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Cross-Domain Identification of Multisite Major
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Yunfa Fu , and Yuqi Cheng

Abstract— Establishing objective and quantitative imag-
ing markers at individual level can assist in accurate
diagnosis of Major Depressive Disorder (MDD). However,
the clinical heterogeneity of MDD and the shift to multisite
data decreased identification accuracy. To address these
issues, the Brain Dynamic Attention Network (BDANet) is
innovatively proposed, and analyzed bimodal scans from
2055 participants of the Rest-meta-MDD consortium. The
end-to-end BDANet contains two crucial components. The
Dynamic BrainGraph Generator dynamically focuses and
represents topological relationships between Regions of
Interest, overcoming limitations of static methods. The
Ensemble Classifier is constructed to obfuscate domain
sources to achieve inter-domain alignment. Finally, BDANet
dynamically generates sample-specific brain graphs by
downstream recognition tasks. The proposed BDANet
achieved an accuracy of 81.6%. The regions with high attri-
bution for classification were mainly located in the insula,
cingulate cortex and auditory cortex. The level of brain con-
nectivity in p24 region was negatively correlated (p<0.05)
with the severity of MDD. Additionally, sex differences
in connectivity strength were observed in specific brain
regions and functional subnetworks (p<0.05 or p<0.01).
These findings based on a large multisite dataset support
the conclusion that BDANet can better solve the problem of
the clinical heterogeneity of MDD and the shift of multisite
data. It also illustrates the potential utility of BDANet for
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personalized accurate identification, treatment and inter-
vention of MDD.

Index Terms— Major depressive disorder, brain dynamic
attention network, clinical heterogeneity, multisite data
shift.

I. INTRODUCTION

MAJOR Depressive Disorder (MDD) is a prevalent
psychiatric disorder with a global impact [1], which

severely impairs the social function and quality of life of
patients [2]. However, the clinical heterogeneity and neuro-
biological complexity of MDD [3] pose challenges for its
the study of the neurogenesis mechanism and early pre-
diction. To objectively characterize brain activity and thus
explore the neurological mechanisms of MDD, many stud-
ies have used quantitative measurement techniques provide
quantitative assessment of disrupted brain function, such as
structural Magnetic Resonance Imaging (sMRI) [4], functional
Magnetic Resonance Imaging (fMRI) [5], [6], [7] and Elec-
troencephalogram [8], [9], [10]. And MRI playing a crucial
role in uncovering the etiology and pathogenesis of MDD,
schizophrenia, and other psychiatric disorders [11]. In addi-
tion, extensive evidence from resting-state fMRI (rs-fMRI)
indicates that patients with MDD exhibit abnormal brain
function in multiple cortical and subcortical areas, such as the
prefrontal cortex, insula, amygdala and hippocampus [12].

Due to the clinical heterogeneity of MDD, the classifica-
tion accuracy of MDD-related studies based on small-dataset
Machine Learning (ML) varies tremendously [13], led to the
absence of widely accepted imaging biomarkers for clinical
diagnosis [11], [14]. Yang et al. proposed obtaining stable
markers from large MDD datasets enhance the reliability of
study results [11], [15], [16], [17]. Several large-sample meth-
ods focus on statically modeling the relationships between
Regions of Interest (ROIs) by constructing correlation matrix,
and the resulting functional brain graph is fed into Graph
Neural Networks (GNNs) to interpret abnormal brain patterns
in MDD [18], [19], [20], [21], [22]. GNNs, inspired by
time-frequency analysis methods [23], deepen the understand-
ing of structural relationships in brain graphs, are becoming
popular in neuroscience for modeling static ROI relationships
to discover common brain patterns [18]. However, such meth-
ods have two limitations, one is that only functional data
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are used to characterize ROIs and construct brain graphs,
which lack structural features, and the other is the inability to
optimize static brain graph according to the recognition tasks,
which is not conducive to addressing the clinical heterogeneity
of MDD. In addition, developing MDD impairs the structure
and function of brain, so extracting hybrid neurobiomarkers
from different feature patterns in order to portray the MDD
brain state in a multidimensional way is beneficial to address
the clinical heterogeneity of MDD and thus improve the
reliability of the results [11], [15].

In addition, large-scale MDD datasets collected from mul-
tisite suffer from shifts, including exogenous shift caused by
imaging at different resolutions, and endogenous shift caused
by internal factors such as equipment hardware parameters
and the degree of machine aging. These shifts can cause large
differences in the spatial distribution between the training and
test sets, which can lead to a sharp drop in model performance
[24]. And most studies have proposed ideas to solve the
exogenous shift with single site as a domain [13], and few
have focused on the endogenous shift.

To address the above issues, we innovatively proposed an
end-to-end Brain Dynamic Attention Network (BDANet) to
analyze large multisite bimodal MDD data (sMRI and rs-
fMRI). BDANet can directly encode the rs-fMRI time series
and use the attention-based Dynamic BrainGraph Generator
(DBG-G) to resolve the temporal features of ROIs to generate
dynamic brain graph, and the Graph Convolution Network
(GCN) analyzes it and fuses bimodal features, which differs
from the analysis approaches of joint structural and functional
abnormalities [25], [26], [27]. BDANet uses the downstream
MDD identification task to reverse optimize DBG-G to facili-
tate the generation of specific brain patterns and thus address
MDD clinical heterogeneity.

To solve sample disparities caused by multisite data shift,
we construct an Ensemble Classifier (E-Classifier) to achieve
inter-domain knowledge migration to align the sample space,
improve the domain adaptation capability of the model.
Finally, high attribution brain regions contributing to classi-
fication were identified, potential connections between their
functional abnormalities, clinical symptoms, and sex were
explored. Additionally, abnormalities in 7 functional subnet-
works were analyzed. Thus, our main contributions are as
follows: (1) The BDANet we proposed is a high-precision end-
to-end model capable of recognizing multisite MDD across
domains, which addresses the clinical heterogeneity of MDD
and the multisite data shift. (2) The BDANet characterizes
the brain state of MDD in multiple dimensions, the DBG-G
module in our proposed dynamically focuses on abnormalities
in brain connectivity, and the E-Classifier module eliminates
domain noise. (3) We explored the correlation between func-
tional connectivity and MDD severity, and gender differences
in MDD functional connectivity strength.

II. MATERIALS

A. Dataset
This study was conducted on 23 datasets from the

Rest-meta-MDD consortium, including 1645 MDD
and 1335 Healthy Controls (HCs). Demographic and

clinical data, including age, gender, and the 17-item
Hamilton Depression Scale (HAMD), were collected at
each site. The study followed the standard quality control
procedures of the consortium to exclude poor quality data,
data from subjects older than 65 years and younger than
18 years, and missing data from the HAMD scale. Finally,
2055 participants (802 MDD, 1253 HC) were included in our
analysis. The studies involving human participants received
approval from the Medical Ethics Committee of Kunming
University of Science and Technology (ethical approval no:
KMUSTMEC056, date: March 11, 2021). All participants
provided written informed consent prior to participation,
and data collection at each site was approved by the local
Institutional Review Board.

B. fMRI and sMRI Images Acquisition and Processing
Each dataset contains rs-fMRI and of the 3-dimensional

T1-weighted sMRI images of all subjects, and all images
were preprocessed uniformly using the DPARSF toolbox [28].
The preprocessing primarily included slice timing correction,
head motion correction, normalization, spatial smoothing.
We parceled the whole brain into left and right 360 ROIs
according to HCP-MMP1.0 atlas [29]. Time series of BOLD
signals T ∈ RB×N×L from vertexes in each ROI were extracted
and averaged. Where B is the number of samples per batch,
N is the number of nodes, each node represents ROI, and L
is the length of the time series of each node. To depict brain
nodes in spatio-temporal context, the 5-dimensional structural
features Xv

= {xv
1 , xv

2 . . . , xv
5 |xv

∈RB×N
} for structure-related

properties (Sulci, Area, Volume, Thickness, Curve) and
4-dimensional functional features X i

= {x i
1, x i

2, . . . , x i
4|x

i
∈

RB×N
} for function-related properties (DC, ALFF, fALFF,

ReHo) were calculated and collectively describe the distinct
attributes of ROIs in GCN.

III. METHODS

The architecture of the end-to-end BDANet
is shown in Fig. 1 (A). BDANet first fuses the
structural and functional indicators into node features
X = concat(Xv, X i ), X∈RB×N×9. The Temporal
Representation Learning component was used to temporally
model the ROIs time series T , and the temporal features
formed are input to the DBG-G component (Fig. 1 (B)) to
generate dynamic brain graphs A∈RB×N×N . The generated
brain graphs and node features are then parsed using the
GCN of the Spatial Represent Learning component to output
the sample-level features H ∈RB×N×V of MDD, V is the
dimensions of the features. Finally, the sample classifier
of E-Classifier (Fig. 1 (C)) analyzes the graph features
Hsource∈RB×N×V

⊂ H of source domain and outputs hybrid
neural markers to accurately identify MDDs, and the domain
classifier to align the domains.

A. Temporal Representation Learning
Traditional time series models are not effective in charac-

terizing time series data with long short-term dependencies,
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Fig. 1. End-to-end BDANet model architecture and DBG-G and E-Classifier components. (A) Overview of the proposed MDD recognition framework
BDANet; (B) DBG-G component; (C) E-Classifier component.

nonlinearity and non-stationarity. To further improve the char-
acterization of ROIs time-series T , our work uses Temporal
Representation Learning component to temporally encode T .
Subsequently, the temporal features E∈RB×N×S of the
extracted ROIs sequences are input to DBG-G, S is the feature
dimension of the time.

The Temporal Representation Learning component is shown
in Fig. 1 (A), which mainly consists of a parallel stack-
ing structure of one-dimensional residual [30] and Long
Short-Term Memory (LSTM) [31]. The temporal features
Ei∈RN×S of the ROIs sequence Ti∈RN×L for the i th sample
in each batch is calculated as:

S1 = MaxPool (ReLU (Conv (Ti ))) ,S2= Conv(Conv (S1))

S3 = LSTM (S2) , S4 = ReLU(LSTM(LSTM(S1 + S2 + S3)))

Ei = GlobalAveragePooling(S4) (1)

where S1, S2, S3, S4 denotes intermediate results for output
Ei . The 1D convolution layer in the time representation
component uses 32 convolution kernels with a size of 3. The
maximum pooling layer has a kernel size of 2, and there are
64, 32 units in the LSTM, respectively.

B. DBG-G

DBG-G contains a relevance metric component and a graph
sparsification component (Fig. 1 (B)). The Multihead Self
Attention (MSA) of the relevance metric component calculates
the relevance among ROIs to returns a fully connected graph
G∈RB×N×N . The graph sparsification component is then used
to enhance the sparsity of the learned graph structure.

1) Attention-Based Relevance Metrics Function: Closely
related manifestations of brain regions, loops, and functional
sub-networks associated with emotion and cognitive abnormal-
ities in MDD need to attract more of our attention. Therefore,
we quantify the relevance between nodes based on the MSA
[32] metric function to learn the relational representations
among ROIs.

MSA, developed from self-attention, and a self-attention
function is described as mapping a query and a set of key-value
pairs to an output. The output is computed as a weighted sum
of values. Specifically, for the given input sequence E , self-
attention computes Q, K , V with linear projections as follows:

Q = E×W Q,K = E×W K ,V = E×W V (2)

where W Q , W K , W V are the weight matrix of the linear
projections. The output of self-attention is calculated as:

Attention (Q, K , V ) = Softmax(
Q×K T
√

dk
)×V (3)

where T is the matrix transpose operator, dk is the dimension
of Q, K , dv is the dimension of V .

MSA is able to focus on different forms of interaction
relationships in different projection spaces to improve the
feature representation and generalization ability of the model.
And thus, we used MSA to model the inter-ROIs relationships
without directly using inner product [33]. MSA performs r
different linear projections of Q, K , V . Then, self-attention
is computed in parallel to produce dv/r -dimensional outputs,
finally concatenate and project these outputs to produce more
effective attention features. The MSA is finally calculated as:

M Head (Q, K , V ) = Concat (head1, . . . , headr ) × W O
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headh = Attention
(

Q×W Q
h ,K×W K

h , V ×W V
h

)
(4)

where h= 1, 2, . . . ,r , headh is the hth head self-attention,
W Q

h , W K
h , W V

h are the weight matrices of the hth linear
projection Q, K , V , with dimensions dk/r , dk/r , dv/r , W O

is the weight matrix of the linear output function.
The DBG-G component of BDANet employs MSA with

four parallel heads (r= 4) to dynamically adjust the correlation
between the ROIs and output a self-attentive feature matrix.
In addition, the residual structure is added to prevent the
gradient vanishing, and the output O is as in (5). Finally, the
fully connected dense graph G∈RB×N×N characterizing the
relationship between ROIs is obtained from the inner product
of O as in (6), and the elements of G denote the strength of
the relationship between ROIs.

O = LayerNorm (Multi Head (Q, K , V ) + E) (5)

G = O×OT (6)

2) Graph Sparsification: The graph relevance metric consid-
ers the relationship between each pair of nodes and yields a
fully connected graph, which is computationally costly and
may introduce noise. For this reason, a K-Nearest Neighbor
style graph sparsification method is introduced to sparse the
fully connected brain graph, which uses a supervised Deep
Learning (DL) approach to parameterize the graph sparsifica-
tion process and optimizes these parameters based on feedback
signals from downstream tasks.

For the fully connected dense graph Gi∈RN×N of the i th

sample, the topk algorithm [34] is used to retain the connection
of each ROI with its K nearest neighbor ROIs and mask the
remaining connections to generate a brain graph A∈RB×N×N

with the same degree distribution, for the subsequent GCNs,
as in (7).

A(n)
i = topk

(
G(n)

i ×

(∑360

i=1
G(n)

i

)−1
)

(7)

where n= 1, 2, . . . ,N , G(n)
i is the vector of relationships

between the nth node of the graph Gi and the other nodes.

C. Spatial Representation Learning
The graph structure can represent the brain connections

and capture the topology of the brain graph. The DBG-G
generated learnable brain graph A belongs to non-Euclidean
space, cannot be directly used as the input of traditional
convolutional neural networks. GCN is introduced to directly
model the brain graph A and node features X using two-layer
graph convolution in this study. The operation of GCN on A,
X at the l th hidden layer is defined as:

A′
= A + I (8)

H (l+1)
= σ

(
D A′ DH (l)W (l)

)
(9)

where I is the unit matrix, D∈RB×N×N is the degree matrix
of the graph A′. H (l) ∈ RB×N×V (l> 0) is the output feature
of the l th layer, V is the dimension of the graph feature vector.
When l= 0, H (0) is the node feature X . W (l) is the weight

matrix of the l th layer graph convolution operator, σ (·) is the
activation function ReLU. Finally, the GCN outputs the graph
feature H =H (1)+H (2), H ∈RB×N×V . The number of kernels
in the graph convolution layer of the spatial representation
component is 16.

D. E-Classifier
The E-Classifier employs domain confrontation to miti-

gate domain-related interference in spatio-temporal features,
with the training set with class labels as the source
domain and the test set without class labels as the target
domain. It accomplishes this by emphasizing accurate domain
source discrimination post-Gradient Reversal Layer (GRL)
and domain source obfuscation pre-reversal. These training
objectives work in opposition to encourage the model to
consider both classification accuracy and domain source con-
fusion during supervised training, ultimately achieving domain
alignment and addressing exogenous and endogenous shifts in
multisite MDD data.

The sample classifier consists of Mixup, Global Average
Pooling (GAP), Multilayer Perceptron (MLP), which outputs
the classification results of the samples in the source domain.
Mixup [35] is used to enhance the representation range of the
sample space, thus improving the generalization ability of the
model. The sample classifier encodes the GCN graph feature
Hsource∈RB×N×V for the idx th batch of samples in the source
domain and outputs P1∈RB×2, as in (10).

g =

{
G (Hsource) i f idx %5 == 0
Hsource otherwise

P1 = MLP(GlobalAveragePooling
(
gT)) (10)

where G is the operation of Mixup augmented Hsource, T is
the matrix transpose operator. The domain classifier consists
of GRL, GAP and MLP to achieve source and target domain
data confusion to solve the data shift. BDANet learns domain
invariant features through adversarial training to balance sam-
ple classification loss and domain difference loss. The domain
classifier filters the temporal features E of the temporal
representation component output and the spatial features H of
the GCN output, respectively, to eliminate the domain noise
in the spatio-temporal dimension, as in (11).

P1
2 ,P2

2 = MLP(GlobalAveragePooling(GRL(E,H)) (11)

where P1
2 , P2

2 are the outputs of the domain classifier filtering
E and H, respectively.

E. Training and Testing BDANet
The advantage of the end-to-end BDANet model is that

it avoids errors in manual feature extraction and labeling
intermediate features, and trains complex tasks using only the
initial class labels and the objective function. For each batch
of data, the objective function L is calculated as

L = 3∗LFocalLoss + LCenterLoss + λ×LDomainLoss (12)

where λ is a weight parameter that is used to control the
training of the domain classifier. Specifically, λ is set to
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TABLE I
PERFORMANCE COMPARISON OF BDANET WITH RELATED REPRESENTATIVE METHODS

0.3 in the training phase and 0 in the testing phase. LFocalLoss,
LCenterLoss are used for source domain sample classification,
LDomainLoss is used for domain classification. LFocalLoss is
Focal Loss [36], and the focus parameter γ adjusts the sample
weights to solve the optimization problem of hard-to-train
samples. For notational convenience, we define pt :

pt =

{
P1 i f y1 = 1
1−P1 otherwise

(13)

where y1 is the label of source domain samples, P1 is the
prediction probability of sample classifier, the focal loss is
computed as LFocalLoss (pt ) = − (1 − pt )

γ log (pt ). Center
Loss [37] LCenterLoss, minimizes intra-class distance for more
compact features. The center loss is calculated as

LCenterLoss =
1
2

∑B

i=1
∥Ci−cyi∥

2
2 (14)

where B is the number of samples in each batch, Ci is the
input feature of MLP in the sample classifier, cyi denotes the
feature center of the yi th class. The domain loss LDomainLoss
consists of two parts: the temporal domain loss, denoted as
L1= CELoss

(
P1

2 , y2
)
, and the spatial domain loss, denoted

as L2= CELoss(P2
2 , y2). CELoss is computed as

CELoss (p, y2) =

{
− log (p) i f y2 = 1
− log (1 − p) otherwise

(15)

where y2 is the domain label, and p is the prediction probabil-
ity of domain classifier. Finally, the domain loss is calculated
as LDomainLoss = L1 + L2.

Random sampling divided the entire dataset into 7:3 training
and test sets. The test set was then split 1:1 for domain
adversarial training and final model evaluation. To pre-
vent BDANet overfitting, GridMask [38] (parameters d1=10,
d2=15, ratio=0.4) was applied to augment the training set by
a factor of 5. This process was repeated 5 times for result
stability and reliability.

F. Interpretations With IG (Integrated Gradients)
IG has higher compatibility and imputation performance

than common imputation methods, and it is plug-and-play
without modifying the model structure [39]. Thus, we intro-
duce IG to improve the interpretability of end-to-end BDANet
by assigning weights to each ROI and evaluating its impor-
tance to the model prediction.

Specifically, IG linearly interpolates and gradient sums
the paths between the baseline and samples to calculate the
contribution of both to the BDANet model separately. The
imputation φ I G

j for the j th component (ROI) x j of the i th

sample x =
(
Ti ∈ RN∗L , X i ∈ RN∗D) is calculated as

F = x ′
+

m
M

×
(
x − x ′

)
(16)

φ I G
j
(
2, x, x ′

)
=

(
x j − x ′

j

)
×

∑M

m=1

∂2 (F)

∂x j
×

1
M

(17)

where m= 1, 2, . . . ,M , x ′ is the baseline of x , M denotes
the steps in Riemann path integration. j= 1, 2, . . . ,N , 2 is
the model mapping (BDANet). The attribution of each ROI in
each sample is calculated using (16) and (17) to explain their
critical role in sample classification.

IV. RESULTS

A. BDANet Classification Performance and Comparison
Experiments

The performance metrics for classification include Accuracy
(ACC), F1 score, Sensitivity (SEN), Specificity (SPE), and
Area Under Receiver Operating Characteristic Curve (AUC)
value. The classification performance of the proposed BDANet
was compared with traditional ML models (RBFSVM, RF)
and the state of the art (BFE [40], STGCN [20], TGCN [41],
GCN [13], BrainNetCNN [42], LSTM [43]), as shown in
Table I. All results obtained on the same dataset.

DL algorithms outperform ML methods in overall classifica-
tion. Notably, LSTM can address dynamic temporal patterns,
GCN and BrainNetCNN can handle static graph structures,
STGCN and TGCN can capture spatio-temporal information,
BFE stands out by dynamically attending to ROI relationships,
but none match the performance of BDANet. Finally, The ACC
of the BDANet model for identifying MDD patients and HC
was 81.6%, the AUC was 0.875, the F1 score was 0.869, the
SEN was 0.878, the SPE was 0.687, and the confusion matrix,
as shown in Fig. 2.

B. BDANet Hyperparameter Settings and Component
Contributions

To mimic the actual brain state and enhance brain mapping
efficiency, our DBG-G component generates dynamic sparse
brain graphs, with sparsity controlled by hyperparameter K .
We employ hyperparameter K in a series of parameter com-
parison experiments to assess the impact of different map
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TABLE II
EFFECT OF HYPERPARAMETER K ON CLASSIFICATION METRICS

TABLE III
RESULTS OF THE ABLATION EXPERIMENTS TO ASSESS THE CONTRIBUTION OF COMPONENTS

Fig. 2. The confusion matrix of the proposed BDANet.

sparsity levels on classification, as shown in Table II. The
model achieves better recognition performance at K of 90 with
a graph density of 25%.

To assess the contribution of each component to MDD
identification, model ablation experiments were set up for four
different combinations of components:

1) M1 ablation experiment: no (NO) domain classifier, with
(YES) DBG-G and GCN-sMRI input.

2) M2 ablation experiment: no DBG-G, with domain clas-
sifier and GCN-sMRI input.

3) M3 ablation experiment: without GCN-sMRI input, with
domain classifier and DBG-G.

4) M4: BDANet with domain classifier, DBG-G, GCN-
sMRI inputs.

The results of the ablation experiments are shown in Table III.
Compared with BDANet, the model recognition accuracy
decreases by 6.67% when the domain classifier component
in E-Classifier is removed and by 9.17% when the DBG-G
component is removed, which indicates the effective con-
tribution of the domain classifier and DBG-G components.
Only unimodal data for BDANet input and functional features
(rs-fMRI) for describe GCN nodes, the model’s recognition
accuracy also decreases by 2.84%.

C. Results of Hybrid Neural Markers to Identify MDD
The raw rs-fMRI and sMRI data of MDD and HC, high-

dimensional and not directly differentiable, were reduced to
2 dimensions using Principal Component Analysis (PCA)

for visualization (Fig. 3 (A)), where MDD and HC overlap
along both principal component directions. BDANet extract
16-dimensional mixed neural markers to identify MDD, and
the 16-dimensional markers were reduced to 2 dimensions
by PCA, where each point represents a subject, Fig. 3 (B)
shows that the mixed neural markers of MDD and HC are
differentiable in both principal component directions. The
linear regression line was used to show the differences more
clearly, as in Fig. 3 (C), Fig. 3 (D).

D. ROIs With High Attribution for Classification
To interpret the end-to-end BDANet and obtain ROIs with

main contribution to classification (high attribution), we used
IG to calculate attributions for 360 ROIs and analyzed the
functional connectivity strength of the top 19 ROIs in the
attribution ranking. The analysis showed that the PI region
located in the insula had the highest attribution, followed by
the a32pr and p24 regions located in the anterior cingulate
gyrus, as shown in Fig. 4 (A).

To analyze the differences in functional connectivity
strength between MDD and HC, brain graph of the
top 10 ROIs in the attribution ranking were extracted. The
analysis showed that in the TE1m, FOP5, PI, Ig and MBelt
regions, the functional connectivity strength was significantly
lower in MDD patients than in HCs (t-test, p-values 0.0002,
0.0005, 0.0004, 0.0001 and 0.0009), and the TE1m region was
the most severely involved (Fig. 4 (B)). In the MDD group, the
functional connectivity strength in the Ig region was lower in
females than in males (t-test, p-value of 0.0372), as shown in
Fig. 4 (C). In the HC group, there was a significant difference
in functional connectivity strength between males and females
in the STSva and FOP5 regions (t-test, p-value of 0.0127 and
0.0088), as shown in Fig. 4 (D).

In addition, male patients with MDD had significantly lower
functional connectivity strength in the TE1m, PI and MBelt
regions than healthy males (t-test, p-values of 0.0102, 0.0019,
0.0109, respectively), with the most significant difference in
the TE1m region (Fig. 4 (E)). Female MDD patients had
significantly lower functional connectivity strength in TE1m,
FOP5, PI, Ig and MBelt regions than healthy females (t-
test, p-values of 0.0023, 0.0005e-4, 0.0071, 0.0005e-2, 0.0073,
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Fig. 3. Raw data and hybrid neural markers of MDD versus HC. (A) Raw data of MDD versus HC; (B) Hybrid neural markers of MDD versus HC;
(C) Regression line differences of raw data of MDD versus HC; (D) Regression line differences of hybrid neural markers of MDD versus HC.

Fig. 4. Categorical contribution of the top 19 ROIs in the attribution ranking and brain functional connectivity strength of the top 10 ROIs in the
attribution ranking. (A) Top 19 ROIs in the attribution ranking; Brain functional connectivity strength of (B) MDD and HC; (C) males and females in
MDD; (D) males and females in HC; (E) MDD and HC in males, and (F) MDD and HC in females; in the top 10 ROIs in the attribution ranking.

respectively), with the most significant difference in FOP5
region, as shown in Fig. 4 (F).

E. Correlation Between the Functional Connectivity of
High Attribution ROIs and Clinical Indicators

Correlations between functional connectivity strength in
MDD patients at the 10 categorized high attribution ROIs
and their clinical HAMD scores were examined. Notably,
as shown in Fig. 5, the functional connectivity strength in
the p24 region located in the right anterior cingulate cortex
showed a negative correlation with HAMD scores (Spearman’s
correlation coefficient r=-0.2086, p=0.0372).

F. Abnormalities in the Seven Functional Subnetworks of
MDD Patients

To describe the functional connectivity abnormalities in
MDD from macroscopic perspective, 360 ROIs were divided
into 7 functional subnetworks based on the Yeo-7 func-
tional network atlas [44], Visual Network (VN), Somatomotor

Fig. 5. Correlation between the strength of functional brain connections
in the p24 region and HAMD scores in MDD.

Network (SMN), Dorsal Attention Network (DAN), Ventral
Attention Network (VAN), Frontoparietal Network (FPN), and
Default Mode Network (DMN), Limbic Network (LN).

Compared with HC, all seven functional subnetworks in
MDD patients showed varying degrees of reduced functional
brain connectivity strength (t-test, p-values of 0.0005e-1,
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Fig. 6. Connection strength of 7 functional subnetworks of MDD
patients and HC. (A) Connection strength of 7 functional subnetworks
of MDD and HC; (B) Difference in connection strength of 7 functional
subnetworks of MDD and HC between males and females.

0.0011, 0.0126, 0.0005, 0.0354, 0.0001, and 0.0003, respec-
tively), with more significant abnormalities in the VN, VAN,
FPN, and DMN (Fig. 6 (A)). And the functional connectivity
intensity of male HC was lower in VAN than that of female HC
(t-test, p-value 0.0459), whereas the functional connectivity
intensity of male MDD patients was higher in VAN and LN
than that of female MDD patients (t-test, p-value 0.0343,
0.0212, respectively), as in Fig. 6 (B).

In addition, the most significant reduction in the connection
strength between VN and DMN was found for MDD compared
to HC (t-test, p-value 0.0007), followed by the connection
strength between DMN and FPN, and between SMN and
VAN (t-test, p-value 0.0013, 0.0002, respectively), as shown
in Fig. 7 (A), (B), (C).

V. DISCUSSION

The proposed BDANet model was applied to the MDD
dataset of the large multisite Rest-meta-MDD consortium,
and the hybrid neural markers generated by it were used
to characterize MDD, achieving a classification accuracy of
more than 81%, outperforming existing DL methods and
obtaining more fine-grained MDD-related brain regions than
existing studies. Abnormal patterns of MDD that contribute
to classification were identified mainly in 10 brain regions,
including PI. In further correlation analysis, it was found that
the strength of connectivity of p24 with other brain regions was
negatively correlated with the severity of depressive symptoms
and that functional brain connectivity in MDD had significant
gender differences.

We compared the proposed BDANet with RBFSVM and
RF, which performed well on small datasets, as well as with
the latest relevant methods on large datasets (Table I). The
poor performance of these methods on multisite MDD dataset
is that they do not comprehensively consider two major issues:
(1) The static graph structure is difficult to capture the dynamic

Fig. 7. Connections between the 7 functional subnetworks of MDD
and HC. Connections between the 7 functional subnetworks of (A) HC;
(B) MDD; (C) Differential functional subnetworks of MDD and HC.

relationships among MDD brain nodes and adapt to dynamic
functional states. (2) The collection of MDD large-sample data
often relies on multisite collaboration, and there are exogenous
and endogenous shifts for multisite data. Both of the issues
lead to a sharp decrease in the accuracy of MDD recognition
on large datasets. The BDANet solves these resulting in supe-
rior multisite MDD recognition performance. Specifically, the
DBG-G component of BDANet employs MSA to dynamically
focus on the relationship between ROIs that are closely related
to the downstream tasks, and its generated homogeneous
sparse brain graph enable the GCN to capture higher-order
topological features to characterize the heterogeneity of homo-
geneous networks, which overcomes the limitations of the
static brain graph and thus solves MDD heterogeneity. Addi-
tionally, our parameter comparison experiments revealed that
the BDANet performance is optimized with a 25% density of
generated brain graph. The E-Classifier employs domain con-
frontation to mitigate domain noise in spatio-temporal features,
solving the shifts of exogenous and endogenous in multisite
MDD data, which can enable BDANet obtain more stable
markers to characterize MDD neurobiological features, and
improve the overall performance by 6%. And then we recon-
firmed the effectiveness of the two components in enhancing
MDD recognition performance through ablation experiments.

Most studies have used rs-fMRI data to analyze functional
abnormalities in MDD patients. However, the brain has both
functional and structural properties, using multimodal data
provides a more comprehensive depiction of brain, which
is conducive to MDD personalized identification. Therefore,
BDANet fuses structural and functional bimodal data and gen-
erates hybrid neural markers to comprehensively characterize
the brain state of MDD patients. And ablation experiments
confirmed improved classification accuracy using bimodal data
compared to unimodal data (Table III).

To obtain neurobiological information, IG was used to
interpret BDANet, and 10 ROIs with main contributions were
extracted, which indicated that MDD may causes functional
abnormalities in the insula, cingulate gyrus and auditory cor-
tex, similar to previously reported results [12]. This explains
the abnormalities of emotional control [45] and hearing
impairment [46] seen in patients with MDD. In addition,
analysis of dynamic brain graphs generated by BDANet
showed that TE1m had the most significant abnormalities
in functional connectivity with other brain regions, possibly
related to anhedonia in MDD [47], which are a core symptom
of MDD [48]. The degree of abnormal functional connectivity
of p24, showed a significant correlation with the severity of
clinical symptoms of MDD.
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Our study observed greater brain involvement in females
with MDD compared to males, in line with the findings of
Young et al. [49]. In addition, we found significant gender
differences in abnormal functional connectivity between the
Ig related to memory function [50] and other brain regions in
MDD, which may account for the inconsistent rate of memory
loss in male and female MDD. Compared to HCs, male
MDD exhibited more significant abnormalities in the TE1m
region related to anhedonia while female MDD showed greater
abnormalities in FOP5 associated with memory function [50].
This can lead to more severe anhedonia in male MDD and
more rapid memory loss in female patients. Female MDD
showed significantly weaker connections in VAN and LN
with other subnetworks, within the 7 functional subnetworks.
These findings indicate that sex-differentiated analysis can
enhance our understanding of MDD pathogenesis and that
brain regions with significant sex variations may serve as
valuable clinical indicators to enhance personalized MDD
interventions [51], [52].

This study has the following research gap: (1) we mainly
analyzed the abnormalities of functional brain connectivity
in MDD, and the structural data were only used for nodal
description of the GCN; future work will further fuse structural
and functional abnormalities to find the best brain abnor-
mality pattern for identifying MDD. (2) Our subject age
range was limited to 18-65 years, and the results may not
be applicable to children or elderly individuals with MDD.
In addition, to make BDANet more consistent with clinical
practical applications, future work will consider comorbidities,
medication use, disease duration and number of episodes as
factors for identifying MDD to further improve the accuracy
of personalized identification of MDD.

VI. CONCLUSION

This study demonstrates the effectiveness of the proposed
end-to-end BDANet for cross-domain identification on large
multisite MDD datasets, achieving more than 81% classifica-
tion accuracy, addressing the heterogeneity of MDDs to some
extent, and alleviating the data shift. We found that regions
with high attribution of classification were mainly located in
the insula, cingulate cortex and auditory association cortex,
and that there were gender differences in the strength of
MDD connectivity in specific brain regions and functional
subnetworks. The BDANet model is expected to enhance
personalized identification of MDD accuracy and has potential
applications for treatment or intervention in MDD-targeted
brain regions.
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