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Abstract— Local field potential (LFP) recorded by
sensing-enabled neurostimulators provided chronic obser-
vation of deep brain activities for the research of brain
disorders. However, the contamination from the electrocar-
diogram (ECG) deteriorated the extraction of effective infor-
mation from LFP. This study proposed a novel algorithm
based on minimizing the variance combining template
subtraction to improve the performance of ECG artifact
removal for LFP. Four patients with implanted electrodes
were recruited, and eight real LFP records were collected
from their left and right hemispheres, respectively. The
results showed that the proposed method improved the
accuracy of artifact peak detection in LFP, and the subse-
quent signal quality after template subtraction compared to
the traditional Pan-Tompkins (PT) method. The outcome of
this study benefited the LFP-based brain research, promot-
ing the application of sensing-enabled neurostimulators in
more areas.

Index Terms— Local field potential (LFP), template sub-
traction, artifact removal, sensing-enabled neurostimulator.
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I. INTRODUCTION

DEEP brain stimulation (DBS) is a well-established func-
tional neurosurgical technique that is used to treat a

variety of neurological and psychiatric diseases [1]. This
neurosurgical procedure involves precisely implanting elec-
trodes in targeted brain areas by stereotactic techniques. The
mechanisms of DBS efficacy are still not clear, and current
views mainly attribute it to modulating pathological neu-
ronal network activities [2]. The implanted DBS electrode
provides a rare opportunity to record deep brain activities
directly in the form of local field potential (LFP) from the
electrodes stimulating subcortical structures [3]. The recorded
LFP represented the summed and synchronized activities of
a neuronal population near the recording contact [4]. The
abnormalities of oscillatory synchronization are thought to be
part of the development of signs and symptoms of many brain
disorders, such as Parkinson’s disease (PD) [5], obsessive-
compulsive disorder [6], dystonia [7], etc. The recording of
the LFP signals opened up the possibility of obtaining the
biomarkers of the diseases for diagnosis and treatment. For
example, in Parkinson’s disease (PD), excessive synchronized
beta band (13–30 Hz) activity within the subthalamic nucleus
(STN) has been thought to be responsible for Parkinsonian
motor symptoms such as rigidity and akinesia [8]. It could
be used as an electrophysiologic biomarker for guiding DBS
lead implantation [9] and stimulation parameters adjusting [10]
in PD.

In earlier studies, the LFP recordings in patients who
underwent DBS surgery were implemented by intraoperative
leads or temporarily externalized leads in the postoperative
period [11]. These recordings were limited by short duration
and an unnatural environment. To address these limitations,
the development of neurostimulation devices, such as the
sensing-enabled impulse generator (IPG), offered the chance
of recording long-term LFP [12]. Benefiting the technology
of sensing-enabled IPG, large ‘real-world’ neural LFP datasets
were recorded for the discovery of electrophysiologic biomark-
ers. It improved the efficiency of traditional open-loop DBS.
However, open-loop DBS delivered stimulation with fixed
parameters, incapable of automatically modifying parameters
in real-time to respond to fluctuations in disease states [13].
The efficacy of the treatment might be reduced. Recently, the
development of adaptive DBS (aDBS), or closed-loop DBS,
enabled the automatic adjustment of stimulation parameters in
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response to the dynamic characteristics of neural oscillations
in LFP signals. It was believed to be a more effective therapy
technique than the open-loop DBS [14], [15]. For closed-
loop DBS, high quality of LFP signals was essential for the
extraction of the accurate biomarker. However, previous stud-
ies showed that electrocardiographic (ECG) was commonly
presented in the LFP recordings of monopolar mode [16], [17].
It was mainly attributed to the fact that the IPG simultaneously
served as the reference for the LFP recordings and the anode
for the stimulation settings [16]. The contaminated LFP signals
made it difficult to implement precise parameter adjustments
for closed-loop DBS, degrading its efficacy.

Recoding LFP in bipolar mode, i.e., the differential of two
adjacent contacts on one electrode, could reject ECG artifacts
for regarding them as common-mode signals. However, other
common-mode information could also be rejected or reduced
in bipolar mode, making the interpretation of neural oscil-
lations not sufficiently accurate [11], [18]. Recently, several
signal processing algorithms were proposed to eliminate or
decrease the influence of ECG artifacts on LFP signals, such
as QRS interpolation, adaptive filtering, template subtrac-
tion, singular value decomposition (SVD), etc. Among these
algorithms, template subtraction was recommended for the
advantages including high suppression performance of ECG
artifacts [19], [20], no additional reference signal, simple
parameter settings, and subjective research input, etc.

The main steps of template subtraction consisted of R peak
detection, template extraction, and subtraction. The accuracy
of R peak detection was important for the performance of
the following steps. The state-of-the-art method of R peak
detection from ECG signals was the Pan-Tompkins (PT)
algorithm, which employed a series of filters to highlight the
rapid increase of the amplitude from heart depolarization [21].
Chen et al. employed the PT algorithm to detect R peaks
and successfully extracted a template from the simulated LFP
signals with ECG artifacts [22]. However, for the real LFP
signals, the waveforms of ECG artifacts were not as clear as
the simulated signals, and the contamination degree could be
varied with different electrode and IPG positions [19]. For
practical applications, the effectiveness of the algorithm needs
to be evaluated with real LFP signals.

The performance of template extraction and subtraction
depended on the results of R peak detection. As the amplitude
of ECG artifacts was much larger than that of LFP signals,
the signal variation would be reduced drastically if the ECG
artifacts were subtracted correctly. Conversely, incorrect sub-
traction would increase signal variation. As such, signal vari-
ation could be employed as a measurement of peak detection
performance from contaminated LFP signals for template sub-
traction. With this basis, this study proposed a novel algorithm
based on variation minimization, termed TSVM, to increase
the peak detection accuracy from contaminated LFP signals
and improve the subsequent template subtraction performance
to suppress the influence of ECG artifacts. Real LFP signals
with ECG artifacts were collected from four patients with
electrodes implanted in the subthalamic nucleus (STN) after
surgery. The performance was compared with PT in peak
detection, and noise removal of time and spectral domain after
template subtraction. The results of this study would facilitate
the development of aDBS with accurate feedback.

TABLE I
DEMOGRAPHIC DATA OF FOUR PATIENTS WITH IMPLANTED IPG

Fig. 1. MRI image with preoperative surgical plan of Deep Brain
Stimulation (DBS) for electrode locations of one representative subject.
The sloid white lines represent the electrode locations, and the dotted
lines are the electrode path. The square represents the location of the
Anterior Commissure (AC) and Posterior Commissure (PC), which serve
as the reference points in establishing the coordinate system for the
DBS target. The rings represent the entrance to the skull and end of the
electrode path, respectively.

II. METHOD

A. Subject
Four patients with PD who underwent bilateral implantation

of DBS electrodes in the STN (electrode lead model 3389, IPG
model SR 1181, SceneRay Inc., Suzhou, China) were recruited
in the study. The implantation surgeries were all performed
at West China Hospital in 2022. The demographic data is
presented in Table I. The patients were instructed to abstain
from any dopaminergic medication for a minimum of 12 hours
before recording. The locations of two implanted electrodes
for one representative patient are displayed in Fig. 1. The
recordings were performed within six months after initial
DBS while the DBS efficacy was stable. Informed consent
forms were signed and received before the experiment. This
experimental protocol was in accordance with the Declaration
of Helsinki, and approved by the ethics committee of West
China Hospital (#.2022923).

B. Data Collection and Preprocessing
The LFP signals were recorded by a sensing-enabled IPG

which had been successfully used in our previous work [23].
The IPG can synchronically and wirelessly transmit the LFP
data to an external computer equipped with a telemetry head at
a sampling rate of up to 1,000 Hz. Before the experiment, the
subject was instructed to sit comfortably in a chair with the
arms supported and asked to relax with eyes open (Fig. 2).
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Fig. 2. One representative patient sitting in chair and relaxing before
the experiment. The patient is asked to sit still during the data collection.

TABLE II
INFORMATION OF LFP RECORDS

DBS was ceased for approximately five minutes before the
start of LFP recording. Once the LFP sensing mode of the IPG
is activated, the number of IPG can subsequently be searched
by the software in an external computer. The monopolar mode
of the electrodes was selected, and the LFP signals were
recorded. There were two recordings for each patient, which
were from the electrodes of the left and right hemispheres,
respectively. Each recording was 100 s. The data information
is displayed in Table II. The number of peaks was visually
inspected for each recording.

Data preprocessing was performed before the removal of
the artifacts. All the data was first filtered between 1 and
100 Hz using a third-order Butterworth filter to suppress the
baseline fluctuations and the noise in the frequency band. Each
recording was then normalized to the range between −1 and 1
by the respective maximum of the absolute value for the
threshold optimization in the subsequent artifact removal.

C. Artifact Removal
The proposed peak detection method TSVM was based on

the minimization of the signal variance after artifact removal.
As the amplitude of the peaks from the ECG artifact was larger
than that of LFP, the variance of the signal was increased
after the introduction of the artifact. Conversely, with artifact

Fig. 3. The relationship between the threshold, signal variance after
template subtraction, and the number of correctly detected peaks for
Data L1 with the proposed TSVM. The signal value is normalized with
respect to the maximum. The minimum variance corresponds to the
largest number of correctly detected peaks.

removal, the variance would be decreased, which could be
used to evaluate the fidelity of the signal. The peak detection
and template subtraction were integrated to obtain optimal
performance.

The implementation of the proposed peak detection method
is as follows (See Algorithm 1). The initial peaks were
detected by a method [24] searching the points larger than
the surroundings by a predefined threshold. These local max-
imums were then refined by removing the points of which:
1) the interval from its precedent was smaller than 100 ms;
and 2) the amplitude was smaller than the difference between
the average and three standard deviations. The procedures were
used to remove the abnormal points with respect to interval and
amplitude. The remaining points were used to extract the tem-
plate where the length was half of the peak-to-peak interval.
The averaged template was subtracted from the signal at each
peak point, and the variance was computed and compared to
that before subtraction. With the analysis of the signal variance
change after peak removal, the threshold with the minimum
variance was adopted for the final peak detection to remove
the artifacts. As an example, the relationship between the
threshold, signal variance after template subtraction, and the
number of correctly detected peaks for Data L1 are displayed
in Fig. 3, which is consistent with the analysis.

For the evaluation of the proposed method, the perfor-
mance of the traditional method, i.e., PT, was calculated.
PT employed a series of filters to remove the noise and
highlight the content of the interest, with an adaptive threshold
for peak detection [21]. The comparison was made for the
performance of peak detection, as well as the signal quality
after template subtraction.

D. Performance Evaluation
For the evaluation of peak detection performance, sensitivity

(Sen), Positive predictive value (PPV), and error rate (Err)
were employed. They are defined as:

Sen =
TP

TP+ FN
(1)

PPV =
TP

TP+ FP
(2)

Err =
FP+ FN

Total Peaks
(3)
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Algorithm 1 Peak Detection

Input: LFP data S = {si}
N
i=1

Output: the sequence of the detected peaks X
Initialization: T← S

1. for delta = 0.05 to 1 step 0.05 do
2. Set LocalMax, LocalMin, and SearchMax as -Inf,

Inf, and True, respectively. Empty vector Y.
3. for i = 1 to N do
4. LocalMax ← si if LocalMax > si
5. if SearchMax
6. if si < LocalMax - delta
7. Store i in Y, and set LocalMin and

SearchMax as si, False, respectively
end

8. elseif
si > LocalMin + delta

9. Set LocalMax, and SearchMax as si,
True,

respectively
end10.

11. end
12. Suppose Y = {yk}

M
k=1 , SY =

{
syk

}M
k=1, remove

yk+1if |yk+1 − yk| < 100, and remove yk if
syk < E ( SY)− 3× STD (SY)

13. Perform template extraction on S. Suppose the
remaining points Y′ = {yk}

M′
k=1 , L =

1/4
∑M ′−1

k=1 (yk+1 − yk), the template is
extracted from [−L, L] centered on yk.

14. Perform subtraction with averaged template to
obtain the data D

15. if Var(T) > Var(D)

16. X← Y and T← D
end

17. end

where TP is true positive, representing the number of correctly
detected peaks in one record, and FN is false negative,
representing the number of missed peaks in one record. A peak
is correctly detected if the time provided by the algorithm is
within 50 ms of the occurrence, otherwise, it is considered
missed. FP is false positive, representing the number of the
peaks falsely detected by the algorithm in one record. Sen
measures the ability to detect the peaks, and a result of no
peak is reliable if the value of Sen is high. PPV measures
the reliability of a positive result, i.e., a peak is detected. Err
measures the error rate of the peak detection events.

To evaluate the performance of artifact removal after tem-
plate subtraction, the signal-to-noise ratio (SNR) and root
mean square error of the power spectral density (RMSEP)
were calculated, quantifying the performance in the time and
frequency domain, respectively. The SNR was defined as the
power ratio of the signal to the noise for the signal after the
template subtraction. As the true LFP signal was unavailable,
the sections with strong LFP power and low ECG interference
were used to estimate the power of the signal, which discarded
the segments half RR interval long and centered at the detected
peaks (S−peak). The sections with low LFP and high ECG

TABLE III
COMPARISON OF PEAK DETECTION PERFORMANCE

interference were used to estimate the power of the noise,
which consists of the segments discarded in constructing the
signal (Speak). The SNR is calculated as

SNR = 10log10
P

(
S−peak

)
P

(
Speak

) (4)

where P (S) = E
(
S2) is the power of the signal S, and E (·) is

the expectation. The larger the SNR is, the better the artifact
removal is.

The RMSEP evaluates the spectrum difference between the
signal and the noise defined above. The RMSEP is calculated
as:

RMSEP =

√
E

((
F

(
S−peak

)
− F

(
Speak

))2
)

(5)

where F (·) is the power spectral density (PSD), which is
estimated by Welch’s method. The frequency range is set
between 1 and 40 Hz, as well as the beta band (13–30 Hz),
which is related to Parkinsonian motor symptoms. The smaller
the RMSEP is, the better the artifact removal is.

III. RESULTS

A. Peak Detection
Both TSMV and PT were employed to detect peaks of eight

records in Table II. The performance comparison is displayed
in Table III. TSVM performed better than PT on TP and FN,
and they both had zero FP. It indicated that both TSVM and
PT did not have wrongly detected peaks, but PT missed more
peaks than TSVM. This resulted in higher sensitivity and
lower error rates for TSVM compared to PT. Fig. 4 shows
the sample segments of eight records with detected peaks by
both methods. The positions detected by TSVM were exactly
on the peaks of the signal, while the positions detected by PT
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Fig. 4. Comparison of peak detection performance on the data from 10 to 20 s for the eight records. All the peaks detected by TSVM are exactly
on the top of the true peaks, while some peaks detected by PT are on the beginning, such as L2, and the middle, such as R3, of the true peaks,
a little away from the local maximal point.

were not. As such, the TP of TSVM was higher than that of
PT. However, if the distances between the true peaks and the
positions detected by PT were within the predefined tolerance,
these positions were still regarded as true positives, not false
positives. As such, the FP values of both algorithms were zero.

B. ECG Artifact Removal
Template subtraction was performed after peak detection to

remove the ECG artifacts from LFP signals. Sample records of
the raw signals and the signals after template subtraction are
displayed in Fig. 5 (See Supplement for the details between
5 and 10 s). The results after template subtraction were
different among the data of the four patients. In general,
the number of the remaining peaks from the raw signal was
less for TSVM compared to PT. For PT, all the data of the
four patients had the remaining peak artifacts. For TSVM,
the peak artifacts of the second patient (L2, R2), the third
patient (L3, R3), and the fourth patient (L4, R4), were almost
removed. However, there were still many peaks with relatively
low amplitude in L2 and R2, which might come from the T
waves. The average time between the R-peak and the following
suspected T-peak was 0.2395 s and 0.2402 s for L2 and R2,
respectively, which were in the normal range [25], [26]. The
deep S waves were also observed in R2 and L2. Besides,
it seemed there was a small number of T-waves in R1. These
factors affected the noise suppression. The signal quality of
L3, R3, L4, and R4 was higher than that of the others after

TSVM, and their waveforms after TSVM were similar to
the cleaned LFP signals, from which the artifacts cannot be
visually identified.

The quantitative measurements of the artifact removal
performance are displayed in Table IV. As the beta band
from 13 to 30 Hz was important for PD research, the RMSEP
was calculated in both the full band and beta band. The
performance of PT was inferior to that of TSVM in both
SNR and RMSEP for all the data. Besides, the differences of
the two metrics between TSVM and PT in L1 and R1 of the
first patient were smaller than the differences in the recordings
of other patients, which was consistent with the performance
of the peak removal in Fig. 5. For RMSEP, the difference
between TSVM and PT was increased when the spectrum
was reduced from full band to the beta band. The spectrum
comparison of the beta band is displayed in Fig. 6. Compared
to the raw data, the spectrum became smooth after template
subtraction. Further, compared to PT, the spectrum of the data
after TSVM was much closer to the spectrum of the data
discarding the artifacts. The observations and measurements
indicated the signal quality of LPF after TSVM was better
than PT.

IV. DISCUSSION

This study proposed a novel algorithm for ECG artifact
removal from LFP for accurate observation of deep brain
activities. The method was based on the variance minimization
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Fig. 5. Waveforms of the signals from 10 to 60 s between the raw and the results after template subtraction based on TSVM and PT, respectively.
The number of remaining peaks after TSVM is smaller than that after PT. The artifacts cannot be identified visually from the waveforms of L3, R3,
L4 and R4 after TSVM.

of the signal after template subtraction for the magnitude of the
ECG artifacts much higher than that of LFP. Compared to the
traditional PT method, the proposed method TSVM demon-

strated higher TP and lower FN in peak detection of ECG
artifacts from real LFP of the left and right hemispheres of four
patients. The signal after TSVM-based template subtraction
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Fig. 6. Spectrum comparison of beta band (13-30 Hz) among the raw data (Raw), the data after template subtraction (TSVM and PT), and the
data discarding the segments of the artifacts, which are centered at the peak and half RR interval long (Clean). The spectrum of TSVM is much
closer to that of Clean compared to PT, indicating the signal quality after TSVM is better.

TABLE IV
COMPARISON OF SIGNAL QUALITY AFTER TEMPLATE SUBTRACTION

also had higher SNR of the time domain and lower RMSEP
of the frequency domain, indicating that the signal quality was
improved after artifact removal. As the parameters of template
subtraction were kept the same for both methods, it indicated
that the improvement of peak detection performance enhanced
the suppression of the noise.

Except for template subtraction, there were several algo-
rithms proposed in previous studies for ECG artifact removal
from LFP [20], such as adaptive filtering, SVD, etc. As the
system of the sensing-enabled neurostimulator was implanted
in the patient, simplicity would be favored to keep the
system stable and save the power for long-term work. The
steps of template subtraction were simple compared to other
algorithms. No additional reference was required, and the
performance was not sensitive to the values of the hyper-
parameters, which would be hard to select for healthcare
professionals. Besides, its high suppression performance of
ECG artifacts was demonstrated in previous studies [19], [20].
Towards the real-world application, template subtraction was
selected in this study. As there were no hyperparameters in
TSVM, the entire signal processing was simple and easy to
implement for future medical applications.

There were significant individual differences in the degree
of ECG artifacts on LFP among these four patients. Sev-
eral factors could account for these differences, including
the specific locations of the DBS electrodes and the IPG,
changes in impedance at the tissue-electrode interface, and
the potential leakage of fluid into the IPG [16], [20]. These
factors collectively influence the signal chain of the device and,
consequently, contribute to variations in ECG contamination.
It’s worth noting that the dissimilarities in ECG contamination
can significantly impact the performance of artifact removal
algorithms. For example, in this study, almost all the peaks
were removed for the data from the second to the fourth
patient, but not the first. And for the second patient, there were
still small peaks after removal, which might be the T waves.
As the TSVM focused on the noise around R peaks, the
disturbances from other components of ECG remained. For the
signal quality of the third and fourth patient after TSVM, the
artifacts were visually removed and the power density of beta
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frequency was close to the clean (Fig. 6). The varied efficiency
of artifacts removal indicated the importance of testing with
real LFP signals with ECG artifacts from different patients,
and the necessity of tailoring the algorithms for the specific
patients.

Except for signal quality, there were still some challenges
for the applications of aDBS in clinics, including the accurate
detection of physiological markers [27], the target population
of aDBS, the long-term stability, and the power consumption
of complex algorithms for IPG. For the limitation of the
study, due to the difficulties of signal collection, only eight
100-second records were obtained from four patients. The
performance of the proposed method should be further
verified by more patients with longer signals. Besides, though
PT was the state-of-the-art in R peaks detection, there were
many other effective methods [16], [20]. The comparison of
TSVM with them needed to be performed in future. Another
limitation is that only offline analysis was performed. As the
closed-loop DBS was a potential application, the online
performance of the artifact removal method was necessary
with the extraction of the essential information from the
restored signals for accurate feedback.

V. CONCLUSION

DBS-LFP recordings are often contaminated with ECG
artifacts, leading to LFP oscillations unusable for therapeutic
algorithms in closed-loop DBS. In this study, a novel algorithm
was proposed to remove ECG artifacts from real LFP in the
DBS target of STN in four patients. The proposed method
TSVM demonstrated higher TP and lower FN in peak detec-
tion of ECG artifacts than the traditional PT method. Further,
the LFP signal quality after TSVM was improved with the
SNR of the time domain and lower RMSEP of the frequency
domain. As there were no hyper-parameters, the whole signal
processing of TSVM would be easy to implement in the LFP-
sensing IPG, facilitating the development of the closed-loop
DBS and improving the efficacy.
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