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Online Estimating Pairwise Neuronal Functional
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Abstract— Neurons respond to external stimuli and form
functional networks through pairwise interactions. A neural
encoding model can describe a single neuron’s behavior,
and brain-machine interfaces (BMIs) provide a platform
to investigate how neurons adapt, functionally connect,
and encode movement. Movement modulation and pairwise
functional connectivity are modeled as high-dimensional
tuning states, estimated from neural spike train observa-
tions. However, accurate estimation of this neural state
vector can be challenging as pairwise neural interactions
are highly dimensional, change in different temporal scales
from movement, and could be non-stationary. We propose
an Adam-based gradient descent method to online estimate
high-dimensional pairwise neuronal functional connectiv-
ity and single neuronal tuning adaptation simultaneously.
By minimizing negative log-likelihood based on point pro-
cess observation, the proposed method adaptively adjusts
the learning rate for each dimension of the neural state
vectors by employing momentum and regularizer. We test
the method on real recordings of two rats performing the
brain control mode of a two-lever discrimination task. Our
results show that our method outperforms existing meth-
ods, especially when the state is sparse. Our method is
more stable and faster for an online scenario regardless
of the parameter initializations. Our method provides a
promising tool to track and build the time-variant functional
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neural connectivity, which dynamically forms the functional
network and results in better brain control.

Index Terms— Brain–machine interface, Adam, point pro-
cess, neural interaction, generalized linear machine.

I. INTRODUCTION

NEURONS react to external stimuli, forging connections
with one another to shape functional networks [1], [2],

[3], [4]. The neural encoding model computationally investi-
gates how neuronal firing activity responds to stimuli or under-
lies movements in a functionally connected way [5], [6], [7].
These encoding models define stimuli, pairwise neural inter-
action, or movements as a set of tuning parameters, and are
estimated from the neural spike trains. For instance, the instan-
taneous linear-nonlinear Poisson model (LNP) creates a tem-
poral one-to-one correlation between the movement and the
neural activity [5]. The soft-threshold integrate-and-fire model
further considers the effect of self-history as well [6]. The
generalized linear model (GLM) incorporates inter-neuronal
coupling terms for modeling neural interactions [7], [8].

Brain-machine interfaces (BMIs) enable the study of neu-
ral encoding models, especially motor BMIs which collect
movement-related neural signals and decode them to control
external devices [9], [10], [11]. For example, in motor brain
control (BC) tasks, subjects manipulate devices purely using
their brain signals. Neurons must actively encode movement
intention to participate in prosthesis control. This allows for
a thorough investigation of neural tuning properties. During
this study, understanding how the neurons functionally connect
to each other in a control task is crucial to investigating
neural network mechanisms since neurons do not tune the
control independently. Meanwhile, the study of functional
neural connectivity can benefit the BMI with more accurate
and robust decoding because the neural encoding model with
neural interactions can provide more accurate prior knowledge
of the brain states for the decoder in the Bayesian framework.

Estimating the parameters of functional neural connectivity
in the neural encoding model presents challenges. For instance,
in BC tasks, neurons encode complex brain states involv-
ing external stimuli, underlying movements, and pairwise or
higher-order interactions with other neurons [7], [12], [13],
[14]. Therefore, the parameter vector is hard to estimate due
to the high dimensionality of brain states and some sparse
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underlying brain states [15], [16]. Additionally, the tuning
state vector is time-variant, adapting to changes in parameters
over time. In advanced BMI, the neural encoding model must
track these complex, time-variant neural tuning properties,
even in sparse brain states, and be fast enough for an online
framework.

Researchers have proposed algorithms to estimate the tuning
parameters of the neural encoding model and applied them
to the online BMI. However, these methods are not suitable
for online tracking the functional neural connectivity such
as pair-wise neural interactions, simultaneously. For example,
Brown et al. introduced the steepest descent point process
filter (SDPPF) to estimate the tuning parameter of the hip-
pocampus neurons in rats [17], [18]. They defined a negative
log-likelihood of point process observation to indicate how
possible the neural firing is to respond to the position. The
parameters were updated by minimizing the likelihood using
stochastic gradient descent with a fixed learning rate. They
applied this method to track the preferred position, scale factor,
and maximum firing rate of the recorded place cells from the
hippocampus of rats. However, the fixed learning rate limits
the speed and accuracy of estimating the high-dimensional
tuning parameter. Thus, researchers have developed methods
to select a good learning rate such as Hsieh et al.’s analytical
calibration algorithm based on a trade-off between conver-
gence time and accuracy [19]. Besides, Eden et al. proposed
a stochastic state point process filter (SSPPF) to adaptively
adjust the learning rate using the least-squares method to
minimize the covariance of the error [20]. The method can
achieve one-step optimization on the learning rate at each time
instance. They validated the method on real data recording
from place cells. Orsborn et al. used SSPPF in a center-out task
to track the preferred direction of M1 cells of monkeys [21],
[22]. However, this algorithm assumes the parameters evolve
linearly, and the distribution of each neural tuning parameter
is Gaussian distributed, which is not generally true in the
neural system. Wang et al. developed a sequential Monte Carlo
point process (SMCPP) estimation to track the neural tuning
parameter without the Gaussian assumption [23]. This method
generates a set of particles in the parameter space to fully
describe and propagate the full distribution of the parameters
over time instead of only the 1st and 2nd order statistics.
They implemented the method in the motor cortical data
collected from a monkey when it performed a tracking task
and successfully estimated the time-variant neural modulation
depth.

However, these methods face challenges in predicting
high-dimensional neural tuning parameters involving func-
tional neural connectivity, especially when the neural spikes
are temporally sparse. SDPPF cannot handle the dimensions
with sparse gradients well as it tracks all the dimensions with
the same fixed learning rate. And it is easily impacted by
the initial state of the tuning parameter. However, exploring
several initial states to find the best estimation is not feasible
in the BMI online system. SMCPP consumes a lot of com-
putation resources due to the particles generated to estimate
the probability distribution of the tuning parameters since
high-dimensional neural tuning vectors require more particles

to construct their distribution. This makes the search for the
optimal parameters quite slower and potentially unsuitable for
an online BMI. SSPPF assumes the tuning parameters are
Gaussian distributed and linearly evolved, which is not suitable
for nonlinear neural systems. In addition, both SMCPP and
SSPPF treat all the dimensions of parameters equivalently
which can lead to biased estimation when only some dimen-
sions undergo active changes.

We are interested in predicting pairwise neuronal interac-
tions (the first-order functional neural connectivity) as well as
the single neural tuning adaption on movement in the online
BMI scenario. These components form a high-dimensional
tuning vector of the neural encoding model, which we aim
to estimate from the neural spike train observations. The
estimated neural encoding models contribute to reconstructing
the single neuron firing in the functional neural network
that results in the generation of movement. In this paper,
we derive an Adam-based point process filter (AdamPPF)
method to maximize the likelihood of the point process
observation constructed in the Bayesian method. Adam was
originally proposed to optimize the cost function in the deep
learning area [24] and is appropriate for models with a
high-dimensional parameter vector by adaptively modifying
the learning rate for each dimension. In addition, Adam is
computationally efficient with limited memory requirements,
making it ideal for online updating frameworks. Our method
inherits the advantages of Adam and derives Adam for the
point process model on the neural spike train. The negative
log-likelihood cost function is defined as the integration of
the instantaneous probability of spike observation within a
segment of history. AdamPPF employs momentum and the
regularizer, two moments of the first-order gradient of the
negative log-likelihood cost function, to adaptively modify
the learning rate for each dimension of the high-dimensional
tuning vector. The momentum makes the tracking direction on
the tuning vector more stable, reducing oscillation while the
regularizer magnifies the learning rate of the dimensions with
sparse brain states to ensure sufficient estimation. Besides, the
tracking of nonstationary tuning parameters can be improved
due to the forgetting factors that decay the weights of
previous gradients of the negative log-likelihood function.
Therefore, AdamPPF is a promising tool for estimating the
high-dimensional tuning state vector in the neural encoding
model.

We implement the method on the real data recorded from the
primary motor cortex (M1) in two Sprague Dawley (SD) rats
performing a brain control mode of a two-lever discrimination
task. As our contribution is to develop a more efficient
algorithm to track the pairwise functional neural connectivity,
2 subjects are statistically sufficient to validate the algorithm
performance [17], [25], [26]. We use AdamPPF to estimate
a nine-dimensional tuning vector in GLM, corresponding to
the pair-wise interactions between target neurons and five
other important neurons, as well as the four-dimensional
movement (2D position and velocity). The accuracy of tun-
ing parameters is evaluated using the mean squared error
(MSE) and normalized mean squared error (NMSE) between
AdamPPF estimation and the optimal value obtained by the
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instantaneous LNP model estimation [5], [23]. We further
validate the method in spike prediction using the estimated
tuning parameters by the discrete-time rescaling Kolmogorov
Smirnov (DTR-KS) test. We compare results obtained with
AdamPPF to those of the existing method SDPPF, to validate
the accuracy and stability across multiple segments of data and
different initial states. Finally, two simple functional neural
networks are illustrated based on the estimated models, and
the decoding performance assisted by the estimated functional
neural connectivity is delivered to validate whether our method
can help the patient’s brain control better.

The rest of this letter is organized as follows. The details of
AdamPPF and evaluation metrics are introduced in section II.
Section III presents the application of real data collected from
two rats compared to the existing method. The discussion and
conclusion are given in section IV.

II. METHODOLOGY

A. Experiment Design and Neural Signal Acquisition
The real spike train observation was recorded from the

left primary motor (M1) cortex areas of two male Sprague
Dawley (SD) rats. The rats were trained to perform a two-lever
discrimination task purely using brain signals through a BMI
system. This BMI experimental paradigm was designed and
implemented at the Hong Kong University of Science and
Technology (HKUST). The animal handling procedures were
approved by the Animal Ethics Committee at HKUST, strictly
complying with the Guide for Care and Use of Laboratory
Animals. In the manual control mode of the animal behavior
experiment, the rats were trained to press the right lever
corresponding to the start cue to get a water reward. Each lever
is associated with a start cue (10kHz corresponding to the high
lever and 1.5kHz for the low lever). In the brain control mode
where our method would be applied, the rats were trained to
adapt their neural activity to control a cursor on a 2D screen
in reaching and holding within the target areas representing
two virtual levers by an online decoder. After finishing one
trial, the rats needed to manipulate the brain state to the rest
state to trigger the next trial. (Further details of this behavioral
experiment can be found in [27]).

A 16-channel microelectrode array (Plexon Inc.) was imple-
mented in the M1 cortex. The microelectrode array is arranged
in a 2 × 8 configuration, with a spacing of approximately
50 µm between adjacent sites. We made a small incision
in the scalp and drilled a hole in the skull to expose the
brain’s surface. Then the microelectrode array was lowered
into the brain using stereotaxic coordinates to target the desired
region. When the rats performed the task, the extracellular
potentials were recorded by a multichannel acquisition pro-
cessor (OmniPlex Neural Recording Data Acquisition System,
Plexon, Dallas, Texas). The raw signals were sampled at
the 40 kHz frequency and filtered by a high-pass four-pole
Butterworth filter at 500 Hz. A threshold (−5σ ∼ −3σ ,
σ is the standard deviation of the potential amplitude) was
used to detect the spikes from the filtered potential online.
An offline sorter (Plexon) was used to sort the single units
from each channel based on the waveform of the spikes.
20 units were sorted from Rat A data, and 19 units were sorted

from Rat B data. A 10-ms bin was used to form the spike
timing information into point process observation within 1700-
second data. 2.09% of all the spike bins contain more than
one spike. The bins with spikes were assigned 1; otherwise,
the bins were assigned 0. These detected neural activities
were interpreted online into the continuous two-dimensional
movement states every 100 ms in brain control mode [28].
The output movement states were used to judge whether the
trajectory reached and stayed within the target position area
without actual limb movement of rats.

In this paper, six top important neurons ({3,8,10,16,17,18}
for Rat A and {1,4,5,10,16,17} for Rat B) are selected because
their decoding performance achieves 89% of the best decoding
performance for Rat A and 92% for Rat B [27]. The selected
neurons are used to test the proposed AdamPPF in tracking the
tuning parameters. The neural interactions with the other five
neurons and the online decoded movements are the brain states

in GLM as
{

xk =
[
λin, Px , Py, Vx , Vy

]′
k

}K

k=1
where k is the

time index and K is the final time index. λin is the firing rate
of the other important neurons. Px and Py are the positions
in the 2D plane, and Vx and Vy are the velocities. The data
are divided into fifteen segments, each containing 20000 data
samples. For each segment, 15 initial states are randomly
generated to validate the stability of the performance.

B. Deriving Pairwise Neural Interaction by Adam-Based
Point Process Filter

A given observation interval (0, T ] can be partitioned into
a discrete form {tk}K

k=1 where tk ∈ (0, T ] with the fixed
interval 1t = tk − tk−1 and k is the index for time stamps.
For a given neuron, let Nk denote the number of spikes up
to tk and 1Nk = Nk − Nk−1 is the new spike information
observed within the interval (tk−1, tk]. 1 is assigned to 1Nk
when a spike is observed in the interval; otherwise, 0 is
set. The conditional intensity λk of the given neuron defines
the instantaneous probability of observing a spike within the
interval (tk−1, tk] as:

λk(xk, θk, Hk) =
Pr(1Nk = 1|xk, θk, Hk)

1t
, (1)

where xk ∈ RD×1 contains underlying movement and firing
rates of other neurons tuned by this neuron at tk with the
dimensionality D, and θk ∈ RD×1 is a high-dimensional
tuning state vector (shorten as neural tuning vector in this
paper) representing the strength of pairwise neural inter-
action as well as the movement tuning parameter. Hk =

[x1:k−1, θ1:k−1, N1:k−1] is the history including the encoded
states, neural tuning vector, and the observation up to the
time tk−1. The probability of a spike train is modulated by
the state xk , the single neural tuning vector θk , and the
history information Hk . Therefore, the conditional intensity
λk can be expressed by a tuning function referring to these
three factors. Assuming the current state xk and neural tuning
vector θk contains all the information of the history Hk in
a state-observation model, a tuning function can be simply
approximated as [5]:

λk (xk, θk) = f (xk, θk) = exp(θT
k xk), (2)
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where f (·) is a nonlinear function describing the relationship
between the conditional intensity and its modulation factors
(the states and neural tuning vector). The observation is
generated based on the conditional intensity following the
inhomogeneous Poisson model [5]. Therefore, the likelihood
of observation within the interval (tk−1, tk] can be modeled
as:

P (1Nk | λk) =
(λk1t)1Nk

(1Nk)!
exp (−λk1t) , (3)

Given the sequence of states {xk}
K
k=1, the likelihood of the

spike train is only determined by the unknown neural tuning
vector θk . We assume the parameter vector θk is steady within
a sufficiently short period (tk−M , tk

]
where M is the length

of the period [17], [25], [29]. According to the assumption,
a negative log-likelihood considering a sample path is defined
to measure the information from the spike train about the
neural tuning vector:

Lk (θ) = −log
(
5M

i=0 P (1Nk−i | λk−i (θ))
)

=

M∑
i=1

(−1Nk−i log (λk−i (θ) 1t)

+ log (1Nk−i !) + λk−i (θ) 1t) (4)

To estimate the neural tuning vector of the encoding
model, AdamPPF employs momentum and regularizer to
adjust the learning rate based on the gradient of the negative
log-likelihood we defined in (4). Substituting (2) into (4), the
general form of the gradient of the negative log-likelihood
gk (θ) can be expressed as:

gk (θ)

=
∂Lk (θ)

∂θ

=

M∑
i=0

(
−

1Nk−i

λk−i (θ)

∂

∂θ
f (xk, θ) +

∂

∂θ
f (xk, θ) 1t

)
(5a)

=

M∑
i=0

(λk−i (θ) 1t − 1Nk−i )
1

λk−i (θ)

∂

∂θ
f (xk, θ) (5b)

Equation (5b) is the gradient decomposed into two parts.
The part in the first bracket is the error by comparing the real
observation 1Nk−i and the probability of generating a spike
λk−i (θ) 1t obtained by the neural encoding model. This error
is a scaling of the update. The rest part is the derivative of the
log function on the tuning property in (2) w.r.t the parameter
vector, which indicates the direction of updating the neural
tuning vector. Instead of directly using the stochastic gradient
to update the parameter vector, Adam-PPF proposes to use
the first and second moments of the gradient, considering the
recent effect to rescale the gradient. The two moments of the
gradient are defined as respectively:

Ek,β1(g) =

∑k

i=1
(1 − β1) βk−i

1 gi , (6a)

V k,β2(g) =

∑k

i=1
(1 − β2) βk−i

2 g2
i , (6b)

where Ek,β1(g) is the first moment at time tk with the
forgetting factor β1 ∈ (0, 1). Equation (6a) demonstrates that
the first-moment Ek,β1 (g) is the mean of the gradient with
exponential decay. Vk,β2(g) is the secondary moment at time
tk , which is the expectation of the power to the gradient with
the forgetting factor β2. These two items are used to adapt
the learning rate and update the tuning vector at each update
instance:

θk = θk−1 − α
Ek,β1/

(
1 − βk

1
)

(
V k,β2

) 1
2 /(1 − βk

2 ) + ϵ

|θk−1 (7)

where α is the preset learning rate and ϵ is a regularization that
is very small to avoid the denominator being zero. Equation (7)
demonstrates that the update of the neural tuning vector is
a dynamic gain coefficient α(

V k,β2

) 1
2 /(1−βk

2 )+ϵ

based on the

previous state θk−1. 1−βk
1 and 1−βk

2 are the items to correct
the bias of the two moments due to the zero initialization of
the two moments Ek,β1 , V k,β2 .

In the gain part, the first-moment Ek,β1 controls the update
direction. Due to the accumulation in the first moment, the
update of the tuning vector could be driven by the relatively
stable component of the log-likelihood gradient. This can
speed up the update and reduce the oscillation for the less
critical dimensions of the neural tuning vector. The second
moment, accumulating the squared log-likelihood gradient,
could address the issues caused by the sparseness of the states.
The second-moment V k,β2 would become small to enlarge the
step size for the dimensions with sparse gradient. When the
states are active, the update of the dimensions with a large
gradient slows down due to the significant second moment.
Thus, V k,β2 balances the update speed among all dimensions
avoiding the estimation being dominated by the dimensions
with active gradients.

In summary, introducing the momentum Ek,β1 and the
regularizer V k,β2 could significantly improve the gradient
search on the log-likelihood. For the online scenario, the
estimation on Ek,β1 and V k,β2 could be iteratively updated
in (6a) and (6b), respectively. The forgetting factors β1 and
β2 make the two moments strongly related to the recent
observation and states. It enables the method to be used in an
online framework to track the nonstationary neural encoding
model.

C. Evaluation of the High-Dimensional
Neural Tuning Vector

We evaluate the estimation of the neural tuning vector
over the accuracy, stability, dimensionality, and goodness of
reconstructing point process observation. We implement mean
squared error (MSE) to evaluate the estimation accuracy for
each dimension of the neural tuning vector compared with
the ground truth parameter. MSE at the final convergence
stage demonstrates the accuracy of the estimation. Meanwhile,
normalized mean squared error (NMSE) is applied to test the
parameter estimation overall dimensions. NMSE is the sum of
the MSE of each dimension normalized by the power of these
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dimensions

N M SE =
1
D

∑D

d=1

∑K
k=kc

(
θd

k − θ̂d
k

)2

∑K
k=kc

(
θd

k
)2 , (8)

where D is the dimensionality of the neural tuning vector
with the dimension index d. kc is the initial time index at the
convergence stage. θd

k is the optimal tuning parameter of the
dth-dimension at time tk while θ̂d

k is the estimation. NMSE is
chosen because it can comprehensively measure the estimation
across all dimensions for the neural encoding model. This
metric is used to demonstrate the influence of dimensionality
and evaluate the stability over multiple data segments and
multiple neurons.

Apart from comparing the estimation with the optimal
estimation of the tuning vector, we further validate the method
in spike prediction using the estimated tuning parameters
according to the discrete-time rescaling Kolmogorov-Smirnov
(DTR-KS) test. DTR-KS test is widely used to measure the
goodness of fitting a point process observation [12], [30].
According to the time-rescaling theorem [30], a good estima-
tion of the neural tuning vector should support its conditional
intensity of rescaled inter-spike intervals (ISIs) to have the
cumulative distribution function (CDF) close to the 45-degree
centerline of the DTR-KS plot. The maximal distance between
the CDF obtained by the estimated neural encoding model and
the 45-degree centerline is calculated to evaluate the model as
a DTR-KS score Dks . Generally, the DTR-KS score is always
compared with a 95% confidence bound when assessing the
goodness-of-fit of the conditional intensity to one spike train.
Here, we apply the DBR, the ratio between the DTR-KS
statistics and the 95% confidence bound, to evaluate the neural
spike prediction using the estimated tuning parameters. The
form of DBR is given by Eq. 9

DB R =
Dks

1.36

√
N K , (9)

where NK is the count of the spikes within the observation
interval, as the value 1.36 is related to a 95% confidence bound
based on the count of spikes. If the tuning parameter describes
the observed spike train better, the DBR of this model should
be smaller. Finally, in order to make the results of the DTR-KS
score stable, the DTR-KS scores in this paper are averaged on
20 repeated calculations. DBR over different dimensionality
in the simulation data illustrates how the increasing dimen-
sionality impacts the neural spike prediction. Meanwhile, it is
also used to evaluate the stability of multiple neurons in real
data.

III. RESULTS

In this section, we evaluate the performance of AdamPPF
and compare it with the other methods. Since there is no
ground truth of the functional connectivity in real data, which
can be only estimated, we first design simulations to test if
the proposed method can track the functional connectivity
by comparing the designed networks. Our simulation shows
that AdamPPF is better than SDPPF in the estimation of

the pairwise functional connectivity with up to 11 dimen-
sionalities. Due to the page limit, here we only demonstrate
the results in the real neural spike trains recorded from
primary motor cortex (M1) neurons of two rats performing
a two-lever discrimination task. Here we only use SDPPF for
comparison because it is also a gradient-based optimization
method and suitable for online scenarios with less memory and
computation. SSPPF and SMCPP are not chosen to compare
because they are based on the state observation model, which
assumes access to the ground truth of the state function and
observation function. Such functions in BC are not available
when the experiment switches from MC. In addition, SMCPP
has a large computation request for particle generation of a
high-dimensional tuning vector. In our experiment, we observe
that SDPPF is the second best among four methods (AdamPPF,
SDPPF, SSPPF, and SMCPPF) which performs 47% and 56%
better in NMSE than SMCPP and SSPPF, respectively when
SSPPF and SMCPP use a state function and observation
obtained from MC. Thus, here we only show the comparison
of the tuning estimation by AdamPPF with that of SDPPF.
We further conduct a pairwise one-sided student’s t-test to
assess if AdamPPF statistically outperforms SDPPF over
multiple segments of data and multiple neurons. The goal
is to demonstrate if our method can accurately, quickly, and
robustly estimate all the dimensions of the tuning vector.

The brain state in the experiment includes the firing rates
of important neurons and a four-dimensional movement. The
pairwise interactions among neurons are reflected in spike
trains, which have different temporal scales from the move-
ment. Additionally, the velocity state of movement is rather
sparse. Thus, the data serves to validate the stability and
accuracy of AdamPPF for the proposed issues in this paper
including nonstationary neural property online tracking, high-
dimensional tuning vector estimation, and sparse state. The
optimal tuning parameters of the neural encoding model are
obtained through the GLM model in the offline analysis [5],
[23], [27] as:

λi
k = exp

((
θ i

k

)T
xk + bi

)
(10)

where λi
k is the firing rate of the neuron i at time tk . bi

is the background of the firing rate, which is estimated as
the average firing rate of the observed neural activity. θ i

k =[
θ i

n j1 , θ
i
n j2 , θ

i
n j3 , θ

i
n j4 , θ

i
n j5 , θ

i
px , θ

i
py, θ

i
vx , θ

i
vy

]
is the neural tun-

ing vector we need to estimate in the experiment at time k.
The first five elements θ i

n j 1:5
are the parameters describing

the strength of pairwise neural interactions between Neuron i
and Neurons j1 to j5. The last four components are related
to the movement. θpx and θpy are the dimensions related to
the position, while θvx and θvy correspond to the velocity.
The time-variant optimal parameters are obtained by the
spike-triggered average [23], [31] within a 100-second sliding
window with 98% overlap [23], [27]. The size of the sliding
window is selected since the tuning property usually gradually
changes during a well-trained task [23], [25]. These optimal
parameters serve as the ground truth of the neural tuning vector
as they are estimated given a large number of data samples.
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Fig. 1. Estimation of the tuning vector on the temporal scale. (a) and (b) are the results of the parameter tracking for Rat A Neuron 10 and Rat
B Neuron 1, respectively. Each block represents the dimension labeled in the upper right. The x-axis is the time in seconds, and the y-axis is the
value of this parameter dimension. The black curves are the optimal values. The red lines represent the mean estimation obtained by AdamPPF
over 15 initializations, and the blue curves are the mean estimation by SDPPF. The shadow areas represent the standard deviation. (c) and (d) are
the optimization of the negative log-likelihood for two neurons. The x-axis is the time in seconds, and the y-axis is the negative log-likelihood value.
The red and blue lines are the means across 15 initializations obtained by AdamPPF and SDPPF, respectively. The shadow areas mean the range
of the negative log-likelihood.

While our AdamPPF attempts to track the tuning parameters
in the online scenario.

We implement AdamPPF and SDPPF to track the neural
tuning vectors of 12 neurons. Here, we choose Neuron 10 of
Rat A and Neuron 1 of Rat B as two examples to visualize the
estimation performance. The neural tuning vectors are updated
every 100 ms. Totally 15 data segments are used to test the
robustness. Each segment contains 20000 data samples. For
each segment, 15 initial states of the tuning vector are given
to evaluate the sensitivity of two methods to the initialization.
The initial states are randomly generated within the range
[−3θ g, 3θ g] where θ g is the optimal value of the neural tuning
vector. The learning rates for the two neurons are 0.1 for
AdamPPF and 0.8 for SDPPF, respectively, after exploration.
The two forgetting factors are 0.9 and 0.98, respectively, for
both example neurons.

A. Exemplary Single Neuronal Analysis
Fig. 1 presents the estimation results of the

nine-dimensional neural tuning vectors for two example
neurons over 15 initializations. The left column
(Fig. 1a and 1c) corresponds to Neuron 10 of Rat A
while the right column (Fig. 1b and 1d) shows the results
of Neuron 1 of Rat B. Fig. 1a and 1b depict the estimation
of the neural tuning vectors, where each block tracks one
dimension of the tuning vector labeled in the right upper.
Fig. 1c and 1d illustrate the optimization process described
by the negative log-likelihood with the y-axis representing the
value of the negative log-likelihood, where each time instance
considers the history of 1000 samples. The results in Fig. 1a
and 1b demonstrate that AdamPPF can track the true tuning
vectors more accurately with less variance than SDPPF

for all nine dimensions of both neurons. In comparison,
SDPPF successfully tracks the position-relevant parameters
(θpx and θpy) and some dimensions (θnj ) related to pairwise
neural interaction but fails to estimate some dimensions
of pair-wise neural interaction (θnj , j is the index of the
pairwise interacted neuron) and velocity-relevant parameters
(θvx and θvy). For example, in the experiment of Neuron 10 of
Rat A, both methods track the parameters related to pairwise
interaction with Neurons 3 and 16 in the end. However,
for other dimensions describing the neural interaction with
Neurons 8, 17, and 18, the estimations obtained by Adam
are closer to the optimal values than SDPPF’s results in
the final stage. Specifically, AdamPPF is more sensitive
to the time dynamics of the tuning vector. During tracking
the neural interaction between Neuron 1 and 4 of Rat B
(θn4), although both methods obtain similar estimation
in the final stage, AdamPPF can describe the changes of
the parameter during 60 s to 200 s, where the correlation
coefficient between the optimal value and the tracking
obtained by AdamPPF is 0.58 (SDPPF is 0.21). In terms
of movement-relevant parameters, both methods predict the
position-relevant parameters accurately since the neurons
mainly encode the position information for better controlling
the BMI system. However, due to the sparseness of
velocity, SDPPF does not exhibit any significant change
over all the samples. In contrast, AdamPPF can handle the
velocity-related parameters correctly. Moreover, the variance
of most dimensions obtained by SDPPF remains as large as
the initialization, while AdamPPF can significantly reduce the
variance indicating that AdamPPF is more stable than SDPPF
when the initialization is not confident. Convergence is also
achieved faster by AdamPPF than SDPPF both the tuning
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Fig. 2. Estimation of the tuning vector on the spatial scale. (a) and (b) are the spectrum of the parameters about pair-wise neural interaction. The
first row is the ground truth, the second row is the results of AdamPPF, and the third row is the results of SDPPF. The horizontal axis represents
the parameters and the color describes the value of the parameter. (c) and (d) are the preferred position in a 2D plane. (e) and (f) are the preferred
velocity. The ground truth is plotted by black arrows. The red arrows and the blue arrows represent the results obtained by AdamPPF and SDPPF,
respectively. The estimation of three typical time indexes is selected for the comparison: initial stage, early stage, and final stage.

vector estimation and optimizing the negative log-likelihood.
However, it is worth noting that the estimation of some
dimensions obtained by AamPPF fluctuates by a wide margin
in the early stage (about 0-50 s).

Fig. 2 compares the parameter tracking in three aspects
including pair-wise neural interaction, single neural tuning
on preferred position, and velocity (the movement with the
highest firing rate) [23], [27]. The first row (Fig. 2a, 2b)
is the spectrum of the parameters of the neural interaction
items. The second row and third row illustrate the preferred
position (Fig. 2c, 2d) and preferred velocity (Fig. 2e, 2f) in
the 2D plane, respectively. The left column is the results of
Rat A, and the right column belongs to Rat B. For each
aspect, we choose three typical times during the experiment to
compare (the same initial state, early stage, and final stage).
Firstly, the comparison of spectrums shows that AdamPPF can
estimate the neural interaction more similar to the ground
truth. For example, in Rat A, Neuron 8 inhibits the firing
of Neuron 10 where the parameter is negative. At the final
stage (t = 195s), AdamPPF obtains the inhibition effect of
Neuron 8 while SDPPF leads to an excitation effect. These
results demonstrate that AdamPPF can reconstruct a more
accurate functional neural network by addressing the right
inhibition and excitation effects among neurons. Furthermore,
for the movement-related parameters, AdamPPF estimates a
more accurate preferred position and preferred velocity faster.
In the second and the third rows, we can see that the estimation
of AdamPPF has been very close to the ground truth at the
early stage (t = 31s for Rat A and t = 46s for Rat B) and
keeps following the ground truth to the final stage (t = 195s
for Rat A and t = 181s for Rat B). At the same time, SDPPF
only tracks the preferred position fast and accurately and fails
to track the information of velocity.

We conduct a further statistical evaluation of the methods
over 15 data segments for the example neurons. Figure 3
shows the comparison of the estimation performance between

the two methods on each dimension (MSE) and all dimensions
across time (NMSE). Fig. 3a and 3c present the statistical
results for Neuron 10 of Rat A, and Fig. 3b and 3d show
the results for Neuron 1 of Rat B. Fig. 3a and 3b describe
the MSE for each dimension compared to the optimal values
within the final stage (final 2000 samples). We employ a
pair-wise Student’s t-test (one-sided) against the alternative
specified by the right tail test M SE Adam P P F < M SESD P P F
across all the experiments for each dimension. Under the
null hypothesis at α= 0.05, the probability of observing an
equal or higher value in the test statistics is indicated as a
p-value. In Fig. 3a, we observe that SDPPF has relatively good
estimations over segments for θn8, θn17, θn18, and parameters
of position at the convergence stage with a smaller range of
quartiles. Meanwhile, in Fig. 3b for Neuron 1 of Rat B, the
property of pair-wise neural interaction with Neurons 4, 5,
17, and the modulation of position are addressed by SDPPF.
However, SDPPF fails to estimate velocity-related θvx and
θvy for both neurons. On the contrary, AdamPPF obtains an
accurate prediction for all nine dimensions with less variance.
The pairwise student t-test (one side) shows that AdamPPF
performs significantly better than SDPPF with p < 0.05 for
most dimensions. Fig 3c and 3d demonstrate the changes in
NMSE temporally. We calculate the NMSE overall data seg-
ments and initializations within a 2000-sample sliding window
with a 50% overlap. For both example neurons, the NMSE of
AdamPPF estimation is lower than that of SDPPF estimation
which indicates our method predicts the high-dimensional
tuning vector better. Additionally, AdamPPF estimation has
smaller standard deviations of NMSE which are described
by the error bars. However, the NMSEs in Fig. 3c do not
decrease over time while the negative log-likelihood decreases.
The reason is that the tuning property is temporally dynamic,
and the changes in ground truth may introduce more errors
when the estimation is based on past samples. Meanwhile,
we can see the decrease of NMSE for Neuron 10 because
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Fig. 3. Statistics results of MSE over multiple data segments and NMSE across time. (a) is the result of Rat A Neuron 10, and (b) is the result of
Rat B Neuron 1. The horizontal axis is the nine dimensions of the tuning vectors, and the vertical axis is the MSE. The result of AdamPPF is plotted
in red, and the result of SDPPF is labeled in blue. (c) and (d) are the results of NMSE across time over multiple data segments and initialization.
The curve is the mean of NMSE and the vertical bars represent the standard deviation of NMSE. Each point is calculated over 2000 samples with
1000-sample overlap.

Fig. 4. The R-square test for overall estimations. (a) and (b) presents
the results for Rat A and Rat B, respectively. The x-axis is the optimal
value of the tuning parameter, and the y-axis shows the estimation
values. The red dots represent the estimation of AdamPPF, and the
blue dots are obtained by SDPPF. The solid lines represent the linear
regression between optimal values and the estimations.

its ground truth is relatively stabler than that of Neuron 1.
Consequently, our method can track the time-variant tuning
vector more accurately, faster, and stably for all dimensions
of a single neuron.

B. Statistical Encoding Results Across 12 Neurons
In addition to the example neurons, we test twelve important

neurons from two rats. All the estimations of parameters across
two subjects, twelve neurons, and fifteen 200-s data segments,
are plotted in Fig. 4. We employ the R-square test to measure
the similarity between the estimation and the optimal values.
Overall, the estimation obtained by our method is better than
that of SDPPF with higher r2 values which are labeled in the
figures.

Specifically, we also use NMSE and DBR to evaluate the
performance of each neuron. The left column (Fig. 5a and 5c)
shows the results for Rat A, while the right column
(Fig. 5b and 5d) shows the results for Rat B. The top row
(Fig. 5a and 5b) is the evaluation of NMSE for the 5 parame-
ters of neural interactions, and the bottom row (Fig. 5c and 5d)

presents the evaluation of DBR for the neural firing prediction
using the estimated tuning parameters. As shown in Fig. 5a
and 5b, AdamPPF estimates the neural tuning vector more
accurately and stably than SDPPF (p < 0.05) for ten of the
twelve neurons. For Neurons 8 and 17 of Rat A, AdamPPF
has large NMSEs. In Fig. 5c and 5d, AdamPPF outperforms
SDPPF for most neurons to reconstruct the spike observation.
However, the differences in DBR between AdamPPF and
SDPPF for these 12 neurons are not as obvious as the dif-
ferences in NMSE. Comprehensively considering NMSE and
DBR, the neural encoding model using the tuning parameter
estimated by AdamPPF is closer to the ground truth of the
encoding function of the neuron.

C. Behavioral Decoding and Functional Neural
Network Reconstruction

Apart from the statistical encoding validation on tun-
ing parameter estimation, we also implement these esti-
mated parameters to the observation function and utilize an
SSPPF [20] to decode the behavior given the neural sp9ke
trains. This is to evaluate how our method contributes the
brain control performance in BMIs. Fig. 6 shows the statistical
behavioral decoding results on four-dimensional movement,
including position and velocity in a 2D screen across 15 seg-
ments of test data for two rats. For each segment, we use
the tuning parameter average within the final 2000 samples
as the neural encoding model parameter in our decoder. The
MSE is the error between the estimated movement and ground
truth movement over 2000 testing samples in each segment,
From Fig. 6, we can see that the decoded movement with the
parameter estimated by AdamPPF is more statistically accurate
than that of SDPPF (p < 0.05).

The performance over multiple neurons supported that our
method is a potential tool to reconstruct the functional neu-
ral network by specifying the pairwise neural interactions
and movement encoding. Here, we reconstruct the simple
functional neural networks in Fig. 7 based on the average
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Fig. 5. The statistics of NMSE and DBR for all 6 neurons from each rat are analyzed. (a) and (b) are the distributions of NMSE for two rats.
(c) and (d) are the results of DBR. The x-axis is the neuron index. The results of AdamPPF are labeled as red, and the results of SDPPF use blue.
AdamPPF performs 63 % and 32% improvement in NMSE and DBR than SDPPF.

Fig. 6. Decoding validation according to the estimated neural tuning
parameter vectors. (a) and (b) are the results for Rat A and Rat B,
respectively. The results of AdamPPF are labelled by red and SDPPF
are labelled by blue. The movement including position and velocity
in a 2D-plane and the y-axis is the MSE for each dimension of the
movement.

Fig. 7. The reconstruction of functional neural network. (a-c) are the
neural networks of Rat A obtained by optimal values, the estimation
of AdamPPF, and the estimation of SDPPF, respectively. (d-f) are the
networks of Rat B.

prediction of the tuning vectors during the final 2000 samples.
In Fig.7, the first row (Fig. 7a-7c) is the result of Rat A, and
the second row (Fig. 7d-7f) is the result of Rat B. The first
column is the neural network based on the optimal values
of the tuning vectors. The middle column is based on the
estimation of AdamPPF, and the final column is obtained
by the SDPPF. The nodes of the neural networks are the
neurons and the edges represent their pairwise interactions.
The widths of the edges are determined by the normalized
tuning parameters, which describe the strength of pairwise
neural interactions. The wider the edge is, the higher the two

neurons are correlated. The density of the color represents the
MSE between the optimal values and the estimation obtained
by the method. The deeper the color is, the smaller the error
is. On the averaged MSE across all functional connectivity,
the networks reconstructed by AdamPPF (average MSE is
1.17 for Rat A and 2.12 for Rat B) are more similar to the
optimal networks than SDPPF (average MSE is 1.43 for Rat
A and 3.06 for Rat B) where the color is deeper. Compared
to SDPPF, AdamPPF performs better for almost all neural
interactions (11 of 15 for Rat A, 9 of 15 for Rat B). Specif-
ically from Fig. 7a, we can see that Neuron 10 and Neuron
8 are two important central neurons whose firing rates are
highly correlated to the other neurons in this functional neural
network. AdamPPF mainly captures the sub-neural network
around Neuron 10, while the neural network obtained by
SDPPF is more dominated by the part around Neuron 8. This
is because AdamPPF estimates the neural tuning vector of
Neuron 10 more accurately than SDPPF but less accurately for
Neuron 8, which is reflected in Fig. 5. However, comprehen-
sively, the functional neural network obtained by AdamPPF is
more similar to the optimal neural network because AdamPPF
outperforms SDPPF for 4 of 6 important neurons. For Rat B,
the neural interactions between Neurons 1 and 10, 1 and 5,
4 and 16 are most active among these neurons. For AdamPPF,
the estimated pairwise neural interactions of the three pairs are
relatively weaker than the optimal ones, while the other pairs
of interactions become stronger. This is because AdamPPF
would enlarge the learning rate for exploring a wide range
of the tuning parameters when the parameter estimation is
near zero. As a comparison, the functional neural network
obtained by SDPPF has many mistakes in the strength of
the neural interactions. Consequently, these two examples of
the functional neural network indicate that AdamPPF can
provide a more accurate estimation of the high-dimensional
neural tuning vector to support the reconstruction of complex
functional neural networks.

IV. DISCUSSION

In this paper, we propose an Adam-based point process filter
(AdamPPF) to estimate the high-dimensional neural tuning
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vector that characterizes pairwise neural interaction and single
neural movement tuning for BMI. This is a gradient-based
optimization by maximizing a negative log-likelihood based
on the point process observation. We derive AdamPPF to
adaptively adjust the learning rate for each dimension of
the tuning vector, which reduces the oscillation of the less
dominated dimension and accelerates the update with balance
among all dimensions. In the online framework, AdamPPF
uses two forgetting factors to keep the latest update of
tuning information, which enables tracking the time-varying
tuning vector. Due to these strategies, Adam can estimate the
high-dimensional neural tuning vector accurately, stably, and
fast online to tune the complex, even sparse brain states.

We implement AdamPPF to the real data and compare
the estimation obtained by the proposed method with the
steepest descent point process filter (SDPPF). In the real
data experiment, the method is implemented to estimate the
neural encoding models of 12 neurons from 2 rats. The neural
encoding model employs a nine-dimensional neural tuning
vector, including pairwise neural interactions, position, and
velocity. The results establish that Adam can provide a faster,
more stable, and more accurate estimation regardless of the
initialization and the sparse states with 63% smaller in NMSE
and 32% smaller in DBR average. Specifically, AdamPPF
estimated the connection better because it adjusts and assigns
different learning rates to each dimension of the tuning vector
according to the statistical property of the gradients. The
advantages of AdamPPF also are made manifest for the sparse
state. For example, AdamPPF can handle the velocity-related
parameters correctly because it uses a small regularizer to
magnify the learning rate. Therefore, the parameters can be
explored sufficiently with temporal-sparse velocity. Besides,
the temporal changes of the tuning parameters are tracked
faster by AdamPPF. This is because AdamPPF employs two
forgetting factors to update the momentum and the regularizer,
making the tracking more efficiently related to the latest
tuning property. This opens the door to the use of AdamPPF
to estimate the time-variant functional connectivity, which
involves plenty of neurons [29].

We also use the functional connectivity estimated by our
method to decode the movement, which is more accurate than
SDPPF. It indicates that the functional neural network recon-
struction based on pairwise neural interactions contributes
to better brain control performance. Note that our data is
collected while the rats are well trained, thus the change in
the functional neural connectivity is not significant. Due to
the capability of online training, our method has the potential
to track dynamic functional connectivity while the rats are
during the learning stages. Our method could contribute to a
better understanding how the neurons participate in encoding
movement in a neural network.

However, AdamPPF still has some limits. First, AdamPPF
is sensitive to initializations close to zero. In such cases,
AdamPPF will automatically choose a larger learning rate to
aggressively explore the optimal tuning vector, resulting in
an imperfect estimation in the early stage. The corresponding
encoding model could lead to a bad decoding performance of
BMI, which may not reflect the subjects’ intentions correctly.

The subjects may feel confused and frustrated in learning the
task. Thus, this strategy brings more difficulties to subjects
when they learn a brain control task from a naïve state.
Second, AdamPPF may oscillate when the estimation is close
to the ground truth. This is because the learning rate will be
magnified because of a small regularizer. This strategy can
help the estimation escape from the locally optimal states but
give rise to a small oscillation in the decoding performance
of BMI. Therefore, AdamPPF cannot address the changing
neural tuning properties very accurately on a high-resolution
temporal scale. One possible solution to these problems is
introducing information from the external environment to
guide the tracking strategies, such as response time and reward.

V. CONCLUSION

Understanding how single neurons tune stimuli or move-
ment in a neural network is a critical topic in neuroscience.
Single neuronal encoding models have been designed to
connect the spike trains with states such as external stimuli,
underlying movements, or neural interactions. A functional
neural network could be built to understand single neural firing
if we accurately estimate the neural encoding model involving
both single neuronal movement tuning and pairwise neural
interactions simultaneously. This functional neural network
can improve neural encoding and behavioral decoding per-
formance compared to an independent single neuronal model.
AdamPPF provides an efficient computational tool to track the
dynamics of neural encoding models with a high-dimensional
tuning vector, which contributes to better online decoding of
brain control tasks. This improvement in decoding can assist
patients in brain control of BMI stably in long-term use. The
method also brings more insights into understanding how a
single neuron learns to modulate movement in a dynamic
functional neural network that generates the movement.
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