.73,
0.83 and 0.87 of ADFCNN-Branch I, ADFCNN-Branch II and
DFCNN, respectively, for subject 7. Compared with DFCNN,
the ADFCNN has an improved true positive rate for Feet
and Left-hand as shown in Figs. 12 (c) and 12(d), which is
consistent with corresponding feature distributions as shown
in Figs. 11(c) and 11(d).

V. DISCUSSION

Recent studies have explored the use of convolutional neu-
ral networks (CNNs) for motor-imagery (MI) classification,
including single-scale and multi-scale CNNs. Single-scale
CNNs typically utilize temporal and spatial convolution with
a single-scale to extract spectral and spatial information
from electroencephalography (EEG) signals. For example,
temporal convolutions with different kernel sizes capture
different-band spectral information, and spatial convolu-
tions with separable or standard manners capture different

Fig. 12. Confusion matrices of classification accuracy for each class
in the testing data of subject 7 from BCI-IV2a dataset: (a) confusion
matrix of ADFCNN-Branch I, (b) confusion matrix of ADFCNN-Branch II,
(c) confusion matrix of DFCNN, (d) confusion matrix of ADFCNN.

inter-channel information. Multi-scale CNNs capture features
from different scales, but traditional feature fusion of multi-
scale CNNs only involves direct feature concatenation. While
this simple concatenation increases the dimension of features
and thus the amount of information, it is limited in its
ability to explore implicit information of the fused features.
To address this, we propose an attention-based dual-scale
fusion CNN (ADFCNN) for MI-based BCI. Specifically,
the dual-scale temporal-spatial CNN jointly extracts abun-
dant spectral and spatial information, and the self-attention
mechanism performs feature fusion according to the internal
similarity of the concatenated features. By utilizing similar
but different structures in Branch-I and Branch-II, dual-scale
joint CNN can effectively extract multi-scale spectral and
spatial information from the input signals. This design choice
enhances the overall performance of our proposed method
by optimizing the extraction of diverse and complementary
features. Additionally, this scheme also provides novel insight
through self-attention for effective information fusion from
different scales. Moreover, We conducted ablation experiments
to explain the mechanism and demonstrate the effectiveness
of our approach, and used visualization techniques to provide
interpretability into the learning process and feature distribu-
tions of our model.

In our experiments, we focus on processing the EEG signals
within the post-cue period of 0-3 seconds and a frequency band
of 0-40 Hz. This choice aligns with the deep learning methods
employed in previous studies [27], [53], [56] and proves to
be effective in capturing a broader range of motor-related
patterns by a series of experiments as shown in Tables S1-
S4 of the supplementary file. By incorporating this time
period and frequency band selection, deep models successfully
encompass both the low-frequency information provided by
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the motor-related cortical potential (MRCP) [57] and the
high-frequency information derived from the sensory motor
rhythm (SMR) [58]. As a result, deep learning methods can
demonstrate improved performances when operating within
this particular period and frequency band selection. Moreover,
we compare the proposed method to five representative deep
learning baselines, four SOTA multi-scale CNNs methods
and three latest deep learning techniques, ultimately achieve
superior classification performances on three public datasets
for subject-specific MI-based BCI. Through an ablation study,
we demonstrate the effectiveness of dual-scale joint temporal-
spatial CNN and self-attention mechanism modules. Addition-
ally, we explore the effect of critical parameters in the model
and find that the number of temporal convolution kernels
influences the model performance with limited training data.
To reveal the learning process and learned feature distribution
of the proposed method, we perform detailed visualizations.
Firstly, spatial convolution visualization reveals that separable
spatial kernels can mainly extract the global information from
all electrodes, while standard spatial convolution kernels can
extract more detailed information related to MI by concen-
trating higher weights in brain central areas including C3, C4
and Cz electrodes. Secondly, temporal convolution visualiza-
tion reveals that the low-frequency information extracted by
large-scale temporal kernels is mainly located in the µ rhythm
(7-13 Hz), and high-frequency information extracted by
small-scale temporal kernels is mainly located in the β rhythm
(13-30 Hz). These rhythms can reflect the event-related desyn-
chronization (ERD), event-related synchronization (ERS)
patterns in motor imagery [58]. Thirdly, the self-attention
visualization can reflect the internal similarity of concatenated
features and be used to generate more flexible fusion features.
Finally, by visualizing features with t-SNE, we observe that
two temporal-spatial CNN branches have different learning
abilities on the same subject. This demonstrates that it is
more reasonable to design a dual-scale joint CNN module to
capture different-scale information compared to a single-scale
CNN. Additionally, we observe that self-attention mechanism
can further enhance the discrimination capability of learned
features and improve the feature fusion in multi-scale CNN.

There are still some limitations in this work. First, due to the
compact nature of the proposed network and its fewer param-
eters, data augmentation techniques have not been considered
to increase the training dataset. Second, the primary focus has
been the discussion of the critical parameter of temporal kernel
number, while other network parameters such as temporal
convolution kernel size and pooling size have been taken from
existing studies. Third, while current study focuses on subject-
specific task, the proposed neural network structure can be
applied as a feature extractor in cross-subject task as well,
and we intend to explore the applicability and adaptability of
our method in cross-subject scenarios in future research.

VI. CONCLUSION

In this paper, we present a highly effective approach to MI
classification using an attention-based dual-scale fusion convo-
lutional neural network (ADFCNN). To extract more abundant
information over a wide spectrum from EEG signals and

effectively fuse information from different scales, our method
jointly extracts EEG spectral and spatial information at differ-
ent scales, while also employing a self-attention mechanism
to enhance the flexibility of feature fusion. Empirical results
on three public datasets demonstrate that our method out-
performs several state-of-the-art methods for subject-specific
MI-based BCI. Further validations of the proposed method
are provided by ablation experiments, which demonstrate the
mechanisms of feature extraction and fusion, and visualization
analyses, which reveal the characteristics of different-scale
temporal-spatial convolutions and the self-attention mecha-
nism. To sum up, the proposed ADFCNN yields promising
results for MI-based BCI and provides novel insight through
self-attention for different-scale information fusion, is thus
an effective feature extractor for EEG processing with deep
learning.
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