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Abstract— Though the forearm is the focus of the pros-
theses, myoelectric control with the electrodes on the wrist
is more comfortable for general consumers because of
its unobtrusiveness and incorporation with the existing
wrist-based wearables. Recently, deep learning methods
have gained attention for myoelectric control but their
performance is unclear on wrist myoelectric signals. This
study compared the gesture recognition performance of
myoelectric signals from the wrist and forearm between
a state-of-the-art method, TDLDA, and four deep learn-
ing models, including convolutional neural network (CNN),
temporal convolutional network (TCN), gate recurrent unit
(GRU) and Transformer. It was shown that with forearm
myoelectric signals, the performance between deep learn-
ing models and TDLDA was comparable, but with wrist
myoelectric signals, the deep learning models outper-
formed TDLDA significantly with a difference of at least 9%,
while the performance of TDLDA was close between the
two signal modalities. This work demonstrated the potential
of deep learning for wrist-based myoelectric control and
would facilitate its application into more sections.

Index Terms— Myoelectric control, surface electromyog-
raphy (sEMG), gesture recognition, deep learning.
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I. INTRODUCTION

SURFACE electromyography (sEMG) is the electrical man-
ifestation of the human skeletal muscle contractions,

recorded noninvasively from the skin surface [1]. As related
to the action potentials from the motor neurons in the spinal
cord, it contains neural information of human movements
and can be used to decode hand gestures and control the
electronics and robots [2], which is termed myoelectric con-
trol. Its conventional application is to help the amputees
intuitively operate the advanced five-fingered prosthetic hand
with the signals from the residual muscles [3]. With the
development of human-machine interface (HMI) technology,
the application of myoelectric control has been extended to
more areas, including sign language interpretation for the
deaf and mute [4], powered exoskeleton control for the
patients with motor dysfunction [5], consumer electronics
play for the entertainment [6], human-robot collaboration
and teleoperation for the industrial production [7], [8],
and so on.

Current research mainly focused on the performance of
myoelectric control with the electrodes attached on the forearm
for the application in upper-limb prostheses was clear and
dominant. Forearm sEMG signals were available from the
transradial amputees, and the signal quality was high enough
to detect the intentions of the gestures. Wearable devices
were one main embodiment of HMI [9]. As the requirement
of long-term wearing, wearable devices are expected to be
unobtrusive, subtle, and socially acceptable [10], [11], [12].
Though forearm sEMG signals achieved success in prosthetic
hand control, few commercial wearable devices were designed
to be positioned on the forearm. Besides, the forearm is
normally clothes-covered, and the electrodes need to be skin-
touched. As such, it would be cumbersome for forearm sEMG
to be paired with wearable devices. Currently, many wearable
devices adopt the wrist-based form, such as smartwatches,
and fitness bands. Compared to the forearm-based, myo-
electric control with the electrodes on the wrist could be
incorporated into these existing wearables, and empower them
with recognizing hand gestures to achieve control of other
devices and machines, benefiting life and production. The
successful incorporation would expand the application and
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bring new opportunities to both wearables and myoelectric
control.

As the potential for the wearables, researchers have turned
to investigating the performance of gesture recognition from
wrist sEMG. Jiang et al. examined the signal-to-noise ratio
(SNR) of wrist sEMG and found that its difference from
forearm sEMG was not significant [11]. They then presented
a wristband design fusing sEMG and inertial measurement
unit (IMU) data for hand gesture recognition. S. Botros et al.
systematically compared the quality of wrist sEMG to that of
forearm sEMG and found that wrist sEMG was better in finger
movements [10]. Additionally, the classification accuracy of
wrist sEMG was also better than that of forearm sEMG
in recognizing single and multi-finger gestures. Though the
number of relevant studies was still limited, they demonstrated
the feasibility of decoding gestures from wrist sEMG with the
traditional pattern recognition-based methods.

In the last decade, deep learning methods have gained
increased attention and become an effective tool for processing
and decoding sEMG signals for gesture recognition [13],
[14]. In the traditional pattern recognition-based methods,
feature extraction or feature engineering was an important
step for the final classification performance. Deep learning
methods combined the steps of feature extraction and the
subsequent classification, achieving feature-free or end-to-end
learning [8]. Geng et al. employed a convolutional neural
network (CNN), translating sEMG signals as an image form to
exploit spatial information [15]. It attained better classification
performance than the state-of-the-art methods. Asif et al.
investigated the effect of the hyper-parameters for CNN on
gesture recognition from sEMG [16]. To reduce the number
of parameters and training data, Tsinganos et al proposed a
temporal convolutional network structure and showed higher
classification accuracy than that of CNN on a public sEMG
dataset [17]. As sEMG signals were time-series data, deep
learning methods designed for sequential data processing, such
as recurrent neural network (RNN), long short-term memory
(LSTM), gate recurrent unit (GRU), and transformer, were
also investigated [18]. Rahimian et al. proposed a trans-
former structure that outperformed LSTM in classification
accuracy and algorithm complexity [19]. Chen et al. pro-
posed a gate recurrent unit (GRU) structure and improved the
gesture recognition performance with different forearm pos-
tures compared to the traditional pattern recognition methods
[20]. These studies showed that deep learning methods could
achieve superior performance to traditional pattern recognition
methods with feature engineering. It offered a new strat-
egy to explore and learn the information from sEMG for
gesture recognition.

Though wrist sEMG was a potential modality for future
wearables, current studies of deep learning all focused on
forearm sEMG, and its performance on wrist sEMG is yet to
be investigated. To explore the power of deep learning methods
on wrist sEMG, this study selected four effective deep learning
structures: CNN, GRU, TCN, and Transformer. They were all
representative structures over the development of deep learning

Fig. 1. Electrode placement in this study. Eight and six bipolar
electrodes were equally spaced on the forearm and wrist, respectively.
The inter electrode distance is 2 cm. Six pairs with the lowest error rate
of a traditional method (TDLDA) are selected from eight pairs of the
forearm to keep the number of the electrodes equal between forearm
and wrist.

and employed for forearm sEMG-based gesture recognition
in previous studies [21]. CNN was widely used in biosig-
nal processing for extracting spatial information [14]. GRU,
TCN, and Transformer were all proposed in the last decade,
introducing different mechanisms to improve the accuracy and
efficiency of sequential data [21]. The performance of the
four deep learning methods was compared between forearm
and wrist sEMG with a large dataset consisting of forty-three
participants and seventeenth gesture classes. A comparison
was also made between the deep learning methods and the
state-of-the-art methods for sEMG-based gesture recognition.

This study focused on the effect of deep learning models
on myoelectric control, and investigated the performance of
gesture recognition from forearm and wrist sEMG with one
traditional and four common deep learning methods, i.e., CNN,
GRU, TCN, and Transformer. The difference of decoding
wrist and forearm sEMG would be explored, as well as their
interactions with the methods. The results would provide
insights into the characteristics of wrist sEMG, and benefit
the development of wrist-based HMI and wearables.

II. METHOD

A. Dataset
Forty-three healthy participants (23 Males, and 20 Females

with average age of 26.35±2.89) were recruited for the study.
The informed consent was obtained before the experiment,
and the protocol was in accordance with the Declaration of
Helsinki, and approved by the Office of Research Ethics of
the University of Waterloo (ORE# 31346).

Myoelectric signals were collected from both the forearm
and the wrist. Prior to the electrode placement, the forearm
length between the olecranon process and the ulnar styloid
process was measured. The electrodes for the forearm and
wrist were positioned one-third of the forearm length from
the olecranon process and 2 cm away from the ulnar styloid
process, respectively (Fig. 1). For the forearm placement,
sixteen monopolar electrodes were positioned in the form of
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Fig. 2. Active gesture classes investigated in this study. (a) lateral
prehension (LP), (b) thumb adduction (TA), (c) thumb and little fin-
ger opposition (TLFO), (d) thumb and index finger opposition (TIFO),
(e) thumb and little finger extension (TLFE), (f) thumb and index finger
extension (TIFE), (g) index and middle finger extension (IMFE), (h) lit-
tle finger extension (LFE), (i) index finger extension (IFE), (j) thumb
extension (TE), (k) wrist flexion (WF), (l) wrist extension (WE), (m) fore-
arm supination (FS), (n) forearm pronation (FP), (o) hand open (HO),
(p) hand close (HC).

two rings, of which each had eight electrodes equally spaced,
making up eight bipolar pairs. The distance between the two
centers of the rings was 2 cm. For the wrist placement, there
were twelve monopolar electrodes positioned in a similar way
to the forearm setup, where two rings and six bipolar pairs
were formed.

There were seventeen gesture classes investigated in this
study (Fig. 2), which were lateral prehension (LP), thumb
adduction (TA), thumb and little finger opposition (TLFO),
thumb and index finger opposition (TIFO), thumb and little
finger extension (TLFE), thumb and index finger extension
(TIFE), index and middle finger extension (IMFE), little finger
extension (LFE), index finger extension (IFE), thumb exten-
sion (TE), wrist flexion (WF), wrist extension (WE), forearm
supination (FS), forearm pronation (FP), hand open (HO),
hand close (HC), and rest (R). The subject was instructed
to perform each gesture following the cues on the screen.
There were seven trials for each subject. In one trial, each
gesture was held for five seconds, and a ten-second rest was
provided between the contractions to avoid muscle fatigue. The
data were recorded using a commercial device (EMGUSB2+,
OT Bioelletronica, Italy) at a sampling rate of 2048 Hz. The
dataset was uploaded and available in PhysioNet, i.e. the data
of the first day in [22].

Fig. 3. Structure of the convolutional neural network (CNN) used in this
study. It has three convolutional blocks and one full connection block.
The input and output dimension of each block is annotated under each
block.

B. Gesture Recognition Models
Four representative deep learning models, i.e., CNN, GRU,

TCN, and transformer, and one traditional method were chosen
to compare the performance of gesture recognition between
the wrist and forearm. The four networks employed different
structures and were all reported to have a high accuracy of
decoding gestures from forearm myoelectric signals [16], [17],
[19], [20] with end-to-end learning, i.e., bypassing the feature
engineering step1. The traditional method was the combination
of time domain features and linear discriminant analysis,
termed TDLDA, which was the state-of-the-art method for
recognizing gestures from forearm myoelectric signals [23].
The details are as follows:

1) CNN: CNN is the most widely adopted deep-learning
model in the field of myoelectric gesture recognition. It has an
excellent ability to exploit spatial information from the input
data by performing convolutional operations sliding over the
input. Asif et al. investigated how various hyper-parameters
affected CNN performance optimization [16]. The learning
rate was set as 0.0001 for its better convergence compared
to 0.1, 0.01 and 0.001 tested in a pilot study. Adapted from
the results of [16], the structure of CNN used in this study
is depicted in Fig. 3. There were three convolutional blocks
after the input layer. For the first and third block, they both
consisted of a convolutional layer and a bather normalization
layer. For the second block, there was a pooling layer after
the convolutional and batch normalization layer to discard
useless features and reduce computation. The size of the
input layer was one sEMG image matrix of C×L , where C
was the channel number and L was the window length. The
convolutional layers in three blocks had 32 filters of 1 × 3 × 3
with the stride 1-by-1, 128 filters of 32 × 3 × 3 with the stride
1-by-1, and 64 filters of 128 × 2 × 2 with the stride 1-by-1,
respectively. After each batch normalization layer in three
blocks, a ReLU layer was adopted as an activation function.
A fully connected layer with 17 units was applied at last for
classification.

2) GRU: GRU is a type of RNN, which is well suited to
processing time series data. It employs a gating mechanism to
control the information flow and has a relatively simple archi-
tecture and comparable performance compared to other similar
neural networks, such as LSTM. The structure of GRU was

1The python codes of four deep learning models would be available from
https://github.com/Easyeasyworld/HGR_wrist.
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Fig. 4. Structure of gated recurrent unit (GRU) and its cell in this study.
It has two GRU block and one full connection block.

adopted from [20] for its robustness against forearm postures
in recognizing gestures from forearm myoelectric signals. The
whole model consisted of two GRU layers and a fully linked
layer. There were 32 hidden units in both GRU layers and
17 hidden units in the fully connected layer. A dropout layer
was set after every three layers with a probability of 0.15 to
avoid overfitting. The structure of GRU and the particulars of
one cell is displayed in Fig. 4. The calculation of the reset gate
rt and the update gate zt depend on the current input xt and the
hidden state from the last step ht−1 as shown in Equation (1)
and (2). The reset gate rt decides how to combine the current
input with the before memory, and the update gate zt decides
how much of the before memory can affect in the current
step. Then the candidate activation h̃ and actual activation ht
are computed based on the rt and zt as Equation (3) and (4).
The output yt is finally calculated based on h̃ as described in
Equation (5).

rt = σ
(
Wr ·

[
ht−1, xt

])
(1)

zt = σ
(
Wz ·

[
ht−1, xt

])
(2)

h̃ = tanh
(
Wh ·

[
rt ∗ ht−1, xt

])
(3)

ht = (1 − zt ) ∗ ht−1 + zt ∗ h̃ (4)
yt = σ (Wo · ht ) (5)

3) TCN: TCN is a variant of CNN, which employs a one-
dimensional (1-D) fully convolutional network architecture to
capture temporal patterns from the sequential data. The length
of each hidden layer in TCN is the same as that of the input
layer. Compared to GRU, its requirement for memory is much
lower in training. As displayed in Fig. 5, the TCN model of
this study consisted of two parts, a TCN structure to extract
features and a full connection block for classification. The
structure of TCN was adapted from [17] where its performance
was demonstrated better than that of CNN on a 53-class task
of gesture recognition from forearm myoelectric signals. The
TCN structure consisted of three 1-D convolutional layers with
dilation of 1, 2, and 4, respectively. They had 32, 64, and
17 filters of 3 × 3 with a stride of 1 × 1, respectively. The
generated features were then fed into a full connection block
with 17 hidden units for classification.

4) Transformer: A transformer is a deep learning model
designed to process sequential data. Different from RNN,
it employs a self-attention mechanism, and processes the entire
input data all at once, not sequentially, allowing for more
parallelization to reduce the training time [24]. As displayed

Fig. 5. Structure of temporal convolutional network (TCN) in this
study. It has three convolutional layers and one full connection block.
The dilation factors are 1, 2, and 4, respectively. The input and output
dimension of each part is annotated under each layer.

Fig. 6. Structure of Transformer in this study. The myoelectric signals
are divided, flattened into vectors, and then linearly projected for trans-
former encoder. The encoder consists of L (L=5) layers, and each layer
has two LayerNorm, one MLP and one MSA.

in Fig. 6, this study adopted a transformer structure from
[19], of which the performance surpassed the state-of-the-art
methods in terms of overall accuracy and algorithm complex-
ity. Each input of C×L was first divided into N (N = L/C)

patches of C×C without overlapping. These patches were then
flattened into a vector xp

j ∈RC2
and linearly projected with a

matrix E∈RC2
×d shared between patches. The output of this

step was called patch embedding. Then the patch embeddings
were added with standard 1-D trainable position embeddings.
The output of this step is defined as

Z0 =

[
xcls

; x p
1 E; x p

2 E; . . . ; x p
N E

]
+ E pos (6)

where xcls is a trainable [cls] token appended similarly
as in the BERT (Bidirectional Encoder Representation from
Transformers) framework [8], and E pos

∈ R(N+1)×d denotes
the position embeddings. The output Z0 was then fed into
the Transformer encoder, a L-layers (L=5 in this study)
module each of which contained two LayerNorm, a multi-layer
perceptron (MLP), and a multi-head self-attention (MSA). The
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output of the Transformer encoder ZL can be described as

ZL = [zL0; zL1; . . . ; zL N ] (7)

where zL0 is used for classification and finally once again
linear projected to the final values.

5) TDLDA: TDLDA was a traditional machine learning
model. It extracted four time domain features from the myo-
electric signals [25], including mean absolute value (MAV),
zero crossing (ZC), sign slope changes (SSC), and wavelet
length (WL). The extracted features were concatenated as a
vector and sent to LDA for classification. As TDLDA was
not only widely used in gesture recognition from forearm
myoelectric signals, but also proved effective in processing
wrist myoelectric signals [10], it was regarded as a benchmark
to evaluate the performance of the deep learning models in this
study.

C. Data Analysis
Both forearm and wrist myoelectric signals were collected

from the bipolar electrodes. As the number of bipolar elec-
trodes was eight and six for the forearm and wrist, respectively,
only six pairs were used in this study for the forearm to make
the comparison fair. The selection was based on the results of a
pre-analysis, where the classification accuracy of TDLDA with
each combination of six pairs was calculated. The combination
with the lowest error rate was selected, of which the electrode
ID was 2, 3, 5, 6, 7, and 8. Before the classification, the raw
signals were filtered with a bandpass filter between 10 and
500 Hz, and a notch filter at 60 Hz for powerline noise.
The data was then segmented, and each segment was fed
into the models. The segment lengths were 200 ms, and the
increment was 10 ms, resulting in the overlap between the
two consecutive segments being 190 ms. Seven-fold cross-
validation was adopted for classification. There were seven
rounds. In each round, six out of seven trials were chosen for
training and the remaining trial was used for testing.

D. Feature Space Analysis
For comparing the separability of the deep learning and

TD features between forearm and wrist, t-distributed stochas-
tic neighbor embedding (t-SNE) and Davies-Bouldin index
(DBI) were employed to visualize the feature distribution and
quantitatively measure the separation of the seventeen classes,
respectively. t-SNE is a nonlinear and unsupervised dimension
reduction method preserving neighborhood relationships by
embedding the original data into low dimensions [26]. It was
often employed in deep learning studies for data distribution
visualization [27].

DBI evaluated the data clustering performance by calcu-
lating the ratio of within-class similarity to between-class
similarity. Suppose Si, Sj and Di,j represent the within-class
and between-class similarity for and between the i th and j th
class, respectively. DBI measures the worst separability of
each class with its neighborhood and calculates the average,

DBI =
1
K

∑K

i=1

(
Si + Sj

Di,j

)
(8)

Fig. 7. Classification error rates of five models for forearm and wrist
myoelectric signals. The performance of four deep learning models,i.e.,
CNN, GRU, TCN, and Transformer is similar, which achieves lower error
rates from the wrist compared to the forearm. For the traditional method
TDLDA, the classification performance between wrist and forearm myo-
electric signals is similar.

where K is the number of classes. Normally the Euclidean
distance is used to measure the magnitude of the similarity,
and the computation of Si and Di,j are as follows:

Si =

√
1
Ni

∑Ni

j=1

(
xi, j − µi

)T (
xi, j − µi

)
(9)

Di, j =

√(
µi − µ j

)T (
µi − µ j

)
(10)

where xi,j, µi and Ni are the j th feature vector, the mean
feature vector, and the number of the feature vectors of the
i th class, respectively. A small DBI value indicates a large
class separation.

III. RESULTS

A. Classification Performance
The classification performance of the gestures was different

between the myoelectric signals of the wrist and forearm for all
the five models (Fig. 7). For the four deep learning models,
i.e., CNN, GRU, TCN and Transformer, the averaged error
rates of wrist-based gesture recognition were close, between
12.9% and 13.7%, and they were all lower than the cor-
responding error rates of forearm-based gesture recognition.
With the same deep learning model, the difference between
the error rates of the wrist-based and forearm-based gesture
recognition was between 6.2% and 9.8%. TCN obtained the
smallest error rate of recognizing gestures from the forearm,
i.e., 19.7%, and the error rate of GRU was the biggest, which
was 23.7%. For TDLDA, its recognition performance between
wrist and forearm myoelectric signals was similar, which was
different from the scenarios of the four deep learning models.
The average error rate of the wrist-based gesture recognition of
TDLDA was 21.8%, around 9% larger than the performance
of the deep learning models. The average error rate of the
forearm-based gesture recognition of TDLDA was 20.8%,
larger than the error rates of TCN and Transformer but smaller
than the error rates of the other two deep learning models.

The confusion matrices of all five models are displayed
in Fig. 8. For TDLDA, the matrices of the wrist and the
forearm were similar. For the four deep learning models, the
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Fig. 8. Confusion Matrices of five models for forearm and wrist myoelectric signals. For the four deep learning models from CNN to Transformer,
the misclassification in the upper left part of the forearm matrices are decreased in the wrist matrices, indicating the classification of the finger
gestures are improved with the wrist myoelectric signals. For TDLDA, the matrices are similar between the forearm and the wrist.

misclassification of the forearm myoelectric signals mainly
collected in the upper left part of the matrices. And the
misclassification of this part was decreased in the matrices
of the wrist. As the gesture sequence of the matrix was
from finger to gross hand and wrist movements, it indicated
that the recognition of the finger movements was confused
by each other with the forearm myoelectric signals, and the
confusion was improved with the wrist myoelectric signals.
The other evaluation metrics, including the true positive rate
(sensitivity), true negative rate (specificity), positive predictive
value (Precision) and negative predictive value, and F1 Score
of each movement, are in Supplementary Materials.

Statistical analysis confirmed the above observations.
A three-way ANOVA was conducted to evaluate the effect of
the three factors, i.e., gesture, model, and electrode position,
on the classification performance. It was revealed that there
was a significant interaction among the three factors (p =

0.000, F = 1.72). To compare the recognition performance
between the forearm and wrist myoelectric signals, the level
of the model was fixed and the two-way ANOVAs were
performed. There was a significant interaction between the
factors of gesture and electrode position, and the one-way
ANOVAs were subsequently performed with the fixed levels
of gesture (See Supplement for p and F values). As displayed
in Table I, for the four deep learning models, the recognition
performance of most gestures (≥11 classes) was significantly
improved with wrist myoelectric signals compared to that
with forearm myoelectric signals. For TDLDA, there was no
such trend, and forearm and wrist myoelectric signals had
their respective advantages in recognizing different gestures.
Besides, similar analyses were performed to compare the
performance of the five models. The two-way ANOVAs were
first performed with the fixed level of electrode position, and
after the significant interaction was detected between the factor
of gesture and model, one-way ANOVAs were performed
with the fixed level of gesture. As displayed in Table II, with

TABLE I
STATISTICAL ANALYSIS OF CLASSIFICATION ERRORS BETWEEN WRIST

AND FOREARM MYOELECTRIC SIGNALS

forearm myoelectric signals, a majority of the comparisons
were not significant. With wrist myoelectric signals displayed
in Table III, there was no significant difference among the four
deep learning models, and they were all significantly better
than TDLDA in recognizing gestures except for the Rest class,
where the performance of TCN, TDLDA, and Transformer was
comparable, and TCN and TDLDA significantly outperformed
GRU and CNN.

B. Visual and Quantitative Comparison of Features
Deep learning features were the inputs of the full connection

layer for CNN, TCN, and GRU, as well as the outputs of
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TABLE II
STATISTICAL ANALYSIS OF CLASSIFICATION ERRORS AMONG FIVE MODELS FOR FOREARM MYOELECTRIC SIGNALS

TABLE III
STATISTICAL ANALYSIS OF CLASSIFICATION ERRORS AMONG FIVE MODELS FOR WRIST MYOELECTRIC SIGNALS

the encoder layer for Transformer. As the feature dimensions
of CNN and TCN were too large, which were 12992 and
6953, respectively, the DBI and t-SNE were only performed
for GRU, Transformer, and TDLDA, of which the feature
dimensions were 32, 32, and 24, respectively.

The data distribution of one representative subject after
t-SNE is displayed in Fig. 9. For the deep learning models,
GRU and Transformer, the clusters of wrist myoelectric sig-
nals were more concentrated compared to those of forearm
myoelectric signals. For TDLDA, the cluster size was similar
between wrist and forearm myoelectric signals. For quanti-
tative comparison, the DBI values are displayed in Fig. 10.
For GRU and Transformer, the DBI of wrist myoelectric
signals was smaller than that of forearm myoelectric signals,

indicating the separability was improved. As for TDLDA, the
DBI of wrist myoelectric signals were larger compared to
forearm myoelectric signals.

Two-way ANOVA revealed that there was a significant
interaction between the factors of the model and electrode
position (p = 0.000, F = 109.86). With the fixed level of
the model, the subsequent one-way ANOVA showed that the
DBI differences between the forearm and the wrist were all
significant for the three models (GRU: p = 0.000, F = 427.32;
Transformer: p = 0.000, F = 408.91; TDLDA: p = 0.000,
F = 38.04). Both the visual and quantitative results indicated
that the data separability was significantly improved with wrist
myoelectric signals compared to forearm myoelectric signals
for GRU and Transformer, which was different from TDLDA.
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C. Computational Cost
The training cost of each method was evaluated by a server

with 40-thread Intel(R) Xeon(R) Silver 4316 CPU and an
NVIDIA Geforce RTX 3090 GPU. The amount of training
data was 6 trials per class, resulting in 49062 samples in total.
The average training time of each model is listed in Table V.
The time of TDLDA was much smaller than those of the deep
learning models, which was expected. For the deep learning
models, TCN and GRU had the least and most training cost,
respectively. Further, we also compared the time each model
took to generate decisions from the inputs. Two scenarios were
tested, i.e., 128 samples and one sample, and the results are
listed in Table V. For the five models, the sequence of testing
time cost was the same as that of training time cost, and the
average time cost of a sample from 128 samples was faster
than that from one single sample due to parallel computation
of the machine. All the models were able to generate an
output in less than 10 ms, which was the interval of the
two input samples. Additionally, the time cost of TCN was
also tested with a Raspberry Pi 4B, a 4-thread, 1.5GHz-main
frequency microcontroller. The inference time was 986.89 ms
and 8.36 ms for 128 samples and 1 sample, respectively, which
were both less than 10 ms for one decision. It indicated that
the deep learning methods had the potential to be employed
in embedded systems for the wearables.

IV. DISCUSSION

This study investigated the performance of four deep learn-
ing models for a thirteen-class task with myoelectric signals
from the wrist and forearm, respectively, and they were
compared to that of a traditional method TDLDA. The four
deep learning models were good at extracting either spatial or
temporal information, and all were reported to have a good
classification performance of hand movements with forearm
myoelectric signals [16], [17], [19], [20]. The structures and
parameters of the deep learning models were initially proposed
based on forearm myoelectric signals. The results showed
that with forearm myoelectric signals, the difference between
deep learning models and TDLDA was insignificant for most
gestures, and the average classification errors were close as
well. With wrist myoelectric signals, the classification errors
of deep learning models were significantly reduced compared
to the errors with forearm myoelectric signals. The difference
was between 6.2% and 9.8%. However, for TDLDA, the
error difference between wrist and forearm myoelectric signals
was around 1.4%, i.e., the gesture recognition performance
was little affected by the signal modality. As the perfor-
mance between deep learning models and TDLDA was similar
with forearm myoelectric signals, with wrist myoelectric sig-
nals, the gesture recognition performance was significantly
improved by deep learning models compared to TDLDA.
Previous studies showed the possibility of recognizing hand
movements from wrist myoelectric signals using traditional
methods specifically designed for processing forearm myo-
electric signals [10]. However, as the power of deep learning
on myoelectric control from forearm muscles was demon-
strated in more and more studies [8], [14], its performance with
wrist myoelectric signals was not reported yet. The wrist was a

Fig. 9. Visual distribution of the features after t-distributed stochastic
neighbor embedding (t-SNE) for GRU, Transformer and TDLDA. The
class separability of the wrist is better than that of the forearm for GRU
and Transformer.

more favorable part for the wearables compared to the forearm.
The results would benefit the development of wrist-based HMI
and the extension of myoelectric control technology into more
applications.

It was shown that deep learning models were better than the
traditional method in recognizing gestures with myoelectric
signals from the wrist, but not the forearm. It might be related
to the difference of the physiological structure between the
forearm and wrist (See Supplement). For the forearm, there
were mainly muscle bellies, which were the widest parts of
the muscles. As such, an electrode with limited space could
only pick up information from a few muscles. However, for
the wrist, there were mainly muscle tendons. They were the
ends of the muscles and distributed narrowly around the wrist.
As the size was small, the pickup area of an electrode covered
multiple tendons, and the related information was collected.
As such, the information richness of one channel would be
higher from the wrist compared to the forearm. With the same
number of channels, the signals from the wrist might provide
more discriminative information than the forearm. With the
help of deep learning power, the discriminative information
was captured and learned, increasing the accuracy of gesture
recognition. From Table I, the advantage of deep learning
models was mainly on finger gestures with wrist myoelectric
signals. The muscles associated with finger movements, such
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Fig. 10. Davies-Bouldin index (DBI) for quantitative comparison of the
features among the three models. For GRU and Transformer, the values
of the wrist are smaller than the values of the forearm, corresponding to
a better class separation.

as the superficial flexor and the deep flexor, were small or
deeply buried in the forearm. The electrodes on the forearm
could not capture much information about these muscles,
while the electrodes on the wrist could have their activities
from the tendons. The information was well decoded by deep
learning models, resulting in an improvement in finger gesture
recognition performance.

Except for the classification error rates, visual and quan-
titative measurements were also employed to illustrate the
feature separability of each method. There was consistency
among these measurements with the recognition performance
comparison between wrist and forearm myoelectric signals.
In Fig. 7, the error rates of GRU and Transformer were much
lower with wrist myoelectric signals. And in Fig. 10, for GRU
and Transformer, the DBI values of wrist myoelectric signals
were smaller compared to the values of forearm myoelectric
signals (GRU: 1.24 vs. 1.84, Transformer: 1.17 vs. 1.64),
indicating a better class separation. The clusters after t-SNE
from wrist myoelectric signals were also smaller in Fig. 9.
It should be noted that for TDLDA, the DBI difference
between wrist and forearm myoelectric signals was significant,
while the difference of the error rates was not. This indicated
that DBI might be more sensitive than error rates. The results
of DBI and t-SNE both confirmed the advantage of deep
learning models on wrist myoelectric signal-based gesture
recognition.

The results of TDLDA were different from a previous study
[10], which employed four channels and showed lower classifi-
cation errors of finger gestures with myoelectric signals from
the wrist compared to the forearm. As this study employed
six channels, a reduced number of electrodes would lead
to a decline in classification performance. The degradation
of classification performance would be different between the
wrist and forearm myoelectric signal. The decrease might be
larger in forearm myoelectric signals for less information was
contained. Further, the locations of the employed electrodes
in this study were optimized from eight pairs of electrodes
equidistantly distributed around the forearm. Its classification
errors of forearm myoelectric signals were lower than that of
the other locations.

Four deep learning models were investigated in this
study. Considering factors including model complexity,

TABLE IV
AVERAGE TIME OF MODEL TRAINING PER SUBJECT IN SECONDS

TABLE V
AVERAGE TIME OF MODEL TESTING PER SUBJECT IN MILLISECONDS

computational cost, recognition performance, etc., TCN was
considered the best option for gesture recognition from wrist
myoelectric signals. The structure of TCN was simple with
1d convolutional operation as the major operation. As shown
in Table IV and V, its computational cost was relatively low
compared to the other three deep learning models. Besides,
structural simplicity did not lead to a decline in recognition
performance. The classification error rates of TCN were the
lowest on both wrist and forearm myoelectric signals in Fig. 7.
Only offline results were presented. Based on the computa-
tional cost in Table V, all the models had the possibilities
to be used in real-time for the time cost of one sample was
smaller than the increment (10 ms). Besides, compared to
discrete gesture recognition, continuous estimation of hand
kinematics would provide more detailed information about
the movements, which might be more useful in practical
applications. Future studies will focus on these directions.

V. CONCLUSION

This study compared the performance of gesture recognition
between TDLDA and four deep learning models with wrist
and forearm myoelectric signals, respectively. Though the
deep learning models were designed for forearm myoelectric
signals, they showed much lower error rates and higher class
separability than TDLDA for gesture recognition from wrist
myoelectric signals. With deep learning methods, the error
rates of gesture recognition from wrist myoelectric signals
were also lower than those from forearm myoelectric signals.
This study highlighted the potential of deep learning methods
for decoding movements from wrist myoelectric signals, ben-
efiting the development of wrist-based sEMG wearables and
facilitating the extension of myoelectric control technology
into more sections.
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