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Abstract— With the goal of promoting the development
of myoelectric control technology, this paper focuses on
exploring graph neural network (GNN) based robust elec-
tromyography (EMG) pattern recognition solutions. Given
that high-density surface EMG (HD-sEMG) signal con-
tains rich temporal and spatial information, the multi-view
spatial-temporal graph convolutional network (MSTGCN)is
adopted as the basic classifier, and a feature extraction
convolutional neural network (CNN) module is designed
and integrated into MSTGCN to generate a new model
called CNN-MSTGCN. The EMG pattern recognition exper-
iments are conducted on HD-sEMG data of 17 gestures
from 11 subjects. The ablation experiments show that
each functional module of the proposed CNN-MSTGCN
network has played a more or less positive role in improv-
ing the performance of EMG pattern recognition. The
user-independent recognition experiments and the transfer
learning-based cross-user recognition experiments verify
the advantages of the proposed CNN-MSTGCN network
in improving recognition rate and reducing user training
burden. In the user-independent recognition experiments,
CNN-MSTGCN achieves the recognition rate of 68%, which
is significantly better than those obtained by residual
network-50 (ResNet50, 47.5%, p < 0.001) and long-short-
term-memory (LSTM, 57.1%, p=0.045). In the transfer
learning-based cross-user recognition experiments, TL-
CMSTGCN achieves an impressive recognition rate of
92.3%, which is significantly superior to both TL-ResNet50
(84.6%, p = 0.003) and TL-LSTM (85.3%, p = 0.008). The
research results of this paper indicate that GNN has
certain advantages in overcoming the impact of individ-
ual differences, and can be used to provide possible
solutions for achieving robust EMG pattern recognition
technology.

Index Terms— EMG, gesture recognition, graph neural
network, transfer learning, user-independent.
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I. INTRODUCTION

ELECTROMYOGRAPHY(EMG) pattern recognition
technology that recognizes EMG signals as meaningful

action patterns or intentions, is crucial for the application of
myoelectric control systems in fields such as prosthesis [1],
rehabilitation engineering [2], human-computer interaction
[3]etc. At present, EMG pattern recognition in user-specific
mode (training and testing data from the same user) has
shown significant progress. For gesture recognition tasks
of 4-12 gestures, the recognition rates can reach 84.4% to
98.81% [4], [5], [6], [7], [8]. However, due to the need to
train specific classifier for each user, user-specific mode will
bring a heavy user training burden in practical applications.
Therefore, robust EMG pattern recognition technology that
works in user-independent mode has become a research
hotspot in this field.

The goal of user-independent EMG pattern recognition
research is to design universal classifiers for the application
of myoelectric control systems. Unfortunately, due to the
individual differences in anatomical structure (such as the
relative position and spatial distribution of muscles), even for
the same gesture, different users may have different patterns,
which makes it difficult to ensure high user-independent
recognition rate [9], [10], [11]. In fact, the obtained recog-
nition rate of user-independent EMG pattern recognition is
generally low in relevant researches. For instance, Matsubara
et al. only achieved a 54% recognition rate on a 5-gesture
recognition task by using support vector machine (SVM)
[9]. Ketykó et al. proposed a 2-Stage Recurrent Neural Net-
work (2SRNN) approach that achieved a recognition rate of
35.1% across 12-gesture recognition task [10]. The recognition
rate of 65.03% was achieved on a 11-gesture recognition
task by Côté-Allard et al. using a convolutional network
(ConvNet) [11].

In recent years, scholars have made a lot of efforts and
proposed a series of solutions based on domain generaliza-
tion to improve the performance of user-independent EMG
pattern recognition. In the domain generalization methods,
common EMG features and patterns learned from the data of
multiple users are used to improve user-independent recog-
nition rate. Côté-Allard et al. introduced a multi-domain
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learning algorithm named ADANN (Adaptive Domain Adver-
sarial Neural Network) that enhanced the recognition rate of
11 gestures to 84.43% [11]. Li et al. proposed a mix-up
and adversarial training for domain generalization (MAT-DG)
framework and achieved a recognition rate of 91.85% for
a 7-gesture recognition task [12]. Zhang et al. proposed a
multi-source synchronized domain generalization (MS-DG)
model and achieved a recognition rate of 73.04% for a
6-gesture recognition task [13].

In the meanwhile, as a compromise solution, some
researchers have attempted to conduct cross-user EMG pattern
recognition research based on transfer learning or domain
adaptation [10], [14], [15], [16], [17]. The idea of transfer
learning technology or domain adaptation technology is to
extract knowledge from related fields or from the same fields
that have been pre-trained to assist the training and classifi-
cation of target tasks [18]. Although they introduced a little
training burden for new users, the recognition rate can usually
be improved even more. In the aforementioned study of Li
et al. [12] and Zhang et al. [13], the recognition rate of
the domain adaptation method MAT-DA and MS-DA reached
93.54% and 87.93% respectively, both of which were higher
than those of the domain generalization methods (91.85% for
MAT-DG and 73.04% for MS-DG). Wang et al. proposed a
novel approach by integrating a transfer learning strategy into
recurrent convolutional neural networks (RCNNs), improving
the recognition rate of 49 gestures from 73.76% to 87.36%
[14]. Campbell et al. presented an approach called adaptive
domain adversarial neural network for cross-user myoelectric
control, increasing 10-gesture recognition rate from 86.8% to
96.2% [17].

In terms of algorithm, both traditional machine learning
methods [19], [20] and deep learning methods [5], [21]
have been successfully applied to user-specific EMG pattern
recognition. Specifically, it has been verified that deep learning
models such as convolutional neural network (CNN) and
recurrent neural network (RNN) can achieve higher accuracy
of gesture recognition than traditional machine learning mod-
els. However, even deep learning models such as CNN and
RNN failed to achieve satisfactory recognition performance
in user-independent mode [13], [14]. Physiological studies
have shown that regardless of the significant differences in
muscle spatial distribution between individuals, the same ges-
ture movements are controlled by the central nervous system
issuing the same motor intention commands [22]. In other
words, for the same gesture, regardless of whether there are
anatomical differences in muscle distribution among different
users, there are similar functional connections between the rel-
evant muscles. If this functional connection between relevant
muscles can be effectively captured, it may provide a solution
for achieving high-accuracy user-independent EMG pattern
recognition. However, RNN is a sequence model with poor
ability to capture spatial information, and CNN primarily focus
on local correlations between adjacent pixels, which makes it
challenging for them to capture cross-muscle correlations.

Graph neural network (GNN) is a type of neural network
architecture specifically designed to handle data represented
as graphs, where nodes and edges represent entities and their

relationships, respectively [23]. GNN has been successfully
applied in many fields such as banking and finance [24],
traffic management [25], bioinformatics [26] and computer
vision [27] etc. In the aspect of electrophysiological signals,
Jia et al. proposed a multi-view spatial-temporal graph convo-
lutional network (MSTGCN) for sleep staging task based on
electroencephalography (EEG) [28]. In order to better suit the
characteristics of EEG signals, the EEG channels were mapped
to nodes and the connections between channels are mapped to
edges. By considering the functional connectivity of distinct
brain regions, MSTGCN attained an impressive recognition
rate of 89.5% in the 5-class sleep staging task. As men-
tioned earlier, different individuals may have similar functional
connections in the muscles involved in performing the same
gesture, so we speculate that GNN may have good application
potential in user-independent EMG pattern recognition. In the
context of EMG pattern recognition, GNN can map muscle
channels to nodes in the graph representation and map their
relationships to edges. In this way, it can learn the functional
connection between non adjacent but related muscles, so as
to overcome the influence of anatomical structure differences
between individuals, and provide a possible solution for robust
user-independent gesture recognition.

In fact, GNN has been preliminarily applied in EMG pattern
recognition [29], [30], [31], [32], and has achieved satisfactory
recognition rates in user-specific mode. Lai et al. proposed a
spatial-temporal convolutional network (STCN-GR) based on
EMG graph, achieving an average recognition rate of 99.8%
for 8 gestures [29]. Lee et al. designed a self-attention-based
graph neural network and the average recognition rate of
18 gestures was about 97% [30]. Yang et al. proposed a
multi-modal fusion strategy for EEG and surface EMG based
on graph theory, and obtained the average recognition rate
of 93.86% for 4 gestures [31]. However, in the few studies
conducted on more challenging user-independent EMG pattern
recognition, the performance of GNN is not satisfactory. Zou
et al. proposed an EMG graph based multi-label hand ges-
ture recognition (MLHG) model. For 7 gestures, the average
recognition rate was only 53.52% [32].

With the goal of promoting the development of myo-
electric control technology, this paper focuses on exploring
GNN-based EMG pattern recognition solutions. Specifically,
its main innovations and contributions lie in: 1) Given that
high-density surface EMG (HD-sEMG) signal contains rich
spatial and temporal information, the multi-view spatial-
temporal graph convolutional network MSTGCN [28] with
spatial-temporal attention mechanism is introduced as the
basic classifier. On this basis, a feature extraction CNN
module is designed to improve feature representation abil-
ity of HD-sEMG signal and integrated into MSTGCN to
generate a new model called CNN-MSTGCN; 2) Ablation
experiments are conducted on 17 gestures in user-specific
mode to explore the role of the functional modules includ-
ing CNN, multi-view and attention mechanism modules in
CNN-MSTGCN; 3) Through user-independent EMG pattern
recognition experiments and transfer learning-based cross-user
EMG pattern recognition experiments, it is verified that the
proposed CNN-MSTGCN has certain advantages in improving



74 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 32, 2024

Fig. 1. Block diagram of proposed gesture recognition framework.

Fig. 2. Target gestures: wrist extension (G1), wrist flexion (G2), wrist
ulnar deviation (G3), wrist radial deviation (G4), flexion of thumb (G5),
flexion of index finger (G6), flexion of middle finger (G7), flexion of ring
finger (G8), extension of thumb (G9), extension of index finger (G10),
extension of middle finger (G11), extension of little finger (G12), thumb
abduction (G13), thumb retraction (G14), spread of five fingers (G15),
clenching of fist (G16) and thumb-index finger pinch (G17).

recognition rate and reducing user training burden, and can be
used to provide possible solutions for achieving robust EMG
pattern recognition technology.

II. METHODS

As shown in Fig. 1, for a gesture recognition task, HD-
sEMG signals are acquired from N subjects, and then are
preprocessed and sent to the proposed CNN-MSTGCN net-
work. Three kinds of gesture recognition experiments are
carried out to verify the feasibility and superiority of the
proposed CNN-MSTGCN in achieving robust EMG pattern
recognition. The specific technical details and network design
are elaborated in the following sections.

A. Gesture HD-sEMG Database
In this study, a gesture HD-sEMG database established by

our team is targeted as the research object. This database
consists of HD-sEMG data of C (C=17) gestures (as shown
in Fig. 2) from N (N=11) healthy, non-disabled subjects. The
subjects range in age from 22 to 25 years and are right-handed.
All subjects have been informed of the experimental protocol
before the experiments and signed the informed consent (No.
PJ 2014-08-04) approved by the Ethics Review Committee of
the First Affiliated Hospital of Anhui Medical University.

The signal acquisition device is composed of signal prepro-
cessing hardware (as shown in Fig. 3(a)) and 4 high-density
electrode arrays (as shown in Fig. 3(b)), with a total of M
(M=128) electrode channels. Each electrode is 3.5 mm in
diameter. Two of the electrode arrays, each consisting of

Fig. 3. HD-sEMG signal acquisition device.

48 electrodes in the shape of 8×6 and separated by 14 mm,
collect HD-sEMG signals from the extensor and flexor muscles
of the forearm respectively. The other two electrode arrays,
each consisting of 16 electrodes in the shape of 4×4 and
separated by 14 mm, collect HD-sEMG signals from the
biceps and triceps respectively. Prior to placement of the
electrode array, the target muscles are wiped with alcohol
for disinfecting and conductive adhesives are applied to the
electrodes to reduce impedance. When wearing the electrode
array, ensure that its center line is aligned with the center line
on both sides of the arm to minimize electrode array shift due
to the difference in the thickness of subjects’ arm. Finally,
the electrode array is fixed with a flexible silicone sheet with
strong adhesion and a telescopic brachial band to minimize the
electrode array shift during gesture operation. The HD-sEMG
signal is sampled at a rate of 1 kHz, amplified 1371.1 times by
an amplifier, then filtered through a 20-500 Hz bandpass filter
and converted into a digital signal by a 16-bit AD converter
(ADS1198). The resulting digital signal is displayed on the
computer screen in real time and stored on disk for subsequent
off-line data processing and analysis.

In the process of data acquisition, the subjects sit on a chair
of moderate height and relax their right forearm on the table
in a neutral posture, that is, the rest state. When performing
a gesture, it takes about 1s to move from the rest state to the
gesture, about (1-3)s to hold the gesture, and about 1s to return
to the rest state. Data acquisition experiment is conducted
on 11 subjects respectively. Each subject performs 17 target
gestures in sequence, each gesture is repeated 8 times, and 5s
rest is taken between two repetitions to prevent muscle fatigue.

B. Signal Preprocessing
Since the acquired HD-sEMG signals include active seg-

ments and rest segments, the rest segments need to be removed
because only the active segments are required for EMG
pattern recognition. An amplitude thresholding approach [33]
is adopted to remove the rest segments in the HD-sEMG
signals. As a rule of thumb, the threshold is preset to be the
mean plus three times the standard deviation of the resting
signals averaged over all channels.

After obtaining an active segment, the sliding window
method is used to segment it to obtain gesture samples. Due
to the varying length of time that different subjects maintain
their gestures, the (2-3)s of the active segment are uniformly
selected to divide the samples. Since the sampling rate is
1 kHz, the 1s active segment contains 1000 timing points.
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Fig. 4. The network architecture diagram of CNN-MSTGCN proposed in this study.

The window length T is set as 100 timing points, and the
step length l is set as 50 timing points, so the shape of the
independent sample generated is M×T, that is 128×100. Since
each gesture repetition can be divided into 19 samples, a total
of S=19×8(repetitions)×17(gestures)×11(subjects)=28424
independent gesture samples are generated.

Considering that the obtained gesture samples still contain
baseline drift, noise, motion artifact, etc., additional data pre-
processing is performed. First, the mean value of each channel
is subtracted to eliminate baseline drift; Second, data points
whose absolute value is greater than the absolute mean value
+8 times the standard deviation are removed as extreme values
and replaced with the absolute mean value; Third, considering
that the main energy of HD-sEMG signals are concentrated in
the range of 20-150 Hz, a 50-order high-pass filter with a
cutoff frequency of 20 Hz is adopted for removing motion
artifacts; Fourth, the signal envelope is extracted through the
rectification operation; Finally, signals of each time point of
each sample are normalized by Min-Max Scaling method.

After all the above data preprocessing operations,
a dataset O = (o1, o2, . . . , oS) ∈RS×M×T is constructed.
Where oi =

(
x i

1, x i
2, . . . , x i

M
)
∈RM×T , (i∈1, 2, · · ·, S)

is an independent sample. Then, to accommodate the
input format required by graph neural networks, a new
dataset H = (h1, h2, . . . , hK ) ∈RK×M×T ×Cn , called
HD-sEMG context dataset, is created. The specific
construction method is that the adjacent Cn samples
in dataset O are combined into one sample in dataset
H . Therefore, an independent sample of dataset H is hi =

(oi−n, . . . , oi , . . . , oi+n) ∈RM×T ×Cn , hi∈H (i∈1, 2, · · ·, K ).
Where K is the total number of independent samples in dataset
H , Cn=2n+1 represents the length of the HD-sEMG context
sample, and n∈N+ denotes the time context coefficient.
For fair comparison, dataset H is also used as input of
comparison classifiers ResNet50 and LSTM.

C. EMG Pattern Recognition Algorithms
1) CNN-MSTGCN: CNN-MSTGCN proposed in this study

is based on the state-of-the-art MSTGCN network proposed
by Jia et al. [28]. The overall framework of CNN-MSTGCN,

as illustrated in Fig. 4, consists of five modules, namely, CNN
feature extraction module, graph generation module, spatial-
temporal attention module, spatial-temporal graph convolution
module, and gesture recognition. CNN feature extraction mod-
ule is set up at the front end of the network to convert original
HD-EMG signal into a feature representation with more
discriminative ability, so as to improve the classification per-
formance. In the graph generation module, two types of views,
namely functional connection graph and distance-connection
graph, are employed to capture more diverse topological
information contained in HD-sEMG signal. Due to the pres-
ence of both spatial and temporal information in HD-sEMG
signal, the spatial-temporal attention module is used to capture
more valuable spatial information through spatial attention
mechanism and more valuable temporal information through
temporal attention mechanism. In the spatial-temporal graph
convolution module, spatial graph convolution is employed
to learn the similar spatial muscle connectivity relationships
among different subjects, and a temporal convolution is used
to extract the temporal dimension information. Finally, the
features extracted by different spatial-temporal graph convo-
lution modules are concatenated for gesture recognition. The
detailed procedure is outlined in the pseudocode described in
Algorithm 1.

a) CNN Feature Extraction Module: CNN is a type of
artificial neural network known for its powerful feature extrac-
tion capabilities [34]. Its unique local connection and weight
sharing structure make it particularly advantageous in the
fields of image processing, computer vision, even EMG pat-
tern recognition. In the proposed CNN-MSTGCN network,
a standard CNN module is implanted into the front of the
graph neural network. It is expected that the powerful feature
extraction ability of CNN will be beneficial for improv-
ing the accuracy of EMG pattern recognition. In particular,
a 1 × 1 standard convolution operation is employed with
a convolution kernel size of (1, 1) and a stride of (1,
1). The number of filters is adjusted as hyper-parameter
to determine the optimal network performance. Through
CNN feature extraction module, the HD-sEMG con-
text sample hi = (oi−n, . . . , oi , . . . , oi+n) ∈RM×T ×Cn

changes to HD-sEMG feature context sample Fi =
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Algorithm 1 CNN-MSTGCN Model Architecture
Input: HD-sEMG context dataset H =

(h1,h2, . . . ,hK ) ∈RK×M×T×Cn , Number of training epochs
I .
Output: Gesture classification predictions for C classes of
gestures.
1: Initialize network parameters.
2: fori = 1 to I do
3: fork = 1 to K do
4: Extract features by CNN feature extraction module;
5: Generate the distance-connection graph via Eq. (1),

and create the functional connection graph via Eq. (2)-(3);
6: Capture valuable temporal information through the

temporal attention mechanism via Eq. (5), and capture
valuable spatial information through the spatial attention
mechanism via Eq. (6);

7: Extract spatial information through spatial graph con-
volution module via Eq. (7);

8: Extract temporal information through temporal convo-
lution module via Eq. (8);

9: Obtain the C-class gesture classification results
through fully connected and softmax layers;

10: Calculate loss function via Eq. (4);
11: Back propagation and update the parameters;
12: end for
13: end for

(fi−n, . . . , fi , . . . , fi+n) ∈RM×F×Cn , where F represents the
number of features extracted. As a result, HD-sEMG
context dataset H = (h1, h2, . . . , hK ) ∈RK×M×T ×Cn

changes to HD-sEMG feature context dataset F =

(F1,F2, . . . ,FK ) ∈RK×M×F×Cn , Fi∈F (i∈1, 2, · · ·, K ).
b) Graph Generation Module: The function of graph

generation module is to convert the sample Fi =

(fi−n, . . . , fi , . . . , fi+n) ∈RM×F×Cn into HD-sEMG graph
context sample Gi = (Gi−n, . . . , Gi , . . . , Gi+n) for input
into the subsequent graph convolution module. Specifically,
each Gi is independently generated by the corresponding fi =(

f i
1 , f i

2 , . . . , f i
M

)
∈ RM×F . Gi = (Vi , Ai ) is an undirected

graph, representing an independent HD-sEMG graph sample
in Gi . Gi includes Vi nodes and each node corresponds to an
electrode channel and has F features, |Vi | = M is the number
of nodes in HD-sEMG graph sample; Ai ∈ RM×M is the adja-
cency matrix of the HD-sEMG graph sample, and represents
the connection relation between each node. Up to this point,
the nodes and their associated features have been determined,
that is, Vi corresponding to fi =

(
f i
1 , f i

2 , . . . , f i
M

)
∈ RM×F

is fixed, while Ai is variable depending on different graph
generation methods. In this study, Ai is generated through two
ways: one is to generate distance connections based on node
distance, and the other is to generate functional connections
based on adaptive graph learning.

Distance-connection Graph: Like many of the existing
works in the field of EMG pattern recognition, the 128 channel
electrodes are viewed as a 16×8 HD-sEMG image, so that
each electrode corresponds to one of the pixels. The main idea
of generating the distance-connection adjacency matrix Ad

i is

Fig. 5. Generate functional connection adjacency matrix by adaptive
graph learning.

as follows: the more distant pixels in the image, the smaller the
connection value between them. The specific implementation
method is to take the reciprocal of block distance between pix-
els as the connection value, for example, the connection value
between adjacent pixels is 1. As the diagonal elements of the
adjacency matrix represent the connection values between each
pixel and itself, according to the definition, the connection
values are even greater than that of adjacent pixels, so they
are set to 2. Specifically, it can be summarized by Eq. (1),
where Ad

i is the distance-connection adjacency matrix, m and
n (m, n ∈ {1, 2, · · ·, M}) respectively represent the indexes
of row and column and also represent ergodic pixels in HD-
sEMG image, mcoord_x and mcoord_y respectively represent
horizontal and vertical coordinate values of pixel m, and the
same is true for n. Finally, the adjacency matrix is normalized
by row.

Ad
i (m, n)

=


1√

(mcoord_x −ncoord_x )
2
+(mcoord_y −ncoord_y )

2
m ̸=n

2 m = n

(1)

Functional Connection Graph: Since muscles are uniformly
controlled by the central nervous system and functional
connections may exist between non-adjacent muscles, it is
often insufficient to represent the information contained in
HD-sEMG signals by distance connections alone. Therefore,
adaptive graph learning method [35] is adopted to dynamically
generate functional connection adjacency matrix A f

i as shown
in Fig. 5. A f

i , as shown in Eq. (2), is derived by leveraging
neural network to learn the relationships between the features
of each channel within HD-sEMG feature sample fi , where
fm and fn represent the features of different nodes in sample
fi =

(
f i
1 , f i

2 , . . . , f i
M

)
∈ RM×F , m, n∈{1, 2, · · ·, M}, w =

(w1, w2, . . . , wF ) ∈RF represents the weight vector of the
neural network. The activation function ReLU guarantees that
A f

i is non-negative. Finally, A f
i is normalized by softmax

operation. The weight vector w is updated by minimizing the
loss functions LGL described in Eq. (3), where λ≥0 is a
regularization parameter.

A f
i =

exp (ReL U (w| fm − fn|))∑M
n=1 exp (ReL U (w| fm − fn|))

(2)

LGL =

∑M

m,n=1
|| fm − fn|

2
2 A f

i + λ |A f
i |

2
F (3)
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Since gesture recognition is a multi-classification task, cross
entropy loss is adopted, as shown in Eq. (4).

LC E = −
1
K

∑K

i=1

∑C

j=1
yi, j log ŷi, j (4)

where K is the number of samples, C is the number of gesture
categories, yi, j is the real category, and ŷi, j is the prediction
category. Therefore, the total loss function is L total = LC E +

LGL .
c) Spatial-temporal Attention Module: The temporal atten-

tion mechanism is adopted to capture valuable temporal
information in HD-sEMG feature context data Fi =

(fi−n, . . . , fi , . . . , fi+n) ∈RM×F×Cn , as shown in Eq. (5).

Q i= softmax
(

Bq · σ
((

(Fi)
TU1

)
U2 (U3Fi) + bq

))
(5)

where Bq , bq ∈ RCn×Cn , U1 ∈ RM , U2 ∈ RF ×M , U3 ∈

RF are trainable parameters, σ indicates the sigmoid activation
function. Q i is the temporal attention matrix of the shape Cn×

Cn , representing the correlation between the context signals,
and it is obtained by dynamically calculating the input Fi .
Finally, the attention matrix is normalized by softmax function.

P i = softmax
(

B p · σ

((
F̂i V 1

)
V 2

(
V 3F̂i

)T
+ bp

))
(6)

In order to automatically extract more valuable
spatial information, the spatial attention mechanism
defined as Eq. (6) is adopted. The input of the
spatial attention module is tuned by the temporal
attention, namely F̂i =

(
ˆfi−n, . . . , f̂i , . . . , ˆfi+n

)
=

(fi−n, . . . , fi , . . . , fi+n) Q i∈RM×F×Cn . B p, bp ∈

RM×M , V 1 ∈ RCn , V 2 ∈ RF ×Cn , V 3 ∈ RF are
trainable parameters, P i is the spatial attention matrix of the
shape M × M , representing the correlation between nodes.

d) Spatial-temporal Graph Convolution Module: Spatial
Graph Convolution: Graph convolution is adopted to extract
spatial information from HD-sEMG feature context signal.
Specifically, convolution kernels containing F ′ filters are used
to perform Chebyshev graph convolution operation [36] on
input Fi = (fi−n, . . . , fi , . . . , fi+n) ∈RM×F×Cn to get output
Zi = (zi−n, . . . , zi , . . . , zi+n) ∈RM×F ′

×Cn . Specifically in
graph convolution, Laplacian matrix is used to represent the
link graph. The Laplacian matrix, denoted as L, is defined
as the difference between the degree matrix (D) and the
adjacency matrix (A) of the graph. It can be expressed
mathematically as L = D− A, and its normalized form is L =

I N − D−
1
2 AD−

1
2 ∈ RN×N , where I N is a unit matrix, and

the degree matrix D ∈ RN×N is a diagonal matrix, consisting
of node degrees,Di i =

∑N
j ̸=i Ai j . Through the Laplacian

matrix L, each node can aggregate state information from its
neighbors. The operation for spatial correlation extraction in
graph-based models is defined as Eq. (7).

gθ∗GFi = gθ (L)Fi =

∑η−1

k=0
θk Tk (̃L)Fi (7)

where gθ is the convolution kernel, ∗G is the graph convolution
operation, each node aggregates information from η order

neighbors. The recursive definition of the Chebyshev polyno-
mial is Tk(x) = 2xTk−1(x) − Tk−2(x), T0(x) = 1, T1(x) = x .
θ∈Rη is a Chebyshev polynomial coefficients vector, ¯̃L =

2
λmax

L − I N , λmax is the maximum eigenvalue of L.
To dynamically adjust the correlation between each node,

for each term of the Chebyshev polynomial, Tk(L̃) is
multiplied by the spatial attention matrix P , resulting in
Tk(L̃)⊙P . Here, ⊙ represents Hadamard product. Thus the
graph convolution equation above is converted to Zi =∑η−1

k=0 θk(Tk(L̃)⊙P)Fi .
Temporal Convolution: A temporal CNN is adopted

to perform convolution operation in temporal dimension.
Specifically, a temporal convolution operation is performed
on the output Zi = (zi−n, . . . , zi , . . . , zi+n) ∈RM×F ′

×Cn

of the graph convolution operation to obtain Si =

(si−n, . . . , si , . . . , si+n) ∈RM×F ′
×C ′

n , as shown in Eq. (8).

Si = ReLU (2 ∗ (ReLU (Zi ))) ∈RM×F ′
×C ′

n (8)

where ∗ represents the temporal convolution operation, and 2

represents the temporal convolution kernel.
e) Gesture Recognition Module: After the operations of the

aforementioned modules are performed, the features obtained
from the two views are flattened, concatenated, and sent to
a fully connected layer for final gesture classification. The
fully connected layer is configured with Y neurons. Y is
a hyper-parameter that can be adjusted to achieve the best
recognition performance. Finally, the softmax layer is used to
obtain the 17-class gesture classification results.

2) Comparison Classifiers:
a) ResNet50: ResNet50 [37] is a deep convolutional neu-

ral network model, which adopts the residual learning method
to solve the problem that the accuracy decreases when the
network depth increases. Therefore, it stands out among many
CNNs and performs well in many fields. Based on its high
efficiency, ResNet50 is adopted as a comparison classifier
in this study. In particular, the complete ResNet50 network
architecture is employed, and slight modifications are made to
accommodate HD-sEMG input and output format specific to
this task. The input shape of ResNet50 is adjusted from the
traditional image format (i.e., 224×224 × 3) to M × T × Cn
format. Additionally, the output of the network is modified
to consist of C (C=17) neurons corresponding to C gesture
classification.

b) LSTM: LSTM [38] has been widely and efficiently
applied in EMG pattern recognition due to its excellent
sequence modeling ability and gating mechanism, which can
handle long time series data and has a good ability to extract
temporal features effectively. Therefore, it is also adopted
as a comparison classifier in this study. To accommodate
the input format of LSTM network, the time dimension
and context dimension of the HD-sEMG context dataset
H = (h1, h2, . . . , hK ) ∈RK×M×T ×Cn are merged. This
merging process results in a reshaped new dataset H ′

=(
h′

1, h′

2, . . . , h′

K
)
∈RK×M×T Cn , where T Cn represents the

combined dimension of time and context and corresponds to
the time step in the LSTM input form.

Ultimately, a specific LSTM network structure is employed.
The input shape is defined as M ×T Cn , where T Cn represents
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the number of time steps in the input data, and M represents
the dimensionality of input features at each time step. The
LSTM network is configured with 4 layers. Additionally,
a hidden size of 64 is chosen, indicating that each LSTM
layer consists of 64 hidden states. The output shape is set as
C , corresponding to the number of gesture categories.

c) Performance Evaluation: The recognition rate is used as
the performance evaluation criterion of the classifiers, which
is defined as the ratio of the number of correctly classified
samples to the number of all input samples. In order to
verify the significance of the result differences among all the
methods, one-way repeated-measure ANOVA is adopted for
significance test and the Bonferroni method is employed for
post hoc multiple comparisons tests. The significance level
is set at 0.05, and all analyses are performed using SPSS
(v. 25.0, SPSS Inc. Chicago, IL, USA).

III. EXPERIMENTAL RESULTS

In this study, four distinct experiments are conducted. First,
the parameter setting experiment is performed to determine the
optimal parameters of networks and time context length; Then,
the ablation experiment is conducted to explore the role of the
key modules in CNN-MSTGCN; Finally, the user-independent
experiment and the cross-user experiment based on transfer
learning strategy are carried out to evaluate the performance
of the proposed CNN-MSTGCN applied to EMG pattern
recognition. In the experiments, the following hardware and
software configurations are employed: a Tesla T4 GPU with
15109MiB of GPU memory, an Intel(R) Xeon(R) Gold 6240R
CPU @ 2.40GHz, operating on Ubuntu 20.04.1, and utilizing
TensorFlow version 1.15.0.

A. Parameter Setting Experiment
1) Network Parameters Setting: To optimize the perfor-

mance of each network, adjustments are made to the
network structures and hyper-parameters individually.Network
parameters (including structures and hyper-parameters) are
determined according to the loss function value and recog-
nition rate of the validation set. When the training error
converges and the generalization error is reduced to a rela-
tively low level, the parameters are considered as the optimal
choices. Using the proposed CNN-MSTGCN and comparison
networks ResNet50 and LSTM, gesture recognition experi-
ments are conducted on Subject 1 in user-specific mode. The
training set and validation set are divided in a ratio of 7:3.
As a result, the optimal parameters of graph neural network,
ResNet50 and LSTM are listed in Table I-III respectively.

2) Time Context Length Parameter Setting: Since time con-
text length Cn has an impact on the result of gesture
recognition, before all experiments, an optimal context length
is first selected as a fixed parameter through the follow-
ing experiment. Using CNN-MSTGCN network, the gesture
recognition experiment is conducted on all the 11 subjects in
user-specific mode. The training and test data are divided in
a ratio of 7: 3.Cn is set to 1, 3, 5, 7, and 9. The experimental
results are shown in Fig. 6. It can be observed that the average
recognition rate achieves its highest value (i.e., 96.9%) when

TABLE I
THE PARAMETERS OF GRAPH NEURAL NETWORK

TABLE II
THE PARAMETERS OF RESNET50

TABLE III
THE PARAMETERS OF LSTM

Fig. 6. Gesture recognition results with different time context length.

Cn is set to 5. When Cn is less than 5, the recognition rate
tends to decrease, possibly due to the insufficient inclusion
of time information. Conversely, when Cn exceeds 5, the
recognition rate also declines, potentially due to the inclu-
sion of redundant or irrelevant information. Based on these
findings, a Cn of 5 is selected in all subsequent experiments.
This choice strikes a balance between capturing sufficient time
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Fig. 7. Ablation experiment results.

information for accurate recognition and avoiding the inclusion
of excessive or unnecessary temporal data.

B. Ablation Experiment on CNN-MSTGCN in
User-Specific Mode

In order to explore the role of each functional modules in the
proposed CNN-MSTGCN, ablation experiment is conducted.
In specific, gesture recognition experiments are conducted on
11 subjects in user-specific mode with a training test ratio of
7:3. Seven classifiers are utilized in the experiments, including:
CNN-MSTGCN, “without CNN” which does not have the
CNN feature extraction module, “without DC” which does not
utilize distance-connection graph, “without FC” which does
not utilize functional connection graph, “without T-attention”
which does not include the temporal attention mechanism,
“without S-attention” which does not include the spatial atten-
tion mechanism, “without Attention” which does not include
both attention mechanisms. The average experimental results
with standard deviations are shown in Fig. 7.

The experimental results show that the average recognition
rates of CNN-MSTGCN, “without CNN”, “without DC”,
“without FC”, “without T-attention”, “without S-attention” and
“without Attention” are 96.9%, 95.7%, 95.1%, 94.6%, 95.1%,
93.5%, 92.8% respectively. The average recognition rate of
CNN-MSTGCN is 1.2% higher than that of “without CNN”,
indicating that CNN feature extraction module plays a certain
role in improving recognition rate. The average recognition
rate of CNN-MSTGCN is 1.8% and 2.3% higher than that of
“without DC” and “without FC”, suggesting that the inclusions
of the distance-connection graph and functional connection
graph are also beneficial. Further, the functional connection
graph is more important than the distance-connection graph.
In terms of the attention mechanism, CNN-MSTGCN outper-
forms the “without T-attention” network by 1.8%, the “without
S-attention” network by 3.4%, and the network without any
attention mechanism by 4.1%.

C. User-Independent Gesture Recognition Experiment
1) 11-Fold Cross-Validation Experiment: In

user-independent gesture recognition experiment, data
from one of the 11 subjects is taken as the test set, and data
of the remaining 10 subjects are taken as the training set (i.e.,
at the training test ratio of 10:1). A total of 11 experiments
are carried out using CNN-MSTGCN, ResNet50 and
LSTM respectively, and the mean recognition rate of each
subject are shown in Fig. 8. The average recognition rates

Fig. 8. 11-fold cross-validation experiment in user-independent mode.

Fig. 9. Experimental results under different training test ratios.

achieved by CNN-MSTGCN (68.0%) are significantly higher
compared to ResNet50 (47.5%, p < 0.001) and LSTM
(57.1%, p=0.045). These experimental results verify that the
proposed CNN-MSTGCN has comparative advantages in
user-independent EMG pattern recognition.

2) Experiments Under Different Ratios of Training Subject to
Test Subject: Similar to the 11-fold cross-validation experi-
ment, 8, 5 and 2 subjects are randomly selected to perform
8-fold, 5-fold and 2-fold cross-validation experiments respec-
tively (i.e., at the training test ratio of 7:1, 4:1 and 1:1
respectively), and the final results are demonstrated in Fig. 9
as a boxplot. As the number of training subject decreases,
the user-independent recognition rate of each classifier will
decrease. Under the same ratio, the recognition rate of
CNN-MSTGCN is significantly higher than that of ResNet50
and LSTM. At the training test ratio of 10:1, the average recog-
nition rate of CNN-MSTGCN (68.0%) is significantly higher
(p < 0.05) than that of ResNet50 (47.5%) and LSTM (57.1%).
Similarly, at ratios of 7:1 and 4:1, CNN-MSTGCN (63.4%
and 55.7%, respectively) outperforms ResNet50 (47.5% and
43.3%, respectively) and LSTM (57.1% and 45.5%, respec-
tively) with statistical significance (p=0.001 and p < 0.001,
respectively). However, at the ratio of 1:1, the difference in
performance between the three classifiers is not statistically
significant (p=0.245). When the training test ratio is 4:1, the
average recognition rate of CNN-MSTGCN (55.7%) is still
higher than or close to that of ResNet50 (47.5%) and LSTM
(57.1%) at the ratio of 10:1. The experimental results show
that in user-independent mode, CNN-MSTGCN has a lower
training burden.

D. Cross-User Experiments Based on Transfer Learning
In cross-user gesture recognition experiment, the transfer

learning strategy is integrated on the basis of the proposed
CNN-MSTGCN, i.e., TL-CMSTGCN. TL-CMSTGCN is also
compared with ResNet50 and LSTM that integrate transfer
learning strategy. The data of 10 subjects is used as the training
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Fig. 10. Cross-user experiments with various fine-tuning test ratio.

set, and the data of the remaining test subject is divided
into fine-tuning set and test set. Because the data of each
test subject can be equally divided into 26 parts, the ratio
of the fine-tuning set to the test set is progressively reduced
at the ratios of 5:21->4:22->3:23->2:24->1:25 to evaluate the
robustness of TL-CMSTGCN to different amounts of fine-
tuning data.

As shown in Fig. 10, TL-CMSTGCN achieves a signifi-
cantly higher average recognition rate (92.3%) compared to
TL-ResNet50 (84.6%, p = 0.003) and TL-LSTM (85.3%, p =
0.008) at the ratio of 5:21, which demonstrates the superiority
of TL-CMSTGCN in cross-user EMG pattern recognition.
Moreover, TL-CMSTGCN maintains a relative high recog-
nition rate even when the number of fine-tuning samples is
reduced, indicating a lighter user training burden. In compar-
ison, the other two classifiers experience a more significant
decline in recognition rates. Notably, when the fine-tuning
test ratio is set to 4:22, the average recognition rate of
TL-CMSTGCN remains above 90%. At the ratio of 3:23, the
average recognition rate of TL-CMSTGCN (87.2%) surpasses
that of TL-ResNet50 (84.6%) and TL-LSTM (85.3%) at the
ratio of 5:21. These results demonstrate that TL-CMSTGCN
can achieve higher recognition rates with fewer fine-tuning
samples, thereby reducing the training burden on users.

IV. DISCUSSION

Considering that GNN can learn functional connections
between non adjacent but related muscles, this study focuses
on exploring GNN-based EMG pattern recognition solutions.
Specifically, using MSTGCN with spatial-temporal attention
mechanism as basic classifier, a new CNN-MSTGCN network
is proposed, and its advantages are verified by ablation exper-
iments, user-independent pattern recognition experiments and
cross-user pattern recognition experiments. Based on the state-
of-the-art in the field of EMG pattern recognition, the research
results of this study can be discussed as follows:

A. The Role of Key Functional Modules in
CNN-MSTGCN

The proposed CNN-MSTGCN comprises multiple func-
tional modules including CNN feature extraction module,
graph generation module, and spatial-temporal attention mech-
anism module. The results of the ablation experiment show
that each functional module has played a more or less
role in improving the performance of EMG pattern recogni-
tion. At first, CNN-MSTGCN outperforms MSTGCN without

TABLE IV
COMPARISON OF RELEVANT STUDIES ON USER-INDEPENDENT EMG

PATTERN RECOGNITION

CNN feature extraction module in terms of average recog-
nition rate, demonstrating that the CNN feature extraction
module is able to capture discriminative features from HD-
sEMG data; Second, both the two graph generation methods
play certain role in improving network performance, and
the functional connection graph is more effective than the
distance-connection graph. The possible reason is that the
functional connection graph can not only reflect the spatial
proximity of HD-sEMG signal, but also can learn the potential
relationship between signals in different regions; Third, CNN-
MSTGCN networks without the temporal attention mechanism
or spatial attention mechanism (as well as without both
attention mechanisms) exhibit inferior performance compared
to the complete CNN-MSTGCN. Specifically, the recognition
rate of CNN-MSTGCN without spatial attention mechanism
decreases more significantly than that of CNN-MSTGCN
without temporal attention mechanism. This result suggests
that the spatial attention mechanism plays a more crucial role
than the temporal attention mechanism.

B. The Superior Performance of CNN-MSTGCN in
User-Independent EMG Pattern Recognition

As shown in Table IV, although many classifiers such as
SVM [9], [39], [40], 2SRNN [10], ConvNet [11], Sequential
minimal optimization (SMO), K-nearest neighbor (KNN),
random forest (RF) and principal component analysis (PCA)
[41], CNN [15]etc., have been used in relevant studies for
user-independent EMG pattern recognition, relatively low
recognition rates were reported.

In this study, the proposed CNN-MSTGCN achieves a
recognition rate of 68% in 17-gesture recognition task. Observ-
ing Table IV, it can be seen that our work involves the most
types of gestures, with a recognition rate only lower than
89.2% of the 3-gesture task in the work of Orabona et al. [40].
Comparing the two works based on graph neural networks, the
recognition rate of CNN-MSTGCN is 68% for 17 gestures,
while the MLHG model proposed by Zou et al. [32] reached
only 53.52% in a 7-gesture task. Additionally, CNN-MSTGCN
performs significantly better than ResNet50 and LSTM in
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TABLE V
COMPARISON OF RELEVANT STUDIES ON CROSS-USER

EMG PATTERN

TABLE VI
TRAINING AND TEST TIMES OF THREE CLASSIFIERS

user-independent mode. All of above results indicate that the
proposed CNN-MSTGCN has better application potential than
traditional methods and existing graph neural networks in
user-independent EMG pattern recognition tasks.

C. The Superior Performance of the Proposed
CNN-MSTGCN in Cross-User EMG Pattern Recognition

As summarized in Table V, transfer learning (TL) and
domain adaptation (DA) strategies are usually adopted in
relevant studies on cross-user EMG pattern recognition.
In this study, transfer learning strategy is integrated into
CNN-MSTGCN to get the cross-user EMG pattern recogni-
tion scheme TL-CMSTGCN. Observing Table V, it can be
seen that our work involves the most types of gestures and
TL-CMSTGCN obtains a relatively high recognition rate of
92.3%, which is only lower than 93.54% of the 7-gesture task
in the work of Li et al. [12]. This result demonstrates that
the proposed TL-CMSTGCN scheme has great advantages in
improving cross-user gesture recognition rate. Compared with
CNN-MSTGCN in user-independent mode, only requiring a
small amount of data for fine-tuning, TL-CMSTGCN increases
the average recognition rate by more than 20%. In the
meanwhile, the TL-CMSTGCN scheme has the advantage
of low training burden. Due to the fact that most users can
generally accept low training burden, the high recognition rate
of TL-CMSTGCN exceeding 90% makes it possible to apply
it in myoelectric control systems.

D. The Evaluation of Real-Time Performance
To offer a more comprehensive evaluation and gain better

insights into the performance and practical feasibility of our
proposed method, a statistical analysis of training and test
times is conducted, as depicted in Table VI. The results
of CNN-MSTGCN indicate a training time of 15.99s for
2562 training samples and a test time of 2.61ms per test
sample. Although this may not reach the speeds of ResNet50
and LSTM, it still meets the real-time requirements.

E. Limitations and Further Work
We would like to point out the limitations of this study. First,

the research results are obtained through offline data process-
ing. Although it takes only 2.61ms to recognize a gesture in the
offline program, which well meets the requirement of real-time
myoelectric control, real-time online testing is not conducted
in this study, and the specific real-time performance needs
to be verified through follow-up work; Second, although the
proposed CNN-MSTGCN performs better in user-independent
mode than previous works, the recognition rate of 68% is not
satisfactory. Therefore, future work should focus on improving
network structure to enhance recognition rate; Third, although
TL-CMSTGCN improves the cross-user recognition rate to
a high level of 92.3% at the expense of a small amount
of user training burden, more endeavors should be made to
optimize transfer learning process and minimize the training
burden. Finally, additional public datasets can be utilized to
further support the feasibility and superiority of the proposed
approach.

V. CONCLUSION

In order to promote the development of myoelectric control
technology, this study focuses on exploring GNN-based EMG
pattern recognition solutions. Specifically, a new graph neural
network CNN-MSTGCN is proposed for high-density EMG
signal pattern recognition. The characteristics of the proposed
CNN-MSTGCN lie in: 1) Using a graph neural network MST-
GCN with spatial-temporal attention mechanism as the basic
classifier to adaptively learn the cross muscle connections; 2)
The front-end is embedded with a CNN feature extraction
module to improve the feature representation ability of HD-
sEMG signals. Through user-independent pattern recognition
experiments and cross-user pattern recognition experiments
based on transfer learning strategy, the advantages of the
proposed CNN-MSTGCN in improving recognition rate and
reducing user training burden have been verified. The research
results of this paper confirm that GNN has certain advantages
in overcoming the impact of individual differences, and can
provide possible solutions for achieving robust EMG pattern
recognition.
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