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Uncovering the Neural Mechanisms of
Inter-Hemispheric Balance Restoration
in Chronic Stroke Through EMG-Driven

Robot Hand Training: Insights From
Dynamic Causal Modeling

Chun-Hang Eden Ti , Chengpeng Hu , Kai Yuan , Winnie Chiu-Wing Chu ,
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Abstract— EMG-driven robot hand training can facilitate
motor recovery in chronic stroke patients by restoring the
interhemispheric balance between motor networks. How-
ever, the underlying mechanisms of reorganization between
interhemispheric regions remain unclear. This study inves-
tigated the effective connectivity (EC) between the ventral
premotor cortex (PMv), supplementary motor area (SMA),
and primary motor cortex (M1) using Dynamic Causal Mod-
eling (DCM) during motor tasks with the paretic hand.
Nineteen chronic stroke subjects underwent 20 sessions
of EMG-driven robot hand training, and their Action Reach
Arm Test (ARAT) showed significant improvement (β=3.56,
p<0.001). The improvement was correlated with the reduc-
tion of inhibitory coupling from the contralesional M1 to the
ipsilesional M1 (r=0.58, p=0.014). An increase in the later-
ality index was only observed in homotopic M1, but not in
the premotor area. Additionally, we identified an increase in
resting-state functional connectivity (FC) between bilateral
M1 (β=0.11, p=0.01). Inter-M1 FC demonstrated marginal
positive relationships with ARAT scores (r=0.402, p=0.110),
but its changes did not correlate with ARAT improve-
ments. These findings suggest that the improvement of
hand functions brought about by EMG-driven robot hand
training was driven explicitly by task-specific reorgani-
zation of motor networks. Particularly, the restoration of
interhemispheric balance was induced by a reduction in
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interhemispheric inhibition from the contralesional M1 dur-
ing motor tasks of the paretic hand. This finding sheds
light on the mechanistic understanding of interhemispheric
balance and functional recovery induced by EMG-driven
robot training.

Index Terms— Dynamic causal modeling, effective con-
nectivity, resting-state functional connectivity, interhemi-
spheric, chronic stroke.

NOMENCLATURE
ARAT The Action Reach Arm Test.
cM1 Contralesional primary motor cortex.
cPMv Contralesional ventral premotor area.
cSMA Contralesional supplementary motor area.
DCM Dynamic Causal Modelling.
FMA-UE The Fugl-Meyer Assessment for upper extrem-

ity.
iM1 Ipsilesional primary motor cortex.
iPMv Ipsilesional ventral premotor area.
iSMA Ipsilesional supplementary motor area.

I. INTRODUCTION

STROKE is a prevalent cause of disability, with a majority
of stroke survivors suffering from upper limb paresis [1].

The consequences of upper limb extremity impairment persist
for over six months, and only a small proportion of stroke sur-
vivors (less than 12%) can achieve full functional recovery [2].
Research has been dedicated to developing post-stroke motor
rehabilitation protocols to restore the upper limb functions in
order to restore their Activities of Daily Living (ADL) and
enhance their quality of life.

A growing interest in robot-assisted devices for upper limb
rehabilitation has been seen in recent decades [3]. Robotic
rehabilitation offers a consistent, intensive, and interactive
training experience that engages individuals [4]. Recent meta-
analysis demonstrated that individuals who underwent training
with robot-assisted devices improved better in Fugl-Meyers
Assessment scores on Upper Extremity (FMA-UE) and func-
tional activity [5], [6]. However, wrist and hand robots have
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limited effects on motor control and improvement of ADL [7].
In the past five years, intention-driven robots have become
popular in improving wrist and hand functions in motor
rehabilitation [8], [9], [10]. By utilizing electrophysiological
signals such as Electroencephalogram (EEG) or electromyo-
graphy(EMG), individuals can actively trigger robot-assisted
motor tasks by initiating voluntary movement intentions [11].
Clinical studies have found that training with EMG-driven
robot hands resulted in better FMA-UE scores, improved
wrist and hand functions assessed by Action Reach Arm
Test(ARAT), and enhanced muscle coordination on wrist and
elbow joints compared to the control group receiving continu-
ous passive movements [12], [13]. The effect of this recovery
persisted for more than 6 months, suggesting a lasting change
in brain activity due to the robot hand training. Indeed, active
engagement in voluntary motor intention has been shown to
induce neural plasticity in motor learning [14]. However, The
precise neurophysiological mechanisms of the motor recovery
induced by these devices are still limited.

Maladaptive plasticity often emerges during stroke recov-
ery, leading to a hyperreliance on contralesional activ-
ity when patients perform motor tasks with the paretic
hand.Compensatory movement patterns that rely on the trunks
and proximal side of the paretic hand, and the disuse of paretic
hand, contribute to strengthened contralesional motor projec-
tions [15], [16]. Persistent contralesional cortical activity after
6-12 months of stroke usually leads to poor motor recovery
due to excessive interhemispheric inhibition on the ipsilesional
motor area [17], [18]. Furthermore, increased activation of the
contralesional motor area contributes to abnormal interjoint
coupling after stroke, impairing the execution of reaching and
grasping movements [19]. EMG-driven hand robots overcome
maladaptive plasticity by encouraging voluntary hand opening
and grasping that enhance the reorganization of internal senso-
rimotor representation through Hebbian learning, and restore
interhemispheric balance [20].

A recent systematic review has indicated that intention-
driven robot hand promotes motor recovery through the
remodeling of interhemispheric interactions [21]. Particularly,
studies have identified an ipsilesional shift in activation
and corticomuscular integration during tasks with paretic
hand [22], [23]. Studies using Transcranial Magnetic Stim-
ulation(TMS) identified increased ipsilesional corticospinal
excitability to the target muscles [24]. These studies demon-
strated that motor recovery involved network reorganization
that re-establishes a normalized interhemispheric balance.
Nevertheless, the role and interplay of brain regions involved
in motor recovery are not well understood. Secondary motor
regions, including the dorsal premotor cortex (PMd), ventral
premotor cortex(PMv) and supplementary motor area(SMA)
are actively involved during the recovery process [25]. Sec-
ondary motor regions were considered substitutes for M1
for cortical projection and executive motor functions [26].
These regions also work together to generate desired motor
responses. For instance, the SMA is mainly responsible for
planning and coordination of motor tasks [27], [28]. PMd
and PMv are involved in movement initiation and gener-
ating mental representation of motor responses [29], [30].

The integration between these brain regions, and its impli-
cations on motor recovery requires more investigation.

Dynamic Causal Modeling (DCM) is a framework that
provides insights into dynamic interactions between differ-
ent brain regions. Effective connectivity(EC) measured from
DCM characterizes the excitatory or inhibitory coupling within
the defined motor systems. Grefkes and his colleagues have
applied DCM analysis to investigate brain network interactions
in stroke survivors in a series of studies [31], [32], [33]. These
studies provide compelling evidence that inter-hemispheric
inhibition between the primary motor cortex (M1) is a crucial
pathophysiological factor in motor impairment at all stages of
stroke and is also a biomarker for motor recovery [31], [32].
Additionally, the coupling from ipsilesional premotor to motor
regions also demonstrated supportive role in motor recovery in
chronic stroke [32]. Analyzing the EC between motor systems
before and after EMG-driven robot hand training enables
a better understanding on the causal nature of these func-
tional interactions, and their associations with upper extremity
improvements. In particular, a recent Parametric Empirical
Bayes (PEB) framework had been introduced to discern
network reorganization patterns due to training [34]. The
approach performed second-level Bayesian Model Reduction
to identify the optimal network interactions that explain the
change in network activity due to the training, hence providing
better understanding on the underlying mechanisms of robot-
mediated learning.

Apart from effective connectivity, resting-state functional
connectivity (FC) is widely used to study the motor network
interactions in stroke. FC measures the spatial-temporal cor-
relation of spontaneous brain activity between regions during
resting-state fMRI acquisition [35], [36]. Studies of FC within
motor networks in stroke have provided insights regarding
motor impairment and functional reorganization during motor
recovery [37], [38]. For instance, Cartel et al. reported that
disruption of inter-hemispheric FC between homologous M1
and premotor regions predicts the motor deficits in sub-acute
stroke [39], and interhemispheric FC between M1 positively
correlates with functional recovery [40]. Resting-state FC and
task-modulated EC distinctive information on brain network
reorganization associated with individuals impairment and
state of motor recovery [41]. Paul et al. has reported that EC
captures state-dependent causal interactions while FC reflects
state-independent mechanisms of network reorganization [41].
Analyzing EC and FC together therefore enables a better
understanding of neural plasticity mediated by EMG-driven
robots, of whether network reogranization happens as a general
change in brain interactions or specific change induced by a
motor task.

Limited research has been conducted to examine the effects
of EMG-driven robot training on the directed causal influ-
ence between motor regions. A recent study on directed
corticomuscular coupling in stroke identified distinct associa-
tions between promixal-to-distal compensatory movement and
the alteration of descending motor pathways and ascending
feedback [42]. The study demonstrated that the direction of
information flow between coupled regions provides additional
insights into cortical interactions beyond mere synchrony.
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TABLE I
DEMOGRAPHIC INFORMATION OF THE INCLUDED SUBJECTS

IN THIS STUDY

Similarly, the information flow between motor network in
responses to EMG-driven robot hand training has yet to
be studied. Our study is the first to analyze the reorga-
nization of effective connectivity between motor networks
induced by EMG-driven robot hand training using Dynamic
Causal Modeling. We conducted a study on 19 chronic stroke
survivors who underwent 20 sessions of EMG-driven robot
hand training. Using Parametric Empirical Bayes approach,
we identified the connectome that best explains the average
effective connectivity and the training-induced change during
motor tasks of paretic hand. We also studied the FC of the
corresponding region pairs to examined the task-independent
cortical reorganization process, and their associations with
motor improvement. Lastly, We computed the weighted lat-
erality index (wLI) of activation during motor tasks to assess
changes in inter-hemispheric balance of motor activation. This
study sheds new light on the mechanistic understanding of
interhemispheric balance contributing to the functional recov-
ery in chronic stroke subjects brought about by EMG-driven
robot hand training.

II. MATERIALS AND METHODS

A. Participant
We conducted a monocenter, randomized controlled trial,

in which participants were randomized into personalized
tDCS-combined robot hand training (Stimulation group) or
Sham tDCS-combined robot hand training (Sham group).
This study was approved by the Joint Chinese University of
Hong Kong New Territories East Cluster Clinical Research
Ethics Committee, and the clinical trial was registered with
ClinicalTrials.gov (NCT05638464). Nineteen chronic stroke
survivors were recruited for this study. One subject withdrew
the study due to medical reason, and one subject was excluded
from the fMRI analysis due to abnormal fMRI activation
pattern. A brief summary of their demographical informa-
tion is presented in Table I and the details are presented
in Supplementary Table II.1. All subjects signed a written
consent confirming that they understood the procedures and
implications of the study. The subjects met the following
inclusion criteria: (1) First-ever stroke, (2) Six months after
onset of stroke, (3) Unilateral brain lesions, (4) Moderate

to severe upper limb dysfunctions assessed by the Action
Research Arm Test (ARAT), with scores between 6-52. Sub-
jects with (1) a family history of epilepsy, (2) alcohol or drug
abuse, (3)neurological dysfunctions such as spatial neglect,
aphasia, apraxia, (4) cortical lesions located on the primary
motor cortex, (5) or other dysfunctions that prevented subjects
from understanding instructions were excluded from our study.
ARAT was used to assess motor functions of stroke subjects
before (Pre) and after (Post) training sessions.

B. Training Intervention Protocols
Each subject completed 20 sessions of tDCS-combined

EMG-driven robot hand training at the local community
center. The robotic hand design and training details were
previously reported in our study [43]. Before training com-
menced, each subject underwent 20 minutes of active or
sham tDCS depending on the allocated group. The details
of the stimulation procedure is presented in Supplementary
Methods S1.3. Stimulation lasted for 20 minutes prior to
training. During training, subjects wore the robotic hand and
were seated comfortably facing a computer screen. They were
instructed to keep their elbow at rest and slightly flexed at
approximately 130◦. EMG signals were recorded from the
Flexor Digitorum (FD) and Extensor Digitorum (ED) muscles,
with reference electrodes placed over the olecranon process of
the paretic arm (as shown in Figure 1a). To measure voluntary
motor intention, subjects were instructed to perform maximum
voluntary contraction (MVC) with the robotic hand fixated
at its fully-extended and fully-flexed position. MVC for FD
and ED were then collected by performing maximal isometric
contraction by grasping or opening their hand with all digits
at maximal force respectively. The training consisted of 3 task
blocks, each lasting 15 minutes with an interleaved 5-minute
break. Within each block, subjects were required to trigger the
robot-assisted grasping and opening by producing EMG signal
of the corresponding muscle exceeding 10% of the MVC
signal according to the practice in our previous study [43].
Trials were repeated until the end of each block. Successful
trigger times are defined as the sum of the number of trials
completed by the subject in all three blocks. During the
trials, an experienced physical therapist observed the signs
of involuntary spastic muscle contraction by monitoring the
real-time EMG amplitudes, and adjusted the MVC threshold
upwards, up to 50% MVC accordingly, to reduce the like-
lihood of trigger robot-assisted movement with involuntary
motor intention. Figure 1(a) shows the set-up for the robot-
hand training.

C. MRI Data Acquisition
MRI scans were recorded using a 20-channel head coil

by MAGNETOM PRISMA 3.0T XR Numaris(SIEMENS,
Munich, Germany) for all 19 subjects. High-resolution
anatomical T1 images were acquired using T1-MPRAGE
sequence (TR/TE = 1900/2.93 ms, flip angle = 9◦, 176 slices,
voxel size = 0.9 × 0.9×1.0 mm3). Resting-state (rs-fMRI)
and task-based fMRI (tb-fMRI) data were acquired in BOLD
images using EPI-FID sequences (TR/TE = 1200/30 ms, flip
angle = 68◦, 48 slices, voxel size = 3.0 × 3.0×3.0 mm3).
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Fig. 1. (a) Setup for the EMG-driven robot hand training. (b) Average training progress of the participants included in this study. Average number
of successful triggers in each session is represented in black dots. Error bar demotes 1 standard error from the mean.

Each subject completed two MRI sessions, before (Pre)
and immediately after(Post) 20 sessions of robot-hand train-
ing, during which both tb-fMRI and rs-fMRI were acquired.
During task fMRI, the subject was required to grasp a tennis
unimanually, with either the left or right hand, according to the
text cue displayed on the screen. Each trial lasted for 6 seconds
followed by a 14.4-second resting period before the start of
the next trial. The block consists of 20 trials, with 10 trials
for each condition arranged in a randomized order. Afterward,
a 6.5-minute resting-state fMRI was acquired while the subject
fixated on a white fixation cross at the center of the screen
while minimizing thoughts and movements. All instructions
and fixations were presented using EPrime3.0 (Psychology
Software Tools, PA USA).

D. fMRI Analysis
1) Preprocessing: All fMRI data from subjects with

left-hemispheric lesions were flipped along the mid-sagittal
plane, resulting in the right hemisphere being designated as
the ipsilesional hemisphere. Preprocessing of the rs-fMRI and
task-based fMRI data was carried out using the DPARSF
function in the DPABI toolbox [44]. Initially, the fMRI vol-
umes of each session of rs-fMRI were realigned with the
first volume of the first session. Brain tissues were then
segmented from each subject’s anatomical T1 images using
SPM12 New Segment + DARTEL [45]. For the rs-fMRI data,
Friston-24 head motion parameters, as well as the mean signal
from white matter and cerebrospinal fluid, were included
as nuisance regressors to mitigate motion and physiological-
related artifacts. Subsequently, all preprocessed images were
bandpass filtered between 0.1 Hz to 1 Hz, normalized to the
Montreal Neurological Institute (MNI) standard template, and
spatially smoothed with a 6-mm full-width at half maximum
(FWHM) Gaussian filter for further analysis.

2) ROI Definition and Extraction of Timeseries for Connec-
tivity Analysis: The motor regions of the brain, including the
primary motor cortex (M1), ventral premotor cortex (PMv),
and supplementary motor area (SMA), play a key role in
hand grasping and are commonly studied in connectivity

analysis [41], [46]. To identify individual ROIs, individual
tb-fMRI volumes were subjected to first-level General Linear
Model (GLM) analysis to estimate the BOLD activation during
motor execution of thier paretic hand (IPSI) and non-paretic
hand(CONTRA) respectively. The model specification and
estimation were included in Supplementary Methods. Contrast
maps for each condition over all subjects and sessions were
averaged to obtain a group-level activation map. The initial
coordinate of each ROI was defined as the peak value of the
group-level activation map within an apriori mask using the
Automated anatomical labelling atlas [47]. Subsequently, indi-
vidual ROIs were defined as the local activation maxima within
a 15-mm sphere around the initial seed location. This approach
ensured that individual activation maxima were identified, thus
avoiding the inclusion of non-functional regions due to stroke
lesions [41].

To extract the ROI signals, we obtained the first eigenvariate
of the timeseries of all voxels within an 8-mm sphere around
the local activation maxima. Ipsilesional and contralesional
ROIs were determined using IPSI and CONTRA contrasts,
respectively. One subject was excluded from the fMRI analysis
due to improper identification of ipsilesional ROIs. The seed
locations for each ROI of each individual are listed in the
Supplementary Table S3.

3) Estimation of Task-Related and Endogenous Effective
Connectivity: We used Dynamic Causal Modeling (DCM) to
estimate effective connectivity (EC) between brain regions.
DCM is a generative model that links observed blood-oxygen-
level-dependent (BOLD) responses to the intrinsic neuronal
states of a deterministic system of brain activity with specified
regions of interest (ROIs). The neuronal state of the system is
represented by the variable z, and the rate of change in z is
given by Equation 1.

dz
dt

= [A +

m∑
j=1

u j B( j)
]z + Cu (1)

In this equation, u represents experimental conditions,
A, B, and C are matrices representing the coupling parameters
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between defined ROIs, with A capturing the average endoge-
nous EC between ROIs across experimental conditions, B
representing the task-modulated EC elicited by given exper-
imental conditions, and C representing the direct extrinsic
influence of the state with respect to given experimental inputs.

To estimate task-modulated effective connectivity
(Matrix B) for each subject and session, DCM with
fully connected A and B matrices and driving inputs on
bilateral premotor areas was estimated. The training effect
was quantified using a Parametric Empirical Bayesian (PEB)
approach [34]. The PEB framework assumed an equal network
architecture with varying connection strength for each subject,
and variability of the coupling parameters was explained
by coupling shared between subjects (commonalities) and
coupling explained by defined regressors. The main regressor,
TIME (+1 for Post and -1 for Pre), and covariate regressors,
including individual Gender, Age, Time Since Stroke (TSS),
Affected hand, and pre-ARAT scores, were included to
quantify the training effect after training. The estimated PEB
estimates for the TIME regressor corresponded to the training
effect on each coupling parameter of the DCM B Matrix.

To optimize the best model to explain the experimental
effect, we performed Bayesian Model Reduction (BMR) to
compare the model evidence between fully-connected mod-
els with a reduced model, by switching the parameters on
or off [48]. To limit the number of model comparisons,
we defined 44 sets of candidate models, following the study
in [41]. These models were constructed based on the later-
alization and directionality of the connectome. A lateralized
network only involves with the M1 contralateral to the mov-
ing hands, whereas both M1s is invovled in non-lateralized
networks. A unidirectiaonl network implies that M1 only
receives command from premotor areas, whereas a bidirec-
tional network means M1 both receive and send outputs to the
premotor areas. Bayesian Model Average (BMA) was obtained
by averaging the PEB parameters weighted by the posterior
probabilities of the respective models. Averaged PEB estimates
were thresholded to exclude connections with less than a
0.01 probability of being present. Finally, the BMA estimates
were used as empirical priors for estimating individual ECs
through a first-level reduced DCM model. We performed
Pearson correlation between the EC values and ARAT scores
at Pre and Post sessions, and the change of EC (1EC) and
change of ARAT scores (1ARAT).

We performed separately analysis for endogenous effective
connectivity (Matrix A). Procedures and results were reported
in Supplementary Results. All DCM analyses were performed
using SPM12 [34], [49].

4) Estimation of Resting-State Functional Connectivity: Fun-
ctional connectivity (FC) was estimated as the temporal cor-
relation between timeseries extracted from two ROIs. The
timeseries for each ROI were obtained by extracting the first
eigenvariate of all voxel-wise timeseries that overlapped with
the ROI masks. Pearson correlation coefficients between the
timeseries were Fischer-transformed to enhance the normality
of the FC values. We used a linear mixed model to evaluate
the effect of training, as described in Section II-D.6. To inves-
tigate the association between FC and the ARAT scores,

TABLE II
LINEAR MIXED MODEL RESULTS OF ARAT, FC AND WLI

we calculated Pearson correlation coefficients between the
identified FC and ARAT scores at the Pre and Post sessions,
as well as between the change of FC (1FC) and 1ARAT.

5) Tb-fMRI Activation Analysis: We conducted a paired t-test
to examine the change in activation level during motor exe-
cution of the paretic hand between the Pre and Post sessions.
The resulting t-map was corrected using Gaussian Random
Field (GRF) correction (p < 0.01 voxelwise, p< 0.05 cluster-
wise). However, No significant cluster was identified.

To investigate the inter-hemispheric activation during motor
execution, we studied the weighted Laterality Index (wLI)
before and after training. First, we thresholded individual
contrast maps for the IPSI condition at p < 0.001, GRF
corrected at 0.05 cluster threshold. Motor-related activation
was determined by overlaying individual activation maps with
sensorimotor masks defined using the AAL atlas, and the
included regions were listed in the Supplementary table S1.
The wLI was defined as the normalized difference in activa-
tion between the ipsilesional and contralesional hemisphere,
as described in Equation 2.

wL I =

∑
V tI −

∑
V tC∑

V tI +
∑

V tC
(2)

Here,
∑

V tI and
∑

V tC represent the sum of t-values
within all significant voxels of the activation mask V at
the ipsilesional and contralesional hemisphere, respectively.
The wLImotor measures the hemispheric dominance of the
activation over the sensorimotor networks, with values ranging
from −1 to 1. A value of 1 and -1 indicates exclusive activation
on the ipsilesional and contralesional side, respectively.

To examine ROI-specific hemispheric balance, we extracted
ROI-specific wLI using the mask obtained from the previous
analysis. In particular, individual contrast maps for the IPSI
conditions were summed over the masks of the identified
ROI masks, respectively. Homotopic wLI (wLIM1, wLIP Mv ,
wLISM A) were then obtained from Equation 2, with V being
the corresponding ROI masks, respectively.

6) Statistical Analysis: We employed a linear mixed model
analysis to investigate the effect of 20 sessions of EMG
robot-hand training on ARAT, FC, and wLI. Specifically,
we fitted the corresponding metrics in a linear mixed model,
with the fixed effect variable TIME (Pre, Post). Confounding
variables, including age, gender, time since stroke (TSS),
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Fig. 2. (a) Models that best explain the average EC and training effect. Bayesian Model Selection over 44 candiates models were performed to
determine the optimal model. Average EC and training effects were best explained by model 13 and model 14 with 99% and 84% posterior probability
respectively. The right of the figure showed the corresponding architecture. A Bayesian Model Average(BMA) was subsequently performed to
estimate the average EC and the time effect. (b) Average task-modulated EC during motor tasks with their affected and unaffected hand respectively.
(c) Change in task-modulated EC after training. Abbreviations: EC: Effective Connectivity; M1:Primary motor cortex; PMv: Ventral Premotor Area;
SMA: Supplementary Motor Area; Prefix: i-: ipsilesional; c-: contralesional.

stroke type, and affected hand, were included as covariates.
Individual subjects were modeled as random effects.

The model was fitted using the restricted maximum likeli-
hood approach (REML). The degree of freedom of the t-test
for each fixed effect variable was estimated using Satterth-
waite’s method. We performed all statistical analyses using
the lme4 and lmerTest statistical packages, which are available
in R 4.2.2.

III. RESULT

A. Result of Training Performance and Clinical Scores
Figure 1(b) shows the training progress of all subjects, with

the positive slope indicating an increase in the number of
triggers with training sessions.

To compare the training effects of the different groups on
ARAT scores, we conducted mixed-effect ANOVA analysis
with GROUP (Control, Stimulation) and TIME (Pre, Post) as
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Fig. 3. Pearson correlation of effective connectivity with significant TIME effect between (a) change in effective connectivity from cM1 to
iM1(∆ECcM1→iM1), (b) change in effective connectivity from iPMv to iM1(∆ECiPMv→iM1) and ARAT improvement(∆ARAT) after training.

fixed-effect variables. We observed a significant main effect of
TIME (F(1,34)=434.22, p<0.001), but no interaction effect
was observed between GROUP and TIME (F(1,34)=4.33,
p=0.07). This result suggests that adjunct treatment with
personalized tDCS did not perform better than sham-controlled
robot-hand training in improving motor functions. Since our
study focuses on investigating the treatment effect and neural
correlates for EMG-robot hand training, we combined both
groups to increase the overall effect size of the statistical mea-
sures. The statistical analysis is summarized in Table II, with
a significant positive effect (β=3.56, p<0.001) observed on
ARAT scores, indicating an improvement in upper extremity
function after EMG robot-hand training.

B. Dynamic Causal Modeling
The average individual DCM model estimation explained

61.6% (SD 15.5%) of the fMRI data. Bayesian Model Selec-
tion over 44 reduced candidates models determined that
Model 13 and Model 43 that best explains the average
effective connectivity and training effect of the stroke subjects
(Figure 2 (a)). We also grouped the candidate models into
4 families and the corresponding results could be found in
Supplementary Results 2.6. BMA of the candidate models
identified non-trivial coupling parameters obtained for the
average task-modulated effective connectivity and its training
effect (Figure 2(b)). All BMA parameters for A and B matrices
were listed in Supplementary Table S4 and S5. Green arrows
indicate facilitatory effects, and red arrows indicate inhibitory
effects. The rounded arrows represent the self-connection
parameters, which indicate the level of self-inhibition with a
default value of 0.5Hz [49]. Reduced self-connection values
indicate increased regional sensitivity that remains active for
a longer period.

During motor tasks, positive and negative self-connection
were observed in iM1 and cM1, respectively, during paretic

hand movement. Additionally, activation of cM1 inhibits activ-
ity of iM1. These findings indicate that cM1 is more heavily
involved when the paretic hand is used and exerts inhibitory
influence on iM1.

After training, there was an increase in ECcM1→i M1
(Figure 2b), indicating a decrease in interhemispheric inhi-
bition. Additionally, ECi P Mv→i M1 and ECcP Mv→cSM A were
reduced. Pearson correlation analysis identified a significant
relationship between 1ARAT and 1ECcM1→i M1 (r=0.584,
p=0.0139), as well as 1ECi P Mv→i M1 (r=−0.489, p=0.0463)
(Figure 3 a-b). However, no significant correlation was identi-
fied between ECcM1→i M1 and ARAT scores at Pre (r=−0.174,
p=0.504) and Post (r=−0.087, p=0.740).

C. Resting-State Functional Connectivity
Significant main effect of TIME was observed in

FCi M1−cM1 and in FCi SM A−cSM A. The average FC and time
effect of FC for all pairs were demonstrated in Supplementary
Results 2.7. We performed correlation analysis between them
at Pre, Post and their changes respectively. We found a positive
but non-significant correlation between FCi M1−cM1 and ARAT
scores at Pre (r=0.402, p=0.110) or Post (r=0.436, p=0.080),
No significant change was found between 1FCi M1−cM1 and
1ARAT scores (r=0.009, p=0.981). No significant correlation
was found between FCi M1−cM1 and ECi M1−cM1 at Pre, Post
and their changes.

No significant correlation was found between
FCi SM A−cSM A with ARAT in Pre, Post and their
corresponding changes

D. Task-Based fMRI Activation
Figure 4 displays the group-level activation map projected

onto standard MNI space in the Pre and Post sessions.
Inspection of the map reveals an overall decrease in activation
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Fig. 4. Results of tb-fMRI activation analysis. (a) Group level activation map during motor execution with paretic hand in Pre and Post session
respectively. Left and right side of the brain corresponds to contralesional(contra) and ipsilesional(ipsi) hemisphere respectively. (b) Boxplot showing
the wLI in Pre and Post session for M1, PMv and SMA respectively. Paired t-test identified significant increase of wLIM1 after training.

within the contralesional hemisphere and an increase within
the ipsilesional hemisphere. We found a significant positive
TIME effect for wLImotor (β=0.086, p=0.007) (Figure 4). For
ROI-specific wLI, a significant TIME effect was only observed
in wLIM1 (p=0.036), but not in wLIP Mv (p=1) or wLISM A
(p=0.06).

IV. DISCUSSION

This study aimed to investigate the neuroplastic changes
in chronic stroke survivors resulting from 20 sessions
of EMG-driven robot hand training. The results demon-
strated a significant improvement in ARAT scores follow-
ing the training. DCM analysis revealed an increase in
task-modulated EC from cM1 to iM1, indicating a reduction
of inter-hemispheric inhibition during motor tasks. This reduc-
tion in inter-hemispheric inhibition was positively correlated
with functional improvement in the subjects. Additionally,
an increase in wLI and FC between bilateral primary motor
cortices indicated the restoration of inter-hemispheric balance.
These results suggest that EMG-driven robot-hand training
may promote the restoration of both general and task-specific
inter-hemispheric balance, leading to functional recovery in
the chronic phase of stroke.

According to a meta-analysis, robot-assisted upper extrem-
ity rehabilitation is more effective in improving motor
functions than conventional rehabilitation interventions [5].
Among the different types of robotic devices, EMG-driven
robots have demonstrated superior performance over robots
that provide continuous passive motions [13]. Our findings are
consistent with previous research, demonstrating the effective-
ness of an EMG-driven robot in improving motor functions

in chronic stroke patients. Voluntary motor intention can be
decoded from EMG amplitudes of the residual muscles of
the paretic hand, which triggers movement from the robot
hand, providing proprioceptive feedback to the users and
forming an active feedback loop [11], [50]. It is noteworthy
that other intention-driven systems, particularly motor-imagery
based Brain Computer Interface (BCI-MI), have been used
in robot training and have shown success in post-stroke
UE rehabilitation [51], [52].However, BCI-MI-driven systems
are unable to facilitate descending corticospinal excitation
on the target muscles [53]. In contrast, EMG-driven sys-
tems directly project motor commands from the central to
peripheral system along the descending corticospinal tract,
which is necessary for effective motor rehabilitation [54].
Our study confirms the rehabilitation effectiveness of the
EMG-driven robotic system and further explores its neuro-
physiological correlates with motor recovery through fMRI
analysis.

Our study revealed an increase in task-modulated effective
connectivity from cM1 to iM1 after EMG-driven robot hand
training, indicating a reduction in interhemispheric inhibi-
tion (IHI) from cM1 to iM1. Studies of healthy subjects have
shown that IHI helps regulate motor coordination by suppress-
ing contralateral motor activation [55]. However, individuals
with chronic stroke have been found to have excessive IHI
from cM1 as compared to healthy controls, with persistent
suppression from cM1 to iM1 prior to movement [56], [57].
This disruptive influence of cM1 may be attributed to increased
cortical compensatory activities of the contralesional hemi-
sphere developed from the learned non-use of the paretic hand
during spontaneous motor recovery [15], [58]. Our results
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identified similar inhibitory effects of cM1 as reported in
previous studies. Furthermore, we found a positive correlation
between the reduction of IHI and the improvement of ARAT
scores, indicating the role of interhemispheric interactions in
the motor recovery process. To the best of our knowledge,
our study is the first to demonstrate that EMG-driven robot
hand interventions can modulate interhemispheric inhibition,
highlighting the active role of voluntary motor intention in
facilitating adaptive neural plasticity for motor recovery.

We also studied the interhemispheric reorganization by
investigating the fMRI activation map during motor tasks of
the paretic hand. We identified an overall increase in the wLI
within the sensorimotor network after training, with the
increase being significant in homotopic M1, but not in the
premotor and supplementary motor area. An ipsilesional shift
of activation after training indicates a decreased reliance on
the unaffected hemisphere during motor tasks with the paretic
hand. Low laterality characterized by strong bilateral activation
of the motor area has been shown to contribute signifi-
cantly to the UE motor deficits in chronic stroke [42], [58].
A series of TMS studies showed that the reduction of fMRI
laterality was associated with unbalanced transcallosal inhibi-
tion between bilateral primary motor cortex during unilateral
movements [59], [60], and the increase in fMRI laterality
indicates an increase in ipsilesional corticomotor maps [59].An
increased in ipsilesional activation and laterality during uni-
manual task after robot-assisted training had been reported in
multiple studies [21], [51], [61]. Our result is the first to report
a simultaneous increase in fMRI laterality and a reduction in
IHI, providing additional insights regarding the nature of the
interhemispheric balance. Particularly, reliance on non-paretic
forelimb and compensatory movements of proximal limb and
trunk increased the recruitment of cM1 [15], [62]. Repetitive
training of EMG-driven robot hand have shown to improve
patient’s FMA-UE scores, and reduce compensation from
proximal joints during grasping [23]. Combining the results
with our findings suggest that EMG-driven robot hand facil-
itates independent motor control in which a gradual less
reliance on cM1 was developed.The supressed cM1 activity
exerted less inhibitory pressure to the iM1 activity, shap-
ing the cortical activation towards normalized hemispheric
balance.

In addition to task-based EC, rs-MRI has emerged as a
valuable tool for investigating task-independent interactions
between brain regions following stroke. Our findings revealed
a significant increase in inter-M1 FC following training,
indicating a restoration of the inter-hemispheric balance of
resting-state brain activity. Several fMRI studies have reported
significant reductions in inter-M1 functional connectivity dur-
ing the acute and sub-acute phases of stroke, which can
be attributed to the disruption of white matter tracts in the
transcallosal motor fibers [63], [64]. It has been observed that
individuals with good functional recovery have larger inter-
M1 FC values, which resemble those of healthy controls,
while individuals with poor recovery demonstrate persistently
low inter-M1 FC values [40]. Our results identified a positive,
marginally-significant correlation between inter-M1 FC and
pre- and post-ARAT scores, which validates its prognostic

value on hand motor functions. Interestingly, while we did
not find any correlations between changes in inter-M1 FC
and improvements in ARAT, we did identify relationships
between the changes in inter-M1 EC and changes in ARAT.
A TMS study conducted by Xu et al. demonstrated that
the emergence of IHI from acute to chronic phase, rather
than the magnitude of IHI, predicts poor recovery of finger
individuation in chronic stroke [57]. Our findings suggest
that the training-induced improvement of ARAT might be
related to restoration the emerged maladaptive IHI back to
a normal level. Combining these results, we discovered that
interhemispheric FC and EC provide distinct information.
Task-independent FC may reflect an individual’s motor per-
formance, while EC appears to indicate the state of motor
recovery.

In addition to the inter-hemispheric change within M1, the
premotor areas including PMv and SMA are also dynamically
reorganized after motor training. Our results show a reduction
in the facilitatory coupling from the iPMv to iM1, which is
positively correlated with improvements in motor function as
measured by the ARAT. PMv plays a crucial role in object
manipulation and the integration of multisensory information,
as demonstrated in previous studies [65], [66]. The observed
reduction in iPMv facilitation seems counter-intuitive, as it
contradicts the expected supportive role of iPMv-iM1 inter-
actions in motor recovery as illustrated in previous DCM
studies [32], [41]. A previous EEG study reported a similar
negative association between iPMv-iM1 coupling and motor
recovery [67]. A possible explanation for our observation is
that robot-hand training facilitates independent finger control
during object grasping which leads to a reduction in iPMv
facilitation. Compensatory strategies are frequently observed
in stroke during grasping, in which individuals over-adjusted
their proximal joint in the reach, and open hand excessively
to grasp with excessive force [15]. EMG-driven robot hand
practised voluntary finger grasping and opening, which was
shown to improve individual’s finger dexterity measured by
Finger Individuation Index [13], reduce finger spasticity and
reliance on proximal muscles [23]. Paired-pulse TMS studies
have shown that PMv-M1 facilitation effects are specific to
the active muscles [68]. Furthermore, PMv was also shown to
inhibit non-target muscles for coordination and production of
complex hand postures in animal studies [69], [70]. Our results
suggest a possibility that the improvement of independent
finger control, partially represented by ARAT score changes,
reduced the activation of non-target muscles during object
grasping. A reduced iPMv-iM1 facilitation might therefore
imply a more efficient information flow in execution of finger
movements. Additionally, we observed an increased inhibitory
effect from the cPMv to cSMA after training. Previous studies
have reported that the contralesional premotor cortex supports
the residual motor function in stroke patients [71]. Longi-
tudinal fMRI studies have identified decreased activation of
cPMv and cSMA during the process of motor recovery [72].
However, some studies have also suggested the supportive role
of cSMA in motor inhibition control and bimanual coordi-
nation [73], [74]. Our results identified an average inhibitory
effect from cSMA to the contralateral M1 (cM1) during paretic
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hand movements, suggesting that cSMA was involved in
down-regulating cM1 excitability during motor tasks with the
affected hand. A previous study comparing motor execution
and imagery reported higher effective connectivity during
motor execution, suggesting the presence of PMv-SMA inter-
actions in generating actual motor outputs [75]. The study
hypothesized that PMv reacts to external stimuli to generate
action commands relayed to the SMA for movement initiation.
Applying this hypothesis to our findings, the observed reduc-
tion in cPMv-cSMA coupling may indicate less interference
from the non-paretic hand and greater focus on paretic hand
movements.

In this study, we combined the stimulation and control
groups to assess the overall training effect of EMG-robot
hand training on cortical reorganization. While this approach
allowed us to increase the effect size of neurophysiological
factors by pooling data from both groups, We are aware
that a marginally significant interaction effect was observed
between stimulation group and training effect, indicating
a potential beneficial effect of personalized tDCS. Further
studies with larger sample sizes and the use of multiple
neuroimaging and clinical assessment modalities are needed
to uncover the full effect of training augmented with tDCS.
Consideration of group-specific training effect in future studies
to better understand the mechanisms underlying the train-
ing effect of EMG-robot hand training and develop better
rehabilitation strategies incorporating with neuromodulation
technology.
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